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(Cantor) 2� > �.(K�onig) �cf(�) > �, so in particular cf(2�) > �for all �.(Easton) If GCH holds and F : REG �! CARDis a class function such that � < � =) F(�) �F(�), cf(F(�)) > � then there is a cardinal andco�nality preserving class generic extension inwhich 2� = F(�) for every regular �.(Scott) If U is a normal measure on �, � < �and f� < � : 2� � �+�g 2 U then 2� � �+�. Inparticular GCH does not �rst fail at �.(Silver) If � is singular strong limit of uncount-able co�nality, � < � and f� < � : 2� � �+�gis stationary then 2� � �+�. In particular GCHdoes not �rst fail at �.(Galvin and Hajnal) If � is singular strong limitof uncountable co�nality, and � = @� for some� < � (that is to say � is not a cardinal �xedpoint) then 2� < @(2j�j)+.



The Singular Cardinals Hypothesis (SCH): Forall singular ��cf(�) =maxf�+;2cf(�)g:
Fact: if SCH holds then cardinal arithmeticis determined by the continuum function onthe regulars and the co�nality function, androughly speaking �� has the least value possi-ble. To be more precise if SCH holds then
1. Let � be singular. If the continuum func-tion is eventually constant below � then2� = 2<�, otherwise 2� = (2<�)+.
2. If � � 2�, �� = 2�. If 2� < � then �� = � if� < cf(�), and �� = �+ if � � cf(�).
(Solovay) If � is strongly compact and � > � issingular, strong limit then 2� = �+.



The following are equiconsistent:
1. SCH fails.
2. GCH �rst fails at @!.
3. GCH fails at a measurable
4. There exists � with o(�) = �++.



Outline of the lectures.1) How close can we come to proving SCH?Pcf theory (Shelah)2) Upper bounds for the failure of SCH. Forc-ing (Gitik, Magidor, Woodin).3) Lower bounds for the failure of SCH. Coremodels (Dodd, Gitik, Jensen, Mitchell)4) Other combinatorics at singulars. Scales,squares, reection (Cummings, Foreman, Magi-dor, Shelah).



Let P be a poset.
1. A � P is co�nal i� 8p 2 P 9q 2 A p � q.
2. cf(P) = minfjAj : A is co�nal in Pg.
3. hpi : i < �i is a scale in P i� 8i < j pi < pj,fpi : i < �g is co�nal and � = cf(�).
4. tcf(P) = � i� there is a scale of length � inP.
5. P is �-directed i� for all A � P with jAj < �there is q 2 A such that 8p 2 A p � q.
6. Let ~p = hpi : i < �i be increasing. q is abound for ~p i� 8i pi � q. q is an least upperbound (lub) i� q � r for all bounds r.



Let I be an ideal on a set X, let F be a �lteron X.
1. If f; g 2 XON thenf <I g () fx : f(x) � g(x)g 2 If �I g () fx : f(x) > g(x)g 2 If <F g () fx : f(x) < g(x)g 2 Ff �F g () fx : f(x) � g(x)g 2 F

We study (XON;�I).Remark: \f <I g" is (in general) strongerthan \f �I g and f 6=I g".
2. Let ~f = hfi : i < �i be a sequence such that8i < j fi <I fj. Then f is an exact upperbound (eub) for ~f i� f is a bound for ~f and8g <I f 9i < � g <I fi:



Fact: an eub is an lub.Proof: let f be an eub for ~f which is not an lub.Let g be a bound such that A = fx : g(x) <f(x)g 2 I+. Let h be such that h � A = g � Aand h � Ac = 0. Then h <I f , so h <I fi forsome i and g is not a bound. Contradiction.
The converse is false in general.Example: let I be the NS ideal on @1, and letf�(i) = � for � < @1. Then f = id is an lubbut not an eub for hf� : � < @1i.Proof: f is an lub by Fodor. If we write @1 =S�<@1 S� with S� stationary, and de�ne g(i) tobe the least � such that i 2 S� if � < i and 0otherwise, then g <I f but g is above each f�for � < @1 on a positive set.



Convention: A is usually a set of regular car-dinals with jAj+ < min(A) and no largest ele-ment. D is usually an ultra�lter on A.
Remark: for any singular � we may choosesuch an A with sup(A) = �. If � < @� wemay in addition choose A to be an interval ofregular cardinals.

pcf(A) = f� : 9D cf(YA=D) = �g:
J<�(A) = fB : 8D 3 B cf(YA=D) < �g:

Remark: clearly jpcf(A)j � 22jAj, sup pcf(A) �jQAj.



Some basic facts.
1. J<� is an ideal.
2. QA=J<� is �-directed.
3. cf(QA=D) < � i� D \ J<� 6= ;.
4. � 2 pcf(A) i� J<�+ n J<� 6= ;.
5. For � a limit cardinal, J<� = S�<� J<�.
6. pcf(A) has a maximal element, namely theleast � where J<�+ = P(A).
7. jpcf(A)j � 2jAj.



Fact: QA=J<� is �-directed.Proof: let J = J<�, � = jAj. Reduce to thecase where jAj+ < � = cf(�) < � and we needan upper bound for hf� : � < �i which is <J-increasing. Suppose for a contradiction thatno bound exists and build a pointwise strictlyincreasing sequence hg� : � < �+i of elementsof QA as follows.g� is not an upper bound so fi : f�(i) > g�(i)g 2J+ for all large �, and we can �nd D such thatcf(QA=D) � � and g� <D f� for all large �.Choose g�+1 so that f� <D g�+1 for all �; forall large � there is i such thatg�(i) < f�(i) < g�+1(i):Find � so large that this holds for every � < �+,and then �nd i which works for two values of�. Contradiction since the g� are pointwiseincreasing.



More basic facts.
1. If B 2 J<�+ n J<�, then tcf(QB=J<�) = �.
2. J<�+ is generated from J<� by a single set:that is to say there is a set B such thatJ<�+ = J<�+B = fC : C nB 2 J<�g.
3. Let hB� : � 2 pcf(A)i be such that B� gen-erates J<�+ over J<�, and for each � �xhf�� : � < �i a scale in QB�=J<�. Then forany D we havecf(YA=D) = minf� : B� 2 Dg;and if cf(QA=D) = � then hf�� : � < �i is ascale in QB�=D.



Shelah's trichotomy theorem.
Theorem: let I be an ideal on �, let hf� : � < �ibe a <I-increasing sequence from �ON with� = cf(�) > �+. Then one of the followingholds:
(The Good case) There exists an eub f for ~f .
(The Bad case) There exists an ultra�lter Don � with D \ I = ;, and a sequence of sets ofordinals hSi : i � �i with jSij � �, such that8� < � 9h 2Yi Si 9� < � f� �D h <D f�:
(The Ugly Case) For some g 2 �ON the se-quence of sets fi : f�(i) < g(i)g is not eventu-ally constant modulo I.



Remark : if I is prime then the Ugly case can-not occur, and the only D which can occur inthe Bad case is the dual of I.Remark: If cf(�) > 2�, easy counting argu-ments show we are in the good case.



Proof : We assume that we are not in theGood, Bad or Ugly case and work towards con-tradiction.Step One: show that since we are not in Uglycase, an lub for ~f is automatically an eub.Proof: let f be an lub which fails to be an eub.Let g <I f be such thatA� = fi : g(i) > f�(i)g 2 I+for all �. As we are not in Ugly case the se-quence of A� eventually stabilises; �x A whichis equal to A� mod I for all large �. De�neh so that h � A = g � A and h � Ac = f � Ac,then h is a bound and below f on a positiveset. Contradiction!Step Two: show there is hg� : � < �+i a strictly�I-decreasing sequence such that each g� is abound for ~f .



Proof: Build ~g inductively. By Step One g� isnot an lub, so we may choose g�+1 suitably.At limit � de�neh��(i) = min(fg�(i) : � < �g n f�(i)):We claim that h�� stabilises mod I for large �,so that we may continue by choosing g� as arepresentative of the stable class.Suppose h�� does not stabilise; this means thatfor a �xed �, A� = fi : h��(i) < f(i)g 2 I+ forall large . As we are not in Ugly case we maychoose A� such that A� =I A� for all large .The A� are positive and decreasing mod I, sochoose D such that D \ I = ; and A� 2 D forall �. By construction8� 9 f� �D h�� <D fso setting Si = fg�(i) : � < �g we are in Badcase. Contradiction.



Step Three: no sequence as constructed inStep Two can exist.
Proof: leth�(i) = min(fg�(i) : � < �+g n f�(i)):For all � there exists limit � < �+ such thath� = h��. Fix � such that h� = h�� for un-boundedly many �, then choose � such thath� = h�� =I g�. This is a contradiction sinceby construction h� �I g�+1.This concludes the proof.
Remark: if Bad and Ugly fail then an eub fexists. f will have the property that cf(f(i)) >� for almost all i, otherwise we would be Bad.



De�nition: Let hf� : � < �i be <I-increasing.� is a good point for ~f i� cf(�) > � andthere is a pointwise strictly increasing sequencehh :  < cf(�)i such that ~h is \co�nally inter-leaved" with ~f � � mod I; that is 8� < � 9 <cf(�) f� <I h and 8 < cf(�) 9� < � h <I f�.Fact: if ~f = hf� : � < �i is <I-increasing, � =cf(�) > �+, and the set of good points is sta-tionary in � then there exists an eub for ~f .
Proof : it is enough to show that we are notin Bad or Ugly case. Suppose D and ~S witnessthat we are in Bad case. LetC = f : 8� <  9h 2Yi Si 9� <  f� �D h <D f�g:Let � 2 lim(C) be a good point, as witnessedby hh :  < cf(�)i. Find h� : � < cf(�)i increas-ing and H� 2 QSi such that h� �D H� <Dh�+1.



Find i < � such that h�(i) � H�(i) < h�+1(i)for an unbounded set X of � < cf(�). Sincehh :  < cf(�)i is pointwise strictly increasingthe values H�(i) for � 2 X are distinct, a con-tradiction since cf(�) > � but jSij � �.The proof for Ugly is similar.



Theorem: Let �, � be regular with �+ < �.Then there exists S � �\cof(�) stationary andhS :  < �i such that
1. ot(S) � �, S � .
2. 8� 2 S S� = S \ �.
3. If  2 S, sup(S) = .
De�nition: if S and ~S are as above then an<I-increasing sequence hf� : � < �i is docile i�
1. 8� 2 S 8i < � f�(i) < f(i).
2. If  2 S then f(i) = sup�2S f�(i).
Key point: if � > � then an docile ~f has astationary set of good points, hence an eub.



In a typical application of docility we wouldhave � = jAj, � = jAj+, � 2 pcf(A). Here issuch an application.Theorem: if B 2 J<�+nJ<�, tcf(QB=J<�) = �.Proof: I = J<� [ fC : tcf(QC=J<�) = �g is anideal. If B =2 I choose D such that B 2 D andD \ I = ;, and observe cf(QB=D) = �. Buildhf� : � < �i a sequence in QB which is docile,increasing mod J<� and co�nal mod D. Let gbe an eub where WLOG g(b) � b for all b 2 B,and let C = fb : g(b) = bg.C 2 I, and so B n C 2 D, so modulo D wehave g 2 QB. Find � with g <D f�. f� <I g,contradiction!



A combinatorial lemma.Lemma: let hf� : � < �+i be pointwise increas-ing and de�ne C� = fi : f�(i) < f(i)g. Thenthere is a club E � �+ such that C�; is con-stant on [E]2.Proof: C� is constant for all large , say C� =D�. D� is constant for all large �, say D� = D.Now letE = f� : D� = D;8� < � C�� = D�g:



Fact: J<�+ is generated from J<� by a singleset.Proof: Suppose not. Let � = jAj, reduce tocase where � = cf(�) > �++. Fix stationaryS � �\cof(�+) and hS� : � < �i as above. LetJ = J<�, K = J<�+.We will build a matrix of functionshf�� : � < �+; � < �ifrom QA such that hf�� : � < �i is docile and<J-increasing, and hf�� : � < �+i is pointwiseincreasing. Let h� be an eub for hf�� : � < �i,where we may assume h�(a) � a for all a; letS� = fa : h�(a) = ag, then it is easy to see thatS� 2 K. S� does not generate K over J.



We �nd C 2 K such that C n S� =2 J, andthen choose D� such that C 2 D�, S� =2 D�,cf(QA=D�) = �. Now we choose hf�+1� : � < �ico�nal mod D� where 8� 8� f�� <D� f�+1� .
If � < , E(�; ) = f� : 8� < � f+1� <D� f�+1� g.If � 2 S \E(�; ) then f�+1� =D� f+1� . To seethis observe that by obedience there is � < �such thatfi : f�+1� (i) < f+1� (i)g = fi : f�+1� (i) < f+1� (i)g;which is a set of D�-measure zero.Now choose � 2 S \ (T�<<�+E(�; )), andde�ne C� = fi : f�+1� (i) < f+1� (i)g. Find�1 < �2 < �3 such that C�1�2 = C�2�3 = C�1�3.This is impossible because by constructionf�1+1� <D�2 f�2+1� =D�2 f�3+1� :



A technical lemma.Lemma: Suppose supA < � = cf(�) < �.Let J be an ideal on A such that QA=J is�-directed, and A \  2 J for all  < supA.Then there is a <J-increasing sequence ~f =hf� : � < �i such that
1. ~f has an eub g 2 QA.
2. For all  < supA, fa : cf(g(a)) < g 2 J.
Proof: Fix hC� : � < �i such that
1. C� is a family of clubs in �, jC�j � �.
2. There is C 2 C� with ot(C) = cf(�).
3. 8D 2 C� 8� 2 lim(D) D \ � 2 C�.



At every limit stage �, compute for each E 2 C�with ot(E) < supA the function g�E : a 7�!sup2E f(a). Choose f� to dominate all suchg�E.Claim 1: Let � < supA. There cannot exist anultra�lter D with D\J = ;, and a sequence ofsets of ordinals hSi : i � �i with jSij � �, suchthat8� < � 9h 2Yi Si 9� < � f� �D h <D f�:
Proof: let E be the club of  < � such that8� < � 9h 2 Qi Si 9� < � f� �D h <D f�. Let� 2 lim(E) \ cof(�+) and let F 2 C�. Choosehj : j < �+i increasing and hj 2 Qi Si such thatj 2 E \ lim(F) and fj �D hj <D fj+1. Byconstruction fj >D gjF\j, so choose aj suchthatgjF\j(aj) < fj(aj) �D hj(aj) <D fj+1(aj):Find X unbounded such that 8j 2 X aj = a,then by construction fhj(a) : j 2 Xg has size�+, contradiction.



Claim 2: We are not in the Ugly case.Proof: Similar to Claim 1.Conclusion: Claim 1 implies we are not in theBad case, so by trichotomy there is a suitableg. Claim 1 implies that the co�nality of g(a)tends to supA modulo J.



Let � be a singular cardinal, � = cf(�).De�nition (non standard): PP(�) is the set ofregular � such that for some uf D on � andsome sequence h�i : i < �i of regular cardinalswe have limD �i = �, �= cf(Qi �i=D).De�nition: pp(�) is the sup of PP(�).Theorem: PP(�) is an interval of regular car-dinals.Proof: let � < � < � 2 PP(�), say � = cf(Qi �i=D).Using the technical lemma, �nd hf� : � < �i inQi �i increasing mod D with an eub g such thatlimD cf(g(i)) = �. Now cf(Qi cf(g(i))=D) = �.Theorem: if A is an interval of regular cardinalsthen so is pcf(A).Proof: similar.



Convention: � is some very large regular car-dinal, and <� is a �xed well ordering of H�.We will form substructures of (H�;2; <�). IfX � H� and Hull(X) is the set of points de-�nable from parameters in X, then Hull(X) isthe least substructure containing the set X.IA chains: A chain of substructures ~X is in-ternally approachable (IA) i� ~X is increasingand continuous, and ~X � (� + 1) 2 X�+1 forall �. It is easy to see that � � X� and that� < � =) X� 2 X�.Characteristic function of a structure: if B is aset of regular cardinals and jXj < min(B) thenwe may de�ne �X 2 QB by �X(b) = sup(X\b)for all b 2 B.



Fact: Let ~X be an IA chain, let X = X�where cf(�) > !. Suppose B � REG withjXj < min(B). Suppose B � X0. Then forall b 2 B, X \ b contains a club in �X(b).Proof: Xi; b 2 Xi+1 and jXij < b, so �Xi(b) 2Xi+1 \ b. So h�Xi(b) : i < �i is continuous, in-creasing and co�nal in �X(b).Fact: Suppose also that B is an interval ofregular cardinals, min(B) = jXj+ and jXj � X.If Z � X is such that Z is unbounded in �X(b)for all b 2 B, then Hull(Z)\ supB = X \ supB.Proof: Show by induction on b 2 Z thatHull(Z) \ b = X \ b:Step: let � 2 Z \ b+ and �x f 2 Z such thatf : � ' b. Then f : Hull(Z) \ � ' Hull(Z) \ b =X\b, so Hull(Z)\�= X\�. As Z is unboundedin X \ b+, we are done.



Fact: In the situation above we can recon-struct X \ supB from �X.Proof: Intersect Hull(Z)\ supB for all the Z �H� such that, for all b 2 B, Z \ �X(b) containsa club in �X(b).
1. For any such Z we have that Hull(Z) \supB � Hull(Z \X) \ supB = X \ supB.
2. Setting Z = X gives Hull(Z)\ supB = X \supB.
So the intersection is precisely X \ supB.



Smoothing: we may as well assume that forevery limit � of co�nality jAj+ we have f�� (i) =minfsup2C f� (i) : C club in �g. Note we can�x C club in � such that for any club D � Cwe have f�� = sup2D f� .Theorem: Let A � REG be an interval of reg-ular cardinals, where min(A) = �+ for some� and maxfjAj+; jpcf(A)jg < min(A), Fix a se-quence of generators hB� : � 2 pcf(A)i such thatBmaxpcf(A) = A. Fix hf�� : � < �; � 2 pcf(A)isuch that hf�� : � < �i is co�nal in QB�=J<�.Let hX� : � � jAj+i be an IA chain such thatA; ~B; ~f 2 X0, � � X0, jX�j = � for all �. Let�� be the characteristic function of X�, X =XjAj+, � = �jAj+. Then � can be obtained bytaking a pointwise sup of �nitely many of thef��.



Proof: let � 2 pcf(A), � = sup(X \ �). Weclaim1) 8a 2 B� f��(a) � �(a)2) fa 2 B� : f��(a) < �(a)g 2 J<�.For the �rst claim, observe that by smoothingand the construction of ~X there is D � X \ �such that D is club in � and f�� = sup2D f� .Each f� 2 X, so f�� is pointwise dominated by�.For the second claim, choose � < jAj+ suchthat fa 2 B� : f��(a) < �(a)g = fa 2 B� :f��(a) < ��(a)g Now �� 2 X so that by ele-mentarity �� <J<� f�� .We now de�ne inductively a decreasing sequenceof points �i 2 pcf(A), along with Fi 2 J<�i. Welet �i = sup(X \ �i) for all i.



�0 = maxpcf(A), F0 = fa : f�0�0(a) < �(a)g.If Fi is not empty then let �i+1 be such thatFi 2 J<�+i+1 n J<�i+1, or to put it another way�i+1 = maxpcf(Fi). Fi n B�i+1 2 J<�i+1 as the~B are generators.Fi+1 = fa 2 Fi : a =2 B�i+1 _ f�i+1�i+1(a) < �(a)g:
Eventually we reach n such that Fn = ;. Byconstruction, for every a 2 A there is i < n suchthat f�i�i(a) = �(a). Since � dominates eachf�i�i pointwise, we have that � is the pointwisesupremum of ff�i�i : i < ng.Remark: these ideas are also relevant to She-lah's \Strong covering" theorems.



A sample application: bounding @@0! .Theorem: If 2@0 < @! then @@0! = pp(@!).Proof: Let A = f@k : k < !;2@0 < @kg. Thenpp(@!) = maxpcf(A), and clearly maxpcf(A) �QA= @@0! .Notice that maxfjAj+; jpcf(A)jg < min(A) =(2@0)+. If a 2 [@!]@0 then we can build an IAchain hX� : � � 2@0i such that a[2@0 � X0 andeach structure has size 2@0.There are at most pp(@!) possibilities for thecharacteristic function of X2@0, so there are atmost pp(@!) possibilities for X2@0 \ @!. Thismeans there are at most pp(@!) � (2@0)@0 =pp(@!) possibilities for a.Remark: pp(@!) = maxpcf(A) < @(2@0)+.



Generalisation: if A is an interval of regularcardinals, min(A)jAj < sup(A) then sup(A)jAj =maxpcf(A).Let � be a singular strong limit cardinal whichis not a cardinal �xed point, say � = @� forsome � < �. Let A = � \ REG. Then 2� =maxpcf(A).Since pcf(A) is an interval of regular cardinalsand jpcf(A)j � 2jAj = 2j�j, 2� < @(2j�j)+. Thisgeneralises the Galvin-Hajnal result.



Theorem: if � is singular with � = cf(�) andJbd� is the bounded ideal on � then there ish�i : i < �i increasing and co�nal in � such thattcf(Qi �i=Jbd� ) = �+.Proof: as PP(�) is an interval we may chooseA � � with ot(A) = � such that �+ 2 pcf(A).Let B 2 J<�++ n J<�+, then tcf(QB=J<�+) =�+. Now it is easy to see that J<�+ = J<�and every element of J<� is a bounded sub-set of A, so if h�i : i < �i enumerates B thentcf(Qi �i=Jbd� ) = �+ as required.



Theorem: jpcf(A)j <min(A)) pcf(pcf(A)) =pcf(A).Proof: Let A� = pcf(A), where clearly A� �pcf(A�). For each � 2 A� choose D� withcf(QA=D�) = �, and then hf�� : � < �i co�nalin cf(QA=D�). Now let � 2 pcf(A�), and lethg� : � < �i be co�nal in QA�=D for some D.De�ne D� = fX � A : f� : X 2 D�g 2 Dg, andlet h�(a) = sup�2A� f�g�(�)(a).Claim: if h 2 QA then h <D� h� for all large �.Proof: �x g 2 QA� such that h <D� f�g(�) forall �, and then � such that g <D g�. For eachof the D-many � such that g(�) < g�(�), wehave h <D� h�, and so by de�nition h <D� h�.Using the claim we can thin out hh� : � < �i toa �-sequence which is increasing and co�nal inQ(A=D�). So � 2 pcf(A) = A�, and we haveproved that A� = pcf(A�).



Theorem: let � be singular with � = cf(�) > !.Let h�i : i < �i be an increasing and continuoussequence of singular cardinals with limit �. Let�i = �+i , � = �+. If A = f�i : i < �g and B� issuch that J<�+ = J<�+ B� then fi : �i 2 B�gcontains a club. In particular � 2 pcf(A) and� = tcf(Qi2C �i=Jbd� ) for some club C.Proof: Let B 2 J () fi : �i 2 B nB�g 2 NS�.Suppose fi : �i =2 B�g is stationary, so that J isnot trivial.Since J<�+ � J, QA=J is �+-directed. We maytherefore apply the technical lemma to build a<J-increasing hf� : � < �i, which has an eubg 2 QA such that cf(g(�i)) tends to � mod J.Now cf(g(�i)) < �i for all i, so by Fodor thereis j < � such that cf(g(�i)) < �j for stationarilymany i with �i =2 B�; this contradicts the statedproperty of g.



Localisation.Theorem: if jpcf(A)j < min(A) (so in partic-ular pcf(pcf(A)) = pcf(A)) then for all B �pcf(A) and all � 2 pcf(B) there exists B0 2[B]jAj such that � 2 pcf(B0).Proof: Does anyone know a proof of this thatwould �t on two slides?Remark: if @! is strong limit and 2@! > @!1then there are sets hA� : � < @1i with A� �REG such that � < � ) sup(A�) < min(A�)and @!1+1 2 pcf(A�) for all �.Roughly speaking this is what makes the prob-lem of forcing \@! is strong limit and 2@! >@!1" so hard. It is also crucial in the proofthat this statement implies inner models forsubstantial large cardinals.



Club guessing:Theorem: if �; � are regular and uncountablewith �+ < � then there exists hS� : � 2 � \ cof(�)isuch that
1. S� is club in �, ot(C�) = �.
2. For every E club in �, f� : S� � E \ �g isstationary.
Proof: Start with any choice of S�. Every timeyou see a bad club E, replace S� by S� \ E.Repeat for �+ steps and argue that for some�, S� shrank �+ times.



Sample bound on pp.Theorem: pp(@!) < @!4.Proof: If not we can manufacture a topology� on @4+1 such that for any Y 6= ;, .
1. cl(Y ) has a maximal element.
2. 8x 2 cl(Y ) 9Y0 2 [Y ]@0 x 2 cl(Y0).
3. If cf() > ! then there is C club in  suchthat  =max(cl(C))



We claim no such topology � can exist. To seethis �x hS� : � 2 @3 \ cof(@1)i which guessesclubs in @3. Build an IA chain hX� : � � @3i ofstructures of size @3 such that @3[f�; ~Sg 2 X0.If � = X� \ @4 then h� : � � @3i is increasingand continuous; let  = @3.By the hypotheses on � , �x D �  club with = maxcl(D). Fix � such that S� � f� :� 2 Dg, and let S� = f� : � 2 S�g. Nowlet � = maxcl(S�), so that � � � < @4. Ascf(�) = @1 we may �nd �� < � such that � =maxclf� : � 2 S� \ ��g.Now S� 2M0 and h� : � < ��i 2M��+1, so that� 2M��+1 \ @4 = ��+1. Contradiction!Remark: a similar method shows that if � issingular, � = @�+� and � < @� then pp(�) <@�+j�j+4.Remark: there is a theory of \pcf structures".



More interesting facts:cf([@!]@0;�) = pp(@!).cf(QA;<) = maxpcf(A).If jpcf(A)j < min(A) then we can choose gener-ators hB� : � 2 pcf(A)i such that 8� 2 B� B� �B� and pcf(B�) = B�.Analogues of Silver's theorem and the Galvin-Hajnal theorem hold for pp.If � < @4 and cf(�) = ! then pp(@�) < @!4.If � is the least counterexample to SCH then� > 2@0, cf(�) = @0, �@0 � �+ for 2@0 < � <�, and there exists h�n : n < !i increasing andco�nal in � such that tcf(Qn �n=Jbd! ) = �++.



Some hypotheses proposed by Shelah:STRONG: for all singular �, pp(�) = �+.MEDIUM: jpcf(A)j = jAj.WEAK: For singular �f� < � : pp(�) � �; cf(�) = !g is countable.f� < � : pp(�) � �; cf(�) > !g is �nite.



Review of large cardinal notions:� is measurable i� there exists a �-completenon-principal ultra�lter on � i� there is j :V �!M such that crit(j) = � and �M �M .The Mitchell order: if U , V are normal mea-sures on � then U < V i� U is in the ultrapowerby V . < is a well founded partial ordering ofheight at most (2�)+. o(�) is the height of <.� is �-strong i� there is j : V �!M such thatj(�) > �, V� �M and �M �M .Remark: if � is (� + 2)-strong then o(�) =(2�)+ for many � < �.� is �-supercompact i� there is j : V �! Msuch that j(�) > � and �M �M .



Some forcing results relevant to SCH:(Silver: supercompact) � supercompact with2� > �+.(Prikry) A measurable � can be made to haveco�nality ! by a cardinal preserving forcing.(Magidor) A cardinal of Mitchell order at least� = cf(�) < � can be made to have co�nality� in a cardinal preserving extension.SCH can fail at large singular strong limit car-dinals.(Magidor: supercompact) Supercompact Prikryforcing.(Magidor: supercompact) @! strong limit, 2@! =@!+2.(Magidor: huge) 2@n = @n+1 for all n, 2@! =@!+2.



(Shelah: supercompact) @! strong limit and2@! = @�+1, for � < @1.(Magidor: huge) 2@n = @n+1 for all n and2@! = @�+1, for � < @1.(Shelah: supercompact) � the least cardinal�xed point of order !, � strong limit with 2�arbitrarily large.(Radin) Adding a club of V -regulars to largecardinal �, preserving some large cardinal prop-erties of �.(Foreman and Woodin: supercompact) Super-compact Radin forcing.(Foreman and Woodin: supercompact) GCHfails everywhere, in fact 2� weakly inaccessi-ble for all �. For �xed n < !, can build themodel to contain many � which are in(�)-supercompact.(Woodin: supercompact) 2� = �+n for all �.



Woodin: reduction of hypotheses to level ofhypermeasurability.(�) GCH + there is j : V �! M and f : � �!� such that crit(j) = �, j(f)(�) = �++ and�M �M .Remark: (�) follows from GCH + \� is (�+2)-strong", and if j witnesses the strength we maytake f(�) = �++.(Woodin: (�)) � measurable with 2� = �++.(Woodin: (�)) 2@n = @n+1 for all n, 2@! =@!+2.(Cummings: strong) GCH holds at every suc-cessor, fails at every limit.(Gitik) (�) can be forced starting from o(�) =�++.



The paradigm shift: up to now powerset of �was blown up keeping � large, and then � wasmade singular. Problem: GCH will fail at manypoints on the Prikry sequence, and collapsingto restore GCH tends to collapse at � also.(Gitik-Magidor: strong) adding many co�nal!-sequences to � without adding bounded sub-sets.Example: from � which is (� + !1)-strong,2@n = @n+1 for all n and 2@! = @�+1, for� < @1.(Segal:strong) Gitik-Magidor for uncountableco�nalities.(Gitik and Merimovich:strong) @! strong limit,2@! = @!+m for m < !, complete freedom be-low @!.



o(�) = �++ is an upper bound for the con-sistency strength of the failure of SCH. More:we can build a model where @! is strong limit(or even GCH holds below @!) and 2@! = @!+2starting from this hypothesis.Two routes are available:
1. Gitik showed that forcing over a suitablemodel with o(�) = �++ we can produce amodel of (�). Work of Woodin then givesmodels as required. We also get a modelwhere GCH fails at a measurable.
2. Gitik showed that forcing over a suitablemodel with o(�) = �++ gives a suitableground model for a version of the Gitik-Magidor construction, which will producea model where GCH holds up to @! and2@! = @!+2.



Prikry forcing: if � is measurable, can de�ne a�+-c.c. forcing which adds no bounded subsetsof � and makes cf(�) = !.U normal measure on �. Conditions in PU are(s; A) where a 2 [�]<! and A 2 U . Intuition: sis an initial segment of the !-sequence and therest is inside A. Accordingly (s;A) � (t; B) i� textends s, A � B and s n t � B. (s; A) �� (t; B)i� s = t and A � B.Some attractive properties:Strongly �+-c.c. as a union of � �lters.(Prikry) For every sentence � and condition pthere is q �� p deciding �. �� is �-closed (as Uis �-complete), so we add no bounded subsetsof �.(Mathias) ~x is generic i� every A 2 U containsa tail of ~x.(Kunen) Generic sequence can be obtained byiterating ultrapowers.



Tree version: V a �-complete ultra�lter on �.Conditions are trees T � <!�, which have some�nite stem and V -large branching above thestem. T �� U i� T � U and they have thesame stem.More generally: there is a family Vs of ultra-�lters, and the tree has Vs-large branching atevery s above the stem.Abstractly: (P;�;��) is \Prikry-like" if �� isstronger than �, and all questions about thegeneric extension by (P;�) can be decided bystrengthening in ��.(Magidor) Iterated Prikry forcing: �nite sup-port on s-parts, full support on A-parts.



Gitik's iteration technique. A is a set of in-accessibles. For  2 A have a P-name for aPrikry-like (Q  ;�;��), which is forced to havesize less than min(A n ( +1)).P� is the set of �-sequences p such that supp(p)is an Easton subset of A (bounded in every in-accessible), p �  2 P and p �   p() 2 Q  forall  2 supp(p).p � q i� supp(q) � supp(p) , p �   p() � q()for all  2 dom(q), p �   p() �� q() for allbut �nitely many  2 dom(q).p �� q i� supp(q) � supp(p) , p �   p() ��q() for all  2 dom(q).Iteration? P+1 ' P � Q  and p 7�! p � � is aprojection from P� to P�.Theorem (Gitik): (P�;�;��) is Prikry-like.



Gitik: from o(�) = �++ to (�).By work of Mitchell, we may assume that ourground model has nice L-like properties (GCH,squares) and there is hU� : � < �++i increasingin the Mitchell ordering.Aim: force to get a model with h�U� : � < �++ia sequence of ultra�lters on � which is increas-ing in the Rudin-Keisler ordering. Also we wanth��� : � < � < �++i such that X 2 �U� ()��1�� [X] 2 �U� and �� =�U ��� � ��.Now if j� : V �! M� = Ult(V; �U�) is the ul-trapower map, then ��� induces a map fromM� to M� by ���� : [f ]�U� 7�! [f � ���]�U�. Thesemaps commute with the j� and with each other,that is j� = j� � ���� and ��� = ��� � ����.Given this we can form a limit ultrapower j :V �! M such that j(�) > �++ and �M � M ,and it is then possible to force the existence ofa function f such that j(f)(�) = �++.



A motivating example (Mitchell).Assume GCH. Let � be minimal with o(�) =2, A = f� < � : o(�) = 1g. Fix hU� : � 2 Aimeasures of order zero on � 2 A. Let U , V bemeasures on � where U has order zero, V hasorder 1 and U = [� 7�! U�]V . Notice that U�and U concentrate on Ac, V concentrates onA.Iterate Prikry forcing at � 2 A. At stage �observe that jU�(P�) is a Gitik iteration whosesupport does not contain �. Use GCH andthe Prikry lemma to build (canonically) a de-creasing hq :  < �+i in j(P�)=G�, such thatfor every _A a P�-name for a subset of � thereis r 2 G� and  < �+ such that r _ q decides� 2 jU�( _A).�U� = f _AG� : 9r 2 G� 9 r _ q  � 2 jU�( _A)g:Q � is Prikry forcing de�ned from the normalmeasure �U�.



In V [G�], extend U to �U in the same way. Nowconsider jV (P�): this is a Gitik iteration ofPrikry forcing where the support does contain�, and in fact the measure used at stage � inthis iteration is �U.Building a suitable sequence hq� :  < �+i wede�ne in V [G�] _AG� 2 �V i�9r 2 G� 9B 2 �U r _ (hi; B)_ q�  � 2 jV ( _A).�U is normal and concentrates on Ac. �V con-centrates on A, and so is not normal since Aconsists of co�nality ! ordinals. De�ne �01with domain A by �01(�) = min(b�), then weclaim that �01 projects �V to �U .If not then �nd E 2 �U , F 2 �V such that �01[F ]\E = ;. Let F = _FG�, E = _EG� and �nd r 2G�, E� 2 �U and  such that r  �01[ _F ] \ _E =; and r _ (hi; E�) _ q�  � 2 jV ( _F ). Nowthe condition r _ (hi; E \ E�)_ q� forces thatmin(b�) 2 E, contradiction.



Woodin: from (�) to a measurable cardinalwhere GCH fails. Fix j : V �! M and f suchthat crit(j) = �, �M �M and j(f)(�) = �++.Stage 1: Iterate Coll(�+; < f(�)) for � < �and then do Coll(�+; < �++). Show that inthe extension we may lift j and get a situationin which (�) holds and �++ = �++M , so that wemay take f(�) = �++.Stage 2: Iterate Add(�;�++) for � � �, andargue that j can be lifted so that the mea-surability of � is preserved. Less closure thanin Silver's argument from a supercompact, soharder to build generic �lters and master con-ditions: these problems are resolved by forcing,transferring and rearranging of generic �lters.



Remark: if you just want failure of GCH at ameasurable, you can start with (�) and iterateAdd(�; f(�)) for � < � followed by Add(�; �++).In this two stage approach you get a bonus; inthe �nal model we can arrange(��): � is measurable, 2� = �++ and for somenormal measure U on � there exists F whichis generic over M = Ult(V; U) for the forcingColl(�+5M ; < jU(�))M .Woodin: given a model of (��) we can force us-ing \Prikry forcing with interleaved collapses"to make � = @! while preserving �+. Magi-dor did supercompact Prikry forcing with inter-leaved collapses and then went to a certain in-ner model, analysis of this inner model done byForeman and Woodin for the GCH fails every-where result motivated the construction from(��).



How to prove the Prikry lemma for Prikry forc-ing. U normal, U = fX : � 2 jU(X)g. P = PU .Diagonal intersection: Given a family of con-ditions (s; As) letA= f� : 8s max(s) < � =) � 2 Asg:Then A 2 U and (s;A) � (s; As) for all s.Now �x a statement �.Stage 1: �nd A such that if (s;B) decides �for any B, then (s;A) decides �.Stage 2: Consider (s _ �; jU(A)) and jU(�).Find As 2 U such that all (s _ �;A) with � 2As behave the same way wrt � (all force �,all force :� or all fail to decide �). Take adiagonal intersection to get A�.Stage 3: Given (s; A�) take an extension ofminimal length which decides �. Wlog exten-sion is (t; A�). If t 6= s then t = t0 _ � forsome � 2 At0, but now by construction (t0; A�)decides �.



(��): � is measurable, 2� = �++ and for somenormal measure U on � there exists F whichis generic over M = Ult(V; U) for the forcingColl(�+5M ; < jU(�))M .De�ne generalised Prikry forcing P as follows:conditions have the formp = (�0; p0; �1; p1; : : : �n�1; pn�1; A;H)where �0 < : : : < �n�1 < �, dom(H) = A 2 U ,pj 2 Coll(�+5j ; < �j+1), H(�) 2 Coll(�+5; < �),[H]U 2 F .A typical extension isq = (�0; p�0; �1; p�1; : : : �m�1; p�m�1; A�; H�)where p�i � pi for i < n, A� � A, H�(�) � H(�)for � 2 A�.q �� p i� m = n.



Theorem: (P;�;��) is Prikry-like and �+-c.c.Corollary: in the extension by (P;�) we have� = �+!0 , � strong limit, 2� = �++. Now wecan do Coll(@0; �0) to get � = @!.Proof of theorem: Conditions have form p =x\(A;H) where x 2 V� (we call x the lower partof p). x\(A;H) and x\(A�; H�) are compatible,so P is �+-c.c.Proof of Prikry Lemma is just like for Prikryforcing. First show the analogue of the diago-nal intersection theorem. ThenStep One: �nd (A;H) such that for any x, ifthere exists (B;G) such that x _ (B;G) de-cides � then x _ (A;H) decides �.



Step Two: consider x _ (�; p)_ (jU(A); jU(H)).Use genericity to �nd p = [H�] 2 F such thatfor all x if there is q � p such that x _ (�; q)_(jU(A); jU(H)) decides jU(�) then x _ (�; p)_(jU(A); jU(H)) decides jU(�).Step Three: Find A� � A such that for allx and all � 2 A�, if there is q � H�(�) suchthat x _ (�; q) _ (A;H) decides � then x _(�;H�(�))_ (A;H) decides �Step Four: for each x �nd A�x � A� such thatall conditions x _ (�;H�(�)) _ (A;H) behavethe same wrt �. Diagonally intersect to getA��.Now consider an extension of x _ (A��; H�)which has minimal length and decides �. If itis not direct then wlog it has form y0 _ (�; q)_(A��; H�) where y0 extends x, � 2 A�y0 andq � H�(�). By construction y0 _ (�;H�(�)) _(A��; H�) decides �, but then y0 _ (A��; H�)decides �. Contradiction.



A more elaborate argument gives GCH up to@! and 2@! = @!+2 by similar means. Idea:interleave Coll(�+5i ; < �i+1) � Coll(�i+1; �+i+1)between successive points �i and �i+1. Need amore elaborate mechanism of constraint, func-tions of two variables representing a generic�lter over the second iterated ultrapower forColl(�+5; < j(�))�Coll(j(�); j(�+)). Pcf argu-ments show this idea will not generalise easilyto get GCH up to @! and 2@! = @!+3.



Gitik-Magidor method.Idea: want to add many Prikry sequences tolarge cardinal �, without adding bounded sub-sets of �. Problem: new reals may be codedby (say) the relationship between two Prikrysequences. Solution: arrange that if ~x, ~y aretwo Prikry sequences then there is a sequence~z and �x; �y 2 V such that up to �nite pertur-bation �x � ~z agrees with ~x and �y � ~z agreeswith ~yTo be a little more precise we are given a �+-directed poset(A;�) together with hU� : � 2 Aia system of measures on � and h��� : � � �i asystem of commuting projection maps. Thesehave to satisfy some technical conditions. Awill have a minimal element 0 with U0 normal.



A condition p then prescribes
1. A set gp 2 [A]�, where there is p 2 gp suchthat 8� 2 gp � � p.2. A set p� 2 [�]<! for each � 2 gp.3. A tree with stem pp and Up-large branch-ing.
There are two special kinds of extension.Direct: q �� p. gq � gp (maybe with a largermaximal element), and q = p for all  2 gp.\Projective": q �0 p. gq = gp and q� n p� isobtained (roughly) by projecting q n p along��.Extension = projective followed by direct. Thisis transitive because the system ~� is \commu-tative enough".



The key facts:
1. (P;�) is �++-c.c. and (P;��) is �-closed.
2. (P;�;��) is Prikry-like.
3. P adds hx� : � 2 Ai, distinct !-sequencesco�nal in �.
4. P preserves �+.



How to get a suitable family of measures?� is �-strong, � successor ordinal or a cardinalwith cf(�) > �, and GCH holds. Can build afamily of size �+�.o(�) = �+� is enough if � is successor or � <cf(�) < �.



GCH up to @! and 2@! = @!+�+1, � countable.Start with GCH and � which is (� + � + 1)-strong.To bring � down to @0, interleave with col-lapses along the Prikry sequence for U0. It iscomparatively easy to get a suitably genericconstraint �lter because GCH holds.If � is �nite the construction is essentially asbefore.If � is in�nite then let � + 1 = [nDn withDn �nite. Build P so that if ~� is the Prikrysequence for U0 then (roughly) the cardinalsf�+in : i 2 Dng survive in [�n; �n+1).P is now only �+�+2-c.c. but for all � � � itembeds in a forcing that preserves �+�+1.



From a strong cardinal: no bound on 2� where� is the least �xed point of order !.(Segal) Versions of the Gitik-Magidor construc-tion which make � singular of uncountable co-�nality.Example: 2@� = @�+3 for � � !1 limit, GCHholds except at limits and their successors upto @!1.(Gitik and Merimovich) Fine control.Example: From � which is (� + m)-strong,2@! = @!+m and complete freedom below @!.



Lower bounds: core models, covering lemmas.Core models: on the hypothesis \there is no Xcardinal", build a model KX and
1. Prove that KX has a nice internal struc-ture. GCH, diamonds, squares, morassesetc.
2. Prove that there is some resemblance be-tween KX and V .
In general for M � V :Strong covering: every uncountable set of or-dinals is contained in a set of the same V -cardinality which lies in M .Weak covering: M computes successors of sin-gulars correctly.If M is a model of GCH and strong coveringholds then SCH is true in V .



X = 0], KX = L.(Jensen) If 0] does not exist, then strong cov-ering holds between L and V .Once measurable cardinals are allowed into Kthen we can no longer ask for strong coveringby K itself, because of Prikry forcing. Weakcovering goes a long way.X = 0y, KX has maximal form L[�].(Dodd-Jensen) If L[�] exists and 0y does notthen EITHER strong covering holds betweenL[�] and V OR there is C 2 V a maximal Prikrygeneric sequence over L[�] such that strongcovering holds between L[�;C] and V .Still a misleadingly simple example. When Kcontains many measures then there is no longera uniform set of indiscernibles which works tocover all sets in V , and it is hard to see the setof indiscernibles as a generic object for someforcing.



Typical covering lemma for K a large core model:x � ON covered by a set h\(�[I) where h 2 K,� 2 ON , I � ON .I arises from iterating some small \L[ ~E] model"up to a model in K. The analysis gets harderas K gets larger.



Lower bounds for failure of SCH.(Mitchell) If there is � singular strong limit with2� > �+ then in a suitable core model K; 8� <� 9� < � o(�) � �. If in addition cf(�) > !o(�) = �++ in K.(Shelah) If � is the least counterexample toSCH then � > 2@0, cf(�) = @0, �@0 � �+ for2@0 < � < �, and pp(�) � �++.(Gitik) If � > 2@0 is singular and pp(�) � �++then there is an inner model for 9� o(�) = �++.These results can be extended: need to un-derstand \o(�)" as a measure of how manyextenders there are at �.



Gitik and Mitchell: further results.1) � strong limit, cf(�) = � < �, 2� � � > �+where � is not �+ for cf(�) � �.
1. If � > !1, there is an inner model whereo(�) � �+ � (Optimal by work of Woodin,or by work of Segal).
2. If � = !1, there is an inner model whereo(�) � � (and �+ !1 su�ces).
3. If � = ! then there is an inner model whereeither o(�) � � or f� < � : o(�) � �+ng isunbounded for all n < !. The latter casecan actually occur, by work of Gitik.



2) If n > 0, cf(�) = !, GCH holds below �and 2� � �+n+2 then there is an inner modelwhere either o(�) � �+n+2 + 1 or f� < � :o(�) � �+mg is unbounded for all m < !.3) If @! is strong limit and 2@! > @!1 thenthere is an inner model for a Woodin cardi-nal (assuming that we can build the Steel coremodel).



Gitik: more on failure of GCH at a measurable.1) � measurable and 2� = �+� for � � 2. Thenthere is an inner model where o(�) � �+� orsome � is strong up to the next measurable.2) �measurable and 2� = �+�+1 for � singular,cf(�) � �. Then there is an inner model whereo(�) � �+�+1+1 or some � is strong up to thenext measurable.Complementary consistency results: If � = �+1 for � a successor or cf(�) > �, or � is limitwith cf(�) > � then o(�) = �+� su�ces tomake � measurable with 2� = �+�.Work of Woodin shows o(�) = �� + 1 alwayssu�ces.



Combinatorial problems about regular cardi-nals tend to be hardest at successors of sin-gulars. Examples:
1. Is there a �-Aronszajn tree?
2. Is there a non-trivial non-reecting station-ary subset of �?
3. �<� = �? (=SCH, essentially)
4. Is there a Jonsson algebra on �?



Some ways to resolve problems about singularcardinals and their successors.
1. Reection principles (typically obtained fromlarge cardinals by forcing).
2. Squares (typically obtained by forcing orfrom inner models).
3. Pcf theory.
Q: How are they related?



De�nition: Let � be an uncountable cardinal.A ��-sequence is a sequence hC� : � < �+; lim(�)isuch that for all � < �+
1. C� is closed and unbounded in �.
2. If cf(�) < �, then ot(C�) < �.
3. For all � 2 lim(C�), C� = C� \ �.
We say that �� holds i� there exists a ��-sequence.CFM = Cummings, Foreman and Magidor.CS = Cummings and Schimmerling.FM = Foreman and Magidor.



Approachability (Shelah)De�nition: hC� : � < �+i is an AP�-sequencei� for a club of �
1. C� is club in �, ot(C�) = cf(�).
2. 8� < � 9 < � C� \ � = C.
Here we could just demand that C� was un-bounded and get an equivalent de�nition.



Very weak square (Foreman and Magidor)De�nition: hC� : � < �+i is an VWS�-sequencei� for a club of � < �+
1. sup(C�) = �.
2. For every bounded x 2 [C�]@0, there is � <� with x= C�.
Here demanding that C� be club in � givesa stronger property, the Not So Very WeakSquare or NSVWS�.



By scale we will mean scale of length @!+1in a product of the form Qn2A @n ordered byeventual domination.(FM) VWS@! implies that in any scale the setof non-good points of co�nality @1 is non-stationary.(@!+1;@!)� (@1;@0) implies that in any scalethe set of non-good points of co�nality @1 isstationary.AP@! implies that in any scale, the set of non-good points of uncountable co�nality is non-stationary.



Relations with large cardinals etc(FM) If GCH holds and � is supercompact thenthere is a class generic extension in which �is supercompact, cardinals and co�nalities arepreserved and VWS� holds for all singular �.We can also preserve hugeness.NSVWS� fails if � is the supremum of ! super-compact cardinals.



De�nition: Let � be an uncountable regularcardinal. Let S be a stationary subset of �.
1. S reects at � i� � < �, cf(�) > ! and S\�is stationary in �.
2. Re(S) holds i� every stationary subset ofS reects at some �.
3. S is non-reecting i� S does not reect atany �.
Fact: Let �� hold and let S be a stationarysubset of �+. Then Re(S) fails.



De�nition: Let � be a cardinal. A ��;�-sequenceis a sequence hC� : � < �+; lim(�)i such that
1. C� � P(�), 1 � jC�j � �, and C� is a set ofclosed and unbounded subsets of �.
2. If cf(�) < � then 8C 2 C� ot(C) < �.
3. 8C 2 C� 8� 2 lim(C) C \ � 2 C�.
A ��;<�-sequence is de�ned similarly, only wedemand that 1 � jC�j < �.�� = ��;1, ��� = ��;�.Fact: Let �<� = � and let ��;<� hold. If S ��+ is stationary then there exists a stationaryset T � S such that T does not reect at any� with cf(�) � �.



Theorem (CFM): Let � be supercompact, andsuppose 2�+! = �+!+1. Let �; � be two car-dinals (one or both can be �nite) such that1 � � < � < @!. Then there is a generic exten-sion in which
1. All cardinals less than or equal to � arepreserved.
2. @! = �+!V .
3. �@!;� holds.
4. �@!;� fails.



Failure of �� for � singular requires substan-tial large cardinals. More information in ErnestSchimmerling's talk.Fact (Solovay): If � is supercompact and � isa cardinal with � < � then �� fails.Fact (Shelah) If � is supercompact and cf(�) <� < � then ��� fails.Fact (Burke and Kanamori): If � is supercom-pact and �; cf(�) < � then ��;<cf(�) fails.Fact (Magidor): PFA implies that ��;@1 failsfor � � @1, while \PFA +8� � @2 ��;@2" isconsistent.



De�nition: A �ind�;cf(�)-sequence is a matrix ofsets hC�;i : � < �+; i(�) � i < cf(�)i such thatfor some increasing sequence h�i : i < cf(�)i ofregular cardinals with limit �
1. i(�) < cf(�) for all � < �+.
2. ot(C�;i) < �i for all �.3. C�;i is club in �.
4. If i(�) � i < j < cf(�) then C�;i � C�;j.5. If i(�) � i < cf(�) and � 2 lim(C�;i) theni(�) � i and C�;i = C�;i \ �.6. If � and � are limit ordinals with � < � < �+then � 2 lim(C�;i) for all su�ciently largei < �.



�ind�;cf(�) implies ��;cf(�) and the transfer prin-ciple (@1;@0) �! (�+; �).Theorem (CFM): Let � be a singular cardinal.Then there exists a forcing poset P such that
1. P is cf(�)-directed closed.
2. P is < �-strategically closed.
3.  P\�ind�;cf(�) holds"
Corollary: Let � be a Laver indestructible su-percompact cardinal and let � � cf(�) < �.Then there is a forcing extension in which �is still supercompact, cardinals and co�nalitiesup to �+ are preserved, and �ind�;cf(�) holds.



De�nition: (~�; ~f) is a very good scale for � i�
1. ~� = h�i : i < cf(�)i is an increasing sequenceof regular cardinals co�nal in �.
2. ~f = hf� : � < �+i is a scale in Qi �i=Jbdcf(�).
3. For every point � < �+ such that cf(�) >cf(�) there exists a closed and unboundedset C � � and i < cf(�) such that 8�;  2C 8j > i (� <  =) f�(j) < f(j)).
VGS� holds i� there exists a very good scalefor �.



Theorem (CFM): Let � be singular, let � < �.Then ��;� implies VGS�.Theorem (CFM): Let � be singular, and letVGS� hold. Then for every stationary T � �+there are stationary hTi : i < cf(�)i such thatTi � T and the Ti do not reect simultaneouslyat any point of co�nality greater than cf(�).Theorem (CFM): Let h�n : n < !i be an in-creasing sequence of supercompact cardinals.Let � = supn �n. Then there is a generic ex-tension in which
1. � = @!, and �+ is preserved.
2. �ind@!;! holds.
3. For every �nite set f of stationary subsetsof @! there exists N < ! such that if N �n < ! then there exists � of co�nality @nsuch that all sets in f reect at �.



Theorem (CFM): Let P be Prikry forcing at �.In V let S0 =def f� < �+ : cf(�) < �g and letS1 = f� < �+ : cf(�) = �g. Then in V P
1. S1 is a non-reecting stationary set of co-�nality ! ordinals.
2. If � is �+-supercompact, then any �nite setof stationary subsets of S0 reect simulta-neously.
3. There are ! subsets of S0 which do notreect simultaneously.
Theorem (CS): ��;! holds in V P.



De�nition: ADS� holds i� there exists hA� : � < �+isuch that
1. A� is unbounded in �, ot(A�) = cf(�).
2. For all � < �+ there exists g : � �! �such that the sequence hA� n g(�) : � < �iconsists of pairwise disjoint sets.
Theorem (CFM): If VGS� or ��� holds thenADS� holds.Theorem (CFM): Let � be singular of co�nality!. If ADS� holds then there is stationary S �Re�([�+]@0) which does not reect to any Xwith jXj= cf(X) = @1.



Theorem (CFM): Let h�n : n < !i be an in-creasing sequence of supercompact cardinals.Let � = supn �n, and assume that GCH holdsabove �.Then there is a forcing P such that in V P
1. � = @! and GCH holds.
2. ��@! holds.
3. For all n, any @n stationary subsets of theset @!+1\cof(< @n) reect simultaneouslyat some point of co�nality @n.



Theorem (CFM): Let � be supercompact. Thenthere is a generic extension W such that
1. � = @W2 .
2. ��@! fails in W .
3. If H is Coll(!; !1)-generic over W then �@!holds in W [H].
A similar argument shows that for � regularwe can create a situation in which �� fails,and forcing with Coll(!; !1) makes �� hold.However, in general it may not be possible toforce �� with mild forcing if we demand that��� should fail in the ground model.Theorem (CFM): Let 1 � n < ! and let � = @n.Let P be �-c.c. and suppose that  P\�� holds".Then ��� holds in V .



Theorem (CFM): Let MM+ hold. Let � beregular and uncountable. Then there is a forc-ing extension in which
� There are two stationary subsets of � whichdo not reect simultaneously.
� Stationary subsets of [�]@0 reect for all� � @2.


