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Talk outline

• Motivation
• PDBL: principles and examples
• Applications: security, testing, 

decoherence
• Design flow and tool
• Cryptography hardware case study



ACiD-WG Workshop, Turku, June 2004 3

Motivation

• Traditional classification based on timing is along the 
line: clocked vs self-timed. It caters for the way how 
computations are controlled, either on GLOBAL VALID 
(clocked) or DISTRIBUTED VALID (self-timed) signal.

• This approach helps in finding ways of battling clock-
distribution problems, modularity, robustness, power-
saving …

• However, this approach does not reflect properties of the 
switching activity of individual nodes in circuits, which 
may be important in a range of application domains, e.g. 
security, testability, decoherence. 



ACiD-WG Workshop, Turku, June 2004 4

Motivation

• Another classification is w.r.t. to switching 
activity of the nodes in a logic circuit: arbitrary vs
predictable in some sense. Eg:

• Can we build circuits whose switching activity is 
invariant to processed data? (good for security)

• Can we build circuits whose Idd measured on a 
short time interval can fully characterise the 
absence or presence of faults (good for testing)

• Can we build circuits whose nodes have stable 
predictable periodicity in switching? (good for 
decoherence/refreshing)
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Phase Difference Based Logic

• Uses dual-rail representation (other also 
possible but probably not so efficient)

• Both rails must switch in every operational 
cycle, regardless of the data value. How?

• Bit X: (X1,X0): 
– Valid states (0,1) for “0” and (1,0) for “1”
– Spacer states (0,0) and (1,1)
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PDBL protocol
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PDBL vs conventional dual-rail

• Conventional dual-rail uses ONE spacer only, typically 
the ‘all-zero’ (e.g. NCL) 

• Compare switching activity between PDBL and single-
spacer logic. E.g. for a sequence 0001 on X
– Single-spacer logic: (x0+,x0-,x0+,x0-,x0+,x0-,x1+,x1-), the total
3*X0+,3*X0-,1*X1-,1*X1- (depends on the sequence)
– PDBL: (x0+,x1+,x1-,x0-,x0+,x1+,x0-,x1-), the total
2*X0+,2*X0-,2*X1+,2*X1- (does not depend on the sequence)

• In PDBL switching activity of the bit X taken on the 
sequence duration is independent on the values. The 
data is encoded in phase differences between X0 and 
X1. However, the difference of course remains within the 
single cycle of operation. 



ACiD-WG Workshop, Turku, June 2004 8

How to implement PDBL?
• Combinational logic is built in the same way 

as conventional hazard-free dual-rail 

~sp~sp ~sp
~sp

Positive dual-rail logic with 
(0,0) spacer

Negative dual-rail logic with 
two spacers 

Example:
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PDBL Combinational Logic

• If necessary completion detection can be added on 
a per gate basis (cf. Kondratyev & Lwin, IEEE D&T, 
Jul/Aug 2002):

1a
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doneb



ACiD-WG Workshop, Turku, June 2004 10

Possible architectures
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Registers for PDBL
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For clocked architecture:
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Registers for PDBL
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For self-timed architecture:
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PDBL architectures
• Another possible architecture is 

based on Synchro-strata following 
V. Varshavsky & V. Marakhovsky, 
GALA (Globally Asynchronous -
Locally Arbitrary) Design, 
Concurrency and Hardware 
Design Advances in Petri Nets, 
LNCS 2549, pp. 61-107.

Flip-Flop timing control:

Spacer  [0,0]**1

Transition from Enable to Memory110

Enable010

Stable memory100

Spacer   [1,1]000

ActionT1T2T3
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Security Issues: imbalance

• Security of logic gates.  Imbalance is measured as 
variation in energy consumed by a circuit when 
processing different data:
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where e1 and e2 are the energy consumptions of two input patters

For 3-input NAND and NOR gates implementing the two rails of a dual 
rail NAND/NOR, the imbalance (for Vcc=3.3V,1ns pulse and 150ps 
rise and fall times switching) was 10.7% for unloaded gates and 
2.1% for realistic loads   
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Security issues: exposure time

all−zeroes
spacer

code word all−ones
spacer

exposure time

all−zeroes
spacer

code word
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all−zeroes

Single spacer protocol Dual spacer protocol (PDBL)

The imbalance accumulates



ACiD-WG Workshop, Turku, June 2004 16

Security: early propagation and 
memory effect

• Due to the inherent presence of 
OR-causality in level-based logic 
gates (eg. rising edge on NOR 
and falling edes on NAND), early 
propagation can cause data 
dependency imbalance. The 
exposure time can be reduced to 
within one dual-rail gate if we use 
completion detection at the gate 
level (cf. NCL-D)

• Gates keep charges on parasitic 
capacitances within transistor 
stacks (eg., p-stack for NOR). This 
can be partly battled by making 
two parallel stacks, <ab> and 
<ba> instead of one (cost: 
interfere with gate library!)
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Design tool
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One of the main goals is 
to carry out all 
conversions within the 
standard industrial 
(Verilog) RTL design flow 

Additionally, target an 
easy inclusion into async
design flow
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AES design case study
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Power signature simulations for 
AES (single rail)
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Power signature simulations for 
AES (dual rail PDBL)
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Power signature simulations for AES 
(sbox for different data, single rail)
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Power signature simulations for 
AES (sbox for different data, PDBL)
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AES: design area
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AES: switching activity
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Conclusions

• PDBL is a way to build circuits with data-independent (at 
logic level) switching activity – a circuit’s structure 
determines its behaviour

• Can be naturally combined with self-timing 
(desyncronization is an orthogonal aspect)

• Application to secure circuit design (industrial 
exploitation is under way)

• Other applications are in testability and periodic 
refreshing (cf. decoherence) are to be studied next

• Automatic design flow exists
• Main problem is with high power consumption on its 

own. To battle this use PDBL selectively or within a 
clever clock gating context


