
Use of simulation for software process education:
a case study

Nauman bin Ali and Michael Unterkalmsteiner

Blekinge Institute of Technology,
37179 Karlskrona, Sweden

{nauman.ali,michael.unterkalmsteiner}@bth.se

http://www.bth.se

Abstract. Teaching Software Engineering concepts is often accomplished
by practising them in a sandbox environment. The objective of this study
is to introduce and evaluate the use of software process simulation (SPS)
based games for improving students’ understanding of software develop-
ment processes. In the context of an applied software project manage-
ment course, we measure the effects of the intervention by evaluating
the students’ arguments for choosing a particular software development
process model. The arguments are assessed with the Evidence-Based
Reasoning framework, which we extended in order to assess the strength
of an argument. The results indicate that students have generally dif-
ficulties providing strong arguments for their choice of process models.
Nevertheless, the assessment indicates that the intervention of the SPS
game had a positive impact on the students’ arguments. Even though the
illustrated argument assessment approach can be used to provide forma-
tive feedback to students, its use is rather costly and therefore should
not be considered a replacement for traditional assessments.

Keywords: Software process simulation, project management, argu-
ment evaluation

1 Introduction

The Software Engineering (SE) discipline spans from technical aspects, such as
developing techniques for automated software testing, over defining new pro-
cesses for software development improvement, to people-related and organiza-
tional aspects, such as team management and leadership. SE shares common
boundaries with many other disciplines, such as computer science, mathematics,
systems engineering, quality management and others [2]. This breadth of topics
renders education in SE challenging as the interaction of the different disciplines
cannot be exclusively thought on a theoretical level, but must be also experi-
enced in practice. As such, SE education needs to identify means to prepare
students better for their tasks in industry [23].

In this paper we motivate, illustrate and evaluate how a targeted change
in teaching and learning activities was introduced in the graduate-level Applied

2 Nauman bin Ali and Michael Unterkalmsteiner

Software Project Management (ASPM) course. The objective of this course is to
convey to students in a hands-on manner how to prepare, execute and finalize
a software project. In previous instances of the course, we have observed that
students encounter difficulties in choosing an appropriate software development
process and in motivating their choice. We hypothesize that the students lack
experience on and exposure to different software development processes, and have
therefore deficiencies in the sensitivity and analytical insight required to choose
a process appropriate for the characteristics of the course project. We study
our hypothesis by exposing students to software process simulations (SPS) and
by evaluating thereafter the argumentative strength for choosing/discarding a
particular process.

Software development processes are highly dynamic and complex, which in-
volve interaction between people, tools, technology, and organization [14]. This
makes it difficult to illustrate the implications of the chosen development process
on the success of a project. Students will have to undertake multiple iterations
of developing the same project using different software development processes to
understand the various phases, the sequence of phases and their implication on
the project attributes like cost and time taken for development, and the quality
of the developed product [40]. Such repetitions are however impractical because
of the time and cost involved. To overcome this shortcoming software process
simulation (SPS) has been proposed as a means of SE education. SPS is the
numerical evaluation of a computerized-mathematical model that imitates the
real-world software development process behavior [24, 19]. It has been found to
be useful in SE education as a complement to other teaching methods e.g. in
combination with lectures, lab sessions and projects [29, 40].

There are four major contributions in this paper. First, a review of frame-
works for evaluating argumentative reasoning was updated to cover more recent
research. Secondly the framework relevant for evaluating arguments in the con-
text of SE was selected and adapted. Thirdly we used SimSE in the context of
an active course ASPM instead of a purely experimental setting. Lastly the ef-
fect of simulation, in terms of improved understanding of software development
processes, was evaluated.

The remainder of the paper is structured as follows: Section 2 summarizes
the relevant work on the topic of SPS in SE education. Section 3 presents the
context of the study, research questions, data collection and analysis methods.
Section 4 presents the results, Section 5 discusses the findings and Section 6
concludes the study.

2 Background and Related Work

2.1 Software development processes

A software development process can be defined as: “the coherent set of policies,
organizational structures, technologies, procedures, and artifacts that are needed
to conceive, develop, deploy, and maintain a software product” [14]. Some of the

Use of simulation for software process education: a case study 3

more frequently used software development processes include “Royce model [34],
iterative and incremental model [21] and the Spiral model [7]. Not only do each of
these models have a divergent organization of activities but they also advocate a
different philosophy altogether. For example, one dimension of variation among
these processes is the emphasis they put on planning, another dimension is that
of people or document centric nature.

2.2 Process simulation

SPS is numerical evaluation of a mathematical model that imitates a real-world
software development process. SPS provides an alternative to manipulation of
the actual software process that may be too risky. Contrary to static and ana-
lytical models, SPS can capture behavior of the software development process
more realistically by [19] [24]:

– Representing the uncertainty in software development induced from variation
in measurements, human factors (e.g. motivation) and other confounding
factors.

– Capturing dynamic variables like productivity and defect detection rates.
– Representing how behavior and decisions taken at one stage affect others

in complex and indirect ways that need to be considered to understand the
process behavior.

SPS serves as a test-bed for experimentation with realistic considerations
(because of the ability of SPS models to capture the underlying complexity in
software development in terms of representing uncertainty, dynamic behavior
and feedback/feed-forward mechanisms) [19]. It provides an inexpensive [26, 19]
means to experiment with software development (the development of SPS models
will be a onetime cost). It further facilitates understanding and experiencing
different processes by participating with a certain role [41]. For example, as a
software manager making decisions in software development, which would not
have been possible in an academic context without SPS.

2.3 Learning theories

Navarro and Hoek [29] evaluated the experience of students playing SPS based
games for SE education. They found that the SPS based teaching is applicable
for various types of learners as it aligns well with objectives of a multitude of
learning theories, including:

– Discovery learning [31] that encourages exploratory learning by experiment-
ing, questioning and seeking answers to “discover” a piece of knowledge.

– Learning through failure [37] that is similar to discovery learning however it
is based on the assumption that failure yields a more memorable lesson and
motivates the student to try again to succeed.

– Learning by doing [31] that emphasizes to provide opportunities for students
“to do” what they are learning.

4 Nauman bin Ali and Michael Unterkalmsteiner

– Situated Learning [8] that emphasizes to embed the “learning by doing”
activities in a context and culture that resemble its real-world use.

– Kellers attention, relevance, confidence, and satisfaction (ARCS) motivation
theory [18] that focuses on learner’s feeling (in terms of ARCS) instead of
the physical environment to motivate students to learn.

For a more detailed discussion of these learning theories and their use in SE
education please see [28] [27].

2.4 Simulation in Software Engineering education

Since the initial proposal of SPS [25] its potential as a means of education and
training was recognized [19]. Some of the claimed benefits of SPS for SE edu-
cation include: increased interest in SE project management [30], motivation of
students [11], and effective learning [33].

Wangenheim and Shull [40] evaluated the evidence to validate such claims in a
systematic literature review. They found that the two most often aims of primary
studies were teaching “SE Project Management” and “SE process” knowledge
[40]. This also motivated our choice to have a simulation based intervention
in this course given that two major ILO are related to project and process
management.

Wangenheim and Shull [40] also found that in most of the existing research
subjective feedback was collected after the students used the game. In this study,
we have taken a more indirect approach to see if the simulation based interven-
tion had the desired impact. We looked at the quality of arguments for the choice
of the lifecycle process in the student reports.

Wangenheim and Shull [40] also reported that it was difficult to evaluate
the effectiveness of SPS interventions because a majority of the articles do not
report the “expected learning outcome and the environment in which students
used the game” [40]. In this study we report the context in detail and adhering
to their recommendation, which is based on empirical studies, use SPS to target
a “specific learning need” of the students [40], i.e. improving the understanding
and implication of a development lifecycle process.

2.5 Evaluating scientific argumentation

Argumentation is a fundamental driver of the scientific discourse, through which
theories are constructed, justified, challenged and refuted [13]. However, scien-
tific argumentation has also cognitive values in education, as the process of
externalizing one’s thinking fosters the development of knowledge [13]. As stu-
dents mature and develop competence in a subject, they pass through the levels
of understanding described in the SOLO taxonomy [6]. In the taxonomy’s hier-
archy, the quantitative phase (unistructural and multistructural levels) is where
students increase their knowledge, whereas in the qualitative phase (relational
and extended abstract levels) students deepen their knowledge [5]. The quality
of scientific argumentation, which comprises skills residing in higher levels of the

Use of simulation for software process education: a case study 5

Table 1. Strengths and weaknesses of argument assessment frameworks

Framework Structure Content Justification

Domain-general
Toulmin [39] strong weak weak
Schwarz et al. [38] strong moderate moderate

Domain-specific
Zohar and Nemet [42] weak moderate strong
Kelly and Takao [20] strong weak strong
Lawson [22] strong weak strong
Sandoval [36] weak strong strong

SOLO taxonomy, is therefore a reflection of the degree of understanding and
competence in a subject.

As argumentation capability and subject competence are intrinsically related,
it is important to find means by which scientific argumentation in the context
of education can be evaluated. Sampson and Clark [35] provide a review of
frameworks developed for the purpose of assessing the nature and quality of
arguments. They analyze the studied frameworks along three dimensions of an
argument [35]:

1. Structure (i.e., the components of an argument)
2. Content (i.e., the accuracy/adequacy of an arguments components when

evaluated from a scientific perspective)
3. Justification (i.e., how ideas/claims are supported/validated within an argu-

ment)

Sampson and Clark apply the reviewed frameworks on a sample argument,
used throughout their analysis, and illustrate to what extent argument assess-
ment is supported. In Table 1 we summarize their analysis w.r.t. the support a
framework provides to assess structure, content and justification of an argument.

3 Research design

3.1 Context

The objective of the Applied Software Project Management (ASPM) course is to
provide students with an opportunity to apply and sharpen their project manage-
ment skills in a sheltered but still realistic environment by “steering and adminis-
trating a project from start to finish, applying methods and techniques for mak-
ing sure the project ends in a successful manner and, additionally, understanding
and learning how to interpret stakeholders interest in a typical project.1” Stu-
dents participating in ASPM typically2 have completed a theory-building course

1 Objective taken from the course descriptor PA2407, available from the authors.
2 ASPM is also an optional course in the curriculum for students from computer

science and civil engineering programs

6 Nauman bin Ali and Michael Unterkalmsteiner

on software project management, including an introduction to product manage-
ment, practical project management guided by the Project Management Body
of Knowledge [1], and an excursion to leadership in project teams [16].

Figure 1 shows the student characteristics of the two course instances that
were studied. In 2012, without SPS intervention, 16 students participated in
total, having accumulated on average 18 ECTS points at the start of the course.
In 2013, with the SPS intervention, 15 students participated in total, having
accumulated on average 84 ECTS points at the start of the course. In both course
instances, three students did not take the theory course on software project
management (Advanced SPM). The major difference between the two student
groups is that in 2013, considerably more students did not successfully complete
the Advanced SPM course. The higher ECTS average in 2013 can be explained
by the participation of three Civil Engineering students who chose Applied SPM
at the end of their study career while SE and Computer Science students chose
the course early in their studies.

Fig. 1. Student demographics from 2012 (without intervention) and 2013 (with SPS
intervention) of the Applied SPM course

The course follows the three months schedule shown in Figure 2, which illus-
trates also the planned events and interactions between students and instructors.
The introduced modifications are shown in italics and further discussed in Sec-
tion 3.3. Students are expected to work 200 hours for this course, corresponding
to a 20 hours/week commitment.

During the introductory lecture, the instructors form the project teams. This
introduces some additional challenges for the students as they would be expected
in a real-life project in a development company. The teams are formed to be

Use of simulation for software process education: a case study 7

Fig. 2. ASPM course time-line with events

heterogeneous in terms of the members’ personality traits and homogeneous in
terms of their technical skills. The latter is achieved by surveying the students’
capabilities, e.g. their knowledge in programming languages and problems do-
mains. The second aspect considered in team formation is individual personality
traits, assessed with the whole-brain model [15]. The goal is to achieve a con-
stellation that represents all four thinking types (logical, sequential, conceptual,
emotional), leading to an effective team. In order to kick-start collaboration and
get the students acquainted with each other, several team building activities are
conducted, e.g. a strength, weaknesses, opportunities, threats (SWOT) analy-
sis [17, 43].

In the second lecture, an introduction to software measurement and esti-
mation is given. The goal is to provide the teams with the practical means to
estimate software size (using function point analysis) and estimate effort (using
COCOMO or simple linear regression). The first assignment consists of delivering
a project management plan (PMP) which is assessed by a dedicated rubric [3].
The teams receive oral feedback and clarifications on the PMP during the same
week, together with assessment criteria for assignment two (see Figure 2). The
PMP presentations should focus on how the team has addressed the received
feedback and report on the progress. During week seven, a control meeting is
held with individual teams, again focusing on how the project progresses.

The course concludes with a presentation where project teams demo their
developed products. In assignment five, the students are asked to individually
answer a set of questions that inquiry their experience during the project and
proposals for improvement.

3.2 Research questions

The posed research questions in this study are:

RQ1: How can improvement in software development process understanding be
assessed?

RQ2: To what extent can process simulation improve students’ understanding
of software development processes?

8 Nauman bin Ali and Michael Unterkalmsteiner

With RQ2, we investigate whether process simulation has a positive impact
on students’ understanding of development processes. Even though studies with
a similar aim have already been conducted , experiments in general are prone
to the Hawthorne effect [10], where subjects under study modify their behavior
knowing that they are being observed. Hence we introduce process simulation as
an additional teaching and learning activity into a course whose main purpose
is not to teach software development processes. Furthermore, we do not modify
the requirements for the graded deliverables. However, due to the subtle mod-
ifications of the course, new means to evaluate the impact are needed. Hence,
with RQ1 we aim to identify the means by which we can measure the impact
of introducing process simulation on students’ understanding of development
processes.

In order to answer RQ1, we update the review by Sampson and Clark [35]
with two more recent frameworks proposed by Reznitskaya et al. [32] and Brown
et al. [9], select the framework that provides the strongest argument evaluation
capabilities, and, if necessary, adapt it to the software engineering context.

In order to answer RQ2, we apply the chosen argument evaluation framework
on artifacts delivered by project teams and individual students which did receive
the treatments shown in Figure 2 and on artifacts delivered in previous years.
Instrumentation and data collection are illustrated in Section 3.3.

3.3 Instrumentation and data collection

Assignment 5: Post mortem, as shown in Figure 2, is an individual assignment
where students had to motivate their choice of software process model selected
in their projects. This assignment is used to evaluate the influence of SimSE
on the student’s understanding of the software processes. A baseline for typical
process understanding of students from the course was established by evaluating
Assignment 5 from year 2012 and it was compared to the evaluation results of
Assignment 5 from year 2013. To supplement the analysis we also used Assign-
ment 1: Project Management Plan (PMP) (which is a group assignment) from
both years. The design for the study is shown in Figure 3. Where deltas ‘a’ and
‘b’ are changes in understanding between the Assignments 1 and 5 within a year.
While deltas ‘c’ and ‘d’ represent changes across years for Assignment 1 and 5
respectively.

For the evaluation of assignments, we used the EBR framework [9]. Other
frameworks considered and the reasons for this choice are summarised in Sec-
tion 4.2.

Once the framework had been adapted, first it was applied on one assign-
ments using “Think-aloud protocol” where the author expressed their thought
process while applying the evaluation instrument. This helped to identify am-
biguities in the instrument and also helped develop a shared understanding of
it. A pilot of the instrument was done on two assignments where the authors
applied it separately and then compared and discussed the results. Both authors
individually coded all the assignments and then the codes were consolidated with
consensus. The results of this process are presented in Section 4.3.

Use of simulation for software process education: a case study 9

Assignment 12012

2013
Assignment 1

Assignment 5

Assignment 5

a

b

c d

Fig. 3. Study design used in this study.

3.4 Limitations

The assignments were retrieved from the Learning Management System and
personal identification of students was replaced with a unique identifier to hide
their identity from the authors. This was done to avoid any personal bias that
the authors may have towards the students as their teachers, in this and other
courses. Furthermore, to ensure an unbiased assessment both the overall grades
of students and their grades in the assignments were hidden from the authors
when the assessment instrument was applied in this study.

To avoid any bias introduced by asking questions directly about the inter-
vention of process simulation, and to have a relative baseline for assignments
from 2012 we did not change the assignment descriptors for the year 2013. Thus
we tried to measure the effect of the intervention indirectly by observing the
quality of argumentation without explicitly asking students to reflect based on
the experience from simulation based games.

The intervention was applied in a post-graduate course therefore experiment
like control of settings and variables was not possible. Among other factors, any
difference in results could purely be because of the different set of students taking
the course in the years 2012 and 2013. However, as discussed in Section 3.1 the
groups of students were fairly similar thus the results are comparable.

Similarly, by having the students fill out questions about the various sim-
ulation based games we tried to ensure that students have indeed played the
games. However, we have no way of ensuring that the students did indeed play
the games individually and not just shared the answers with each other. This
limitation could weaken the observable effect of the intervention.

4 Results

In this section we report the two main results of our study. In Section 4.1 we
review two argument evaluation approaches and classify them according to the
framework presented in Section 2.5. Then we choose one argument evaluation
approach and adapt it to our goals (Section 4.2), and apply it to students argu-
ments on choosing a particular process model for their project (Section 4.3).

10 Nauman bin Ali and Michael Unterkalmsteiner

4.1 Review update

Brown et al. [9] propose with the Evidence-based Reasoning (EBR) framework an
approach to evaluate scientific reasoning that combines Toulmin’s argumentation
pattern [39] with Duschl’s framework of scientific inquiry [12]. This combination
proposes scientific reasoning as a two-step process in which a scientific approach
to gather and interpret data results in rules that are applied within a general
framework of argumentation [9].

Fig. 4. The Evidence-Based Reasoning framework (a) and different degrees of argument
sophistication (b-d) (adapted from Brown et al. [9])

Figure 4a shows the structure of the framework, consisting of components
that should be present in a strong scientific argument. The strength of an ar-
gument can be characterized by the components present in the argument. For
example, in an unsupported claim (Figure 4b), there are no rules, evidences or
data that objectively support the claim. An analogy (Figure 4c) limits the argu-
mentation on supporting a claim only with instances of data, without analyzing
and interpreting the data. In an overgeneralization (Figure 4d), analysis and
formation of a body of evidence is omitted and data is interpreted directly to
formulate rules (theories, relationships) that are not supported by evidence.

The EBR was not designed for a specific scientific context [9] and we clas-
sify it therefore as a domain-general framework. It provides strong support for
evaluating arguments along structure (i.e. the components of an argument) and
justification (i.e. how claims are supported within an argument) dimensions.
However, solely identifying rules and evidences components in an argument does
not provide an assessment of the arguments content, i.e. the adequacy of argu-
ment components. As such, the framework provides the tools to identify compo-
nents of content (rules and evidences), but no direct means to assess the content’s
quality. Therefore, we rate the frameworks support for the content dimension as
moderate.

Reznitskaya et al. [32] propose a domain-specific framework for evaluation of
written argumentation. They proposed and compared two methods to implement
this framework:

Use of simulation for software process education: a case study 11

1. Analytical method, which is a data driven approach where individual state-
ments are coded and their relevance to the main topic is judged, categories
are derived from these codes (deciding about these categories will be based
on the theoretical and practical significance in the domain). Next the report
is evaluated on five subscales which cover aspects from: number of arguments
made, types of previously identified categories of arguments covered in the
report, opposing perspectives considered, number of irrelevant arguments
and the use of formal aspects of discourse.

2. Holistic method takes a rubric based approach attempting to provide a macro
level assessment of the arguments.

In essence, the framework has no explicit focus on the components of an ar-
gument and only indirectly covers the aspects of structure while creating the
instrument. The fundamental building block of the evaluation framework is the
analytical coding process where both the content and justification are considered.
Content (accuracy and adequacy) is only assessed by identifying the relevance
of the argument to the topic. Justification is covered indirectly in the variety of
argument categories identified in the reports. However, all argument categories
are given equal weight in scoring. Therefore, we rate the framework support for
the structure as weak, and for content and justification as moderate.

4.2 Selection and adaptation of an argument evaluation framework

Based on the analysis of the reviewed frameworks, summarized in Table 1, and
the updated review presented in Section 4.1, we decided to use the EBR frame-
work [9]. We chose a domain-general over a domain-specific framework due to
our preference of customizing generic principles to a specific context. The alter-
native, to construct an assessment instrument completely inductively from the
particular domain and data, as for example in Reznitskaya et al. [32], would
imply a relative assessment approach, weakening the evaluation of the interven-
tion. Furthermore, a domain-generic approach allows us to re-use the assessment
instrument with minor adaptions, lowering the application cost by keeping the
general approach intact.

Table 2 shows an example argument with the EBR components one can
identify in written statements. This example illustrates what we would expect
in a strong argument: a general rule on a process model is applied on a premise
that refers to the specific circumstances of the students’ project, justifying their
claim that the selected model was the best choice. The rule is supported by
evidence (a reference to a scientific study) and by an experience from the project
that creates a relationship between short development cycles and late changes.
The evidence is supported by data from the project.

The EBR framework enables a fine-grained deconstruction of arguments into
components. The price for this strength on the structural and justification di-
mension is a moderate of support for assessing content (see Section 4.1). Even
though the overall argument content can be judged to some extent by the inter-
play between the argument components, domain-specific knowledge is required

12 Nauman bin Ali and Michael Unterkalmsteiner

Table 2. Example application of the EBR on an ideal argument

Component Statement

Premise The requirements for our product are not that clear and likely to
change.

Claim eXtreme Programming (XP) was the best choice for our project.
Rule XP embraces continuous change by having multiple short development

cycles.
Evidence Reference to Beck [4]; customer changed user interaction requirements

six weeks before the delivery deadline but we still delivered a working
base product;

Data Seven change requests to initially stated requirements; four require-
ments were dropped since customer was satisfied already;

Table 3. Frequencies of identified argument components and argument content
strength in project plans for choosing a particular process model

Year Plan# P PR PE PRE RE R Unsound Weak Strong

1 8 4 1 0 0 0 2 2 0
2013 2 9 7 0 0 0 3 4 6 0

3 3 1 0 0 1 0 1 1 0

4 10 3 0 0 0 1 1 3 0
5 5 7 0 0 1 1 3 6 0

2012 6 6 3 0 0 0 0 0 4 0
7 2 1 0 0 0 2 1 1 0

to judge whether individual statements are accurate. Looking at Table 2, the rule
component in particular requires knowledge on XP in order to decide whether
the statement is accurate or not. Hence we assess the argument content by qual-
ifying a rule as sound/unsound, given the stated premise, claim, evidence and
data, based on our domain knowledge on process models. Concretely, we declare
an argument for a claim as:

– Sound
• If the stated rule is backed by evidence/data and is pertinent for the

premise (strong).
• In arguments with no corroborative evidence (weak): If the stated rule

is in compliance with literature and/or the assessors understanding of
the topic and is pertinent for the premise.

– Unsound
• If an argument does not fulfil either of the above two criteria.

4.3 Application of the chosen framework

In this section we illustrate the results of applying the EBR framework on the
students’ arguments for choosing/rejecting a particular process model for their

Use of simulation for software process education: a case study 13

project. We coded statements according to the EBR frameworks’ components
of an argument: a premise (P), rule (R), evidence (E), data (D). We also noted
when components are used atomically or are combined into pairs or triples of
components to form a coherent argument. Based on this codification, we evalu-
ated the overall content of the argument (unsound / weak / strong) by following
the rules established in Section 4.2. The claim of the argument, in principle con-
stant and only changing in sign, was that a particular process model is / is not
the best choice for the project.

Table 3 shows the results in terms of the argument component frequencies
encountered in the students’ project plans from 2012 (without intervention) and
2013 (with SPS intervention). For example, in Plan #1 we identified 8 premises
(P), 4 premise-rule (PR) pairs and 1 premise-evidence (PE) pair. We expected
to find some premise-rule-evidence (PRE) triples as they would indicate that
students can motivate their choice by examples, e.g. by referring to scientific
literature, to experience from previous projects or from the SPS. However, the
results clearly indicate a tendency for students to create overgeneralizing ar-
guments (premise-rule pairs). Looking at the argument content, we identified
no strong arguments (lack of evidence component) and, in proportion to weak
arguments, a rather large number of unsound arguments, indicating a lack of
understanding of process models and their properties.

After assessing the project plans, which were a group assignment, we ap-
plied the EBR framework on the project post-mortems that were handed in
individually by the students (13 in 2013 and 12 in 2012). Table 4 illustrates the
results, showing the frequencies of identified argument components and compo-
nent combinations. Observe that, in contrast to the post-mortem, we identified
more combinations of components, e.g. premise-data (PD) or premise-evidence-
data (PED) triples. For both years it is evident that students reported more
justification components (evidence and data) in the post-mortem than in the
project plan. This is expected as we explicitly asked to provide supporting ex-
perience from the conducted project.

5 Discussion

5.1 Assessing software development process understanding

With support from the EBR framework we decomposed students’ arguments to
a degree that allowed us to pinpoint the weaknesses of their development process
model understanding. Looking at the frequencies in Table 4, we can observe that:

– For both years, a relatively large number of standalone argument components
could be identified (e.g. premise (P), rule (R) and data (D) in 2013 and
evidence (E) in 2012). A standalone argument component indicates a lack
of a coherent discussion, a concatenation of information pieces that does not
create a valid argument for a specific claim. There are exceptions, e.g. PM#
8 and PM#24 (see Table 4), which is also expressed in a strong argument
content rating.

14 Nauman bin Ali and Michael Unterkalmsteiner

T
a
b
le

4
.

F
re

q
u
en

ci
es

o
f

id
en

ti
fi
ed

a
rg

u
m

en
t

co
m

p
o
n
en

ts
a
n
d

a
rg

u
m

en
t

co
n
te

n
t

st
re

n
g
th

in
p
ro

je
ct

p
o
st

-m
o
rt

em
s

fo
r

ch
o
o
si

n
g

a
p
a
rt

ic
u
la

r
p
ro

ce
ss

m
o
d
el

.
P

re
m

is
e(

P
),

R
u
le

(R
),

E
v
id

en
ce

(E
),

D
a
ta

(D
).

Y
ea

r
P

M
#

P
P

R
P

E
P

R
E

R
E

R
E

D
E

D
P

D
R

D
R

E
D

P
R

D
P

E
D

P
R

E
D

U
n
so

u
n
d

W
ea

k
S
tr

o
n
g

1
3

3
0

2
0

2
1

2
1

0
0

0
0

0
0

2
5

1
2

0
0

0
0

0
3

0
2

1
0

0
0

0
0

0
0

3
0

3
5

1
0

2
2

1
1

2
1

1
1

0
0

0
0

1
4

2
4

1
0

1
1

0
1

0
0

0
0

0
1

0
0

0
0

2
1

5
0

1
1

0
0

4
0

7
0

0
0

0
1

0
0

0
5

1
6

0
0

3
0

0
0

0
0

1
1

0
0

0
1

0
0

0
0

2
0
1
3

7
1
4

0
0

1
0

1
1

0
0

0
1

0
1

0
0

1
1

2
8

0
0

0
2

1
1

0
1

0
1

0
1

0
0

0
0

2
3

9
0

0
0

1
0

0
0

1
1

0
3

0
0

0
0

1
3

0
1
0

7
0

0
0

0
5

0
1

0
0

3
0

0
0

0
5

3
0

1
1

0
0

0
0

4
2

2
0

2
0

0
1

0
0

0
1

6
1

1
2

0
0

0
0

9
0

0
0

0
0

0
2

0
0

0
1

8
2

1
3

0
0

0
0

1
0

4
0

2
0

1
1

0
0

0
1

1
1

S
u
m

3
0

5
5

9
1
7

2
0

9
1
6

9
3

9
6

2
1

0
1
3

4
2

1
4

1
4

0
0

0
0

0
0

0
1

1
3

0
0

0
0

1
0

0
1

1
5

0
0

0
1

2
0

1
3

3
1

1
1

0
0

0
0

4
1

1
6

0
0

0
0

2
0

1
0

1
0

0
1

0
0

1
2

3
0

1
7

0
2

0
0

2
0

0
0

1
0

1
0

0
0

0
3

2
0

1
8

4
0

1
1

3
0

0
0

0
0

0
0

0
1

0
0

3
1

2
0
1
2

1
9

1
0

0
0

1
0

2
0

1
0

0
0

0
0

0
0

1
0

2
0

0
0

0
0

3
0

3
0

0
0

0
0

0
0

0
1

1
1

2
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

2
2

0
0

0
1

0
0

6
0

0
0

0
0

0
0

0
1

0
0

2
3

0
0

1
0

0
8

1
0

1
0

0
0

0
0

0
8

0
0

2
4

0
0

1
1

1
0

0
0

0
0

0
1

0
0

0
0

0
3

2
5

0
0

0
0

0
3

1
0

0
0

0
0

0
0

0
3

0
0

S
u
m

5
2

3
4

1
4

1
1

1
6

4
8

4
2

3
0

1
2

1
7

1
4

7

Use of simulation for software process education: a case study 15

– Looking at the argument component combinations that indicate a strong
argument (i.e. that contain a premise, a rule, and evidence or data), we can
observe that assignments containing weak arguments outnumber assignment
with strong arguments in both years.

The detailed analysis of arguments with the EBR framework could also help
to create formative feedback to students. For example, in PM#5, the student
reported 7 data points on the use of SCRUM but failed to analyze this data,
creating evidence (describing relationships of observations) and connecting them
to rules. On the other hand, we identified several assignments with the premise
that the requirements in the project are unknown or change constantly (using
this premise to motivate the selection of an Agile process). However, none of
the assignment reports data on change frequency or volatility of requirements,
weakening therefore the argument for choosing an Agile process.

Given these detailed observations one can make by applying the EBR frame-
work we think it is a valuable tool for both assessing arguments and to provide
feedback to students. However, this power comes at a price. We recorded coding
times between 10 and 30 minutes per question, excluding any feedback formu-
lation that the student could use for improvement. Even if coding and feedback
formulation efficiency could be increased by tools and routine, one has to con-
sider the larger effort this type of assessment requires compared to other means,
e.g. rubrics [3].

5.2 Impact of SPS on students’ understanding of software
development processes

We used the quality of argumentation for the choice of the software process as
a measure of students’ understanding. The only difference in how the course
was conducted in 2012 was that of the use of SimSE simulation based software
process games. Besides the limitation of this study (as discussed in Section 3.4)
improvements in the students’ understanding can be seen as indications of use-
fulness of SimSE based games for software process education.

We focused on evaluating the content of the student reports and used both
the strength (classified as strong, weak and unsound) and frequency of arguments
as an indicator. No discernible differences are visible in the group assignments
(Table 3) but when we compare the results of individual project post-mortem
reports for the years 2012 and 2013 (as shown in Table 4) some clear indications
appear. Results for the year 2013 project post-mortem show twice as many
strong arguments as the previous year. Similarly, the number of relatively weaker
arguments has increased by three times while at the same-time the number of
‘unsound’ arguments has improved only slightly.

Another indirect observation that shows a better understanding of the pro-
cess model is reflected in the choice of the process model in the context of the
course project (with small collocated teams, short fixed duration for project
etc.). Compared to 2012 where most of the groups took plan driven, document
intensive process models (two groups chose incremental development model, one

16 Nauman bin Ali and Michael Unterkalmsteiner

group chose Waterfall and only one chose Scrum), in year 2013 all groups chose
a light weight people centric process model that is more pertinent to the given
context.

6 Conclusion

The EBR framework helps the decomposition of student arguments into distinct
parts that enabled an assessment of students’ understanding of software devel-
opment processes. Even though it was appropriate for the goal of the study and
provided higher quality of assessment its use as a tool for assessing assignments
in general cannot be motivated due to the time taken for such assessment.

The indications reported in this study (from use of software process simu-
lation in an active course) adds to the confidence in evidence reported in ear-
lier empirical studies in controlled settings. With a relatively mature simulation
based game like SimSE, with a good GUI and decent documentation the cost of
including it in a course to reinforce concepts already learned is justified given
the potential gains as seen in this study.

Future work could do a longitudinal study where more data is collected over
the next few instances of the course. Another alternative could be to consider
applying the same approach, asking students however explicitly to use experience
from simulation to motivate their choice in PMP. This would allow us to evaluate
whether SPS has an impact, i.e. if experiencing the process in a simulation
improves their argument content (soundness).

References

1. A Guide to the Project Management Body of Knowledge: PMBOK Guide. PMBOK
Guides. Project Management Institute, 3rd edition, 2004.

2. A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, editors. Guide to the Software
Engineering Body of Knowledge - SWEBOK. IEEE Press, Piscataway, NJ, USA,
2004.

3. S. Barney, M. Khurum, K. Petersen, M. Unterkalmsteiner, and R. Jabangwe. Im-
proving students with rubric-based self-assessment and oral feedback. IEEE Trans-
actions on Education, 55(3):319 –325, Aug. 2012.

4. K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77,
Oct 1999.

5. J. Biggs and C. Tang. Teaching for Quality Learning at University: What the
Student does. Mcgraw-Hill Publ.Comp., 3rd edition. edition, Nov. 2007.

6. J. B. Biggs and K. F. Collis. Evaluating the quality of learning: the SOLO taxonomy
(structure of the observed learning outcome). Academic Press, 1982.

7. B. W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, 21(5):61–72, 1988.

8. J. S. Brown, A. Collins, and P. Duguid. Situated cognition and the culture of
learning. Educational researcher, 18(1):32–42, 1989.

9. N. J. S. Brown, E. M. Furtak, M. Timms, S. O. Nagashima, and M. Wilson. The
evidence-based reasoning framework: Assessing scientific reasoning. Educational
Assessment, 15(3-4):123–141, 2010.

Use of simulation for software process education: a case study 17

10. J. P. Campbell, V. A. Maxey, and W. A. Watson. Hawthorne effect: Implications
for prehospital research. Annals of Emergency Medicine, 26(5):590–594, Nov. 1995.

11. A. Drappa and J. Ludewig. Simulation in software engineering training. Pro-
ceedings of the 22nd international conference on Software engineering - ICSE ’00,
pages 199–208, 2000.

12. R. A. Duschl. Assessment of inquiry. Everyday assessment in the science classroom,
pages 41–59, 2003.

13. S. Erduran, S. Simon, and J. Osborne. TAPping into argumentation: Developments
in the application of toulmin’s argument pattern for studying science discourse.
Science Education, 88(6):915933, 2004.

14. A. Fuggetta. Software process: a roadmap. In Proceedings of the Conference on
the Future of Software Engineering, pages 25–34. ACM, 2000.

15. N. Herrmann. The creative brain. The Journal of Creative Behavior, 25(4):275295,
1991.

16. P. Hersey, K. H. Blanchard, and D. E. Johnson. Management of organizational
behavior: leading human resources. Prentice Hall, Upper Saddle River, N.J., 2001.

17. T. Hill and R. Westbrook. SWOT analysis: It’s time for a product recall. Long
Range Planning, 30(1):46–52, Feb. 1997.

18. J. M. Keller and K. Suzuki. Use of the arcs motivation model in courseware design.
1988.

19. M. I. Kellner, R. J. Madachy, and D. M. Raffo. Software process simulation mod-
eling : Why ? What ? How ? Journal of Systems and Software, 46, 1999.

20. G. J. Kelly and A. Takao. Epistemic levels in argument: An analysis of uni-
versity oceanography students’ use of evidence in writing. Science Education,
86(3):314342, 2002.

21. C. Larman and V. R. Basili. Iterative and incremental development: A brief history.
Computer, 36(6):47–56, 2003.

22. A. Lawson. The nature and development of hypotheticopredictive argumentation
with implications for science teaching. International Journal of Science Education,
25(11):1387–1408, 2003.

23. T. Lethbridge, J. Diaz-Herrera, J. LeBlanc, R.J., and J. Thompson. Improving
software practice through education: Challenges and future trends. In Future of
Software Engineering, FOSE ’07, pages 12–28, 2007.

24. R. J. Madachy. Simulation. John Wiley & Sons, Inc., 2002.
25. J. A. McCall, G. Wong, and A. Stone. A simulation modeling approach to under-

standing the software development process. In Fourth Annual Software Engineering
Workshop, Goddard Space Flight Center Greenbelt, Maryland, 1979.

26. M. Melis, I. Turnu, A. Cau, and G. Concas. Evaluating the impact of test-first
programming and pair programming through software process simulation. Software
Process: Improvement and Practice, 11(4):345–360, 2006.

27. E. Navarro. Simse: A Software Engineering Simulation Environment for Software
Process Education. PhD thesis, Long Beach, CA, USA, 2006. AAI3243955.

28. E. O. Navarro. A survey of software engineering educational delivery methods and
associated learning theories. 2005.

29. E. O. Navarro and A. van der Hoek. Comprehensive evaluation of an educational
software engineering simulation environment. In Software Engineering Education
Training, 2007. CSEET ’07. 20th Conference on, pages 195–202, 2007.

30. D. Pfahl, O. Laitenberger, J. Dorsch, and G. Ruhe. An externally replicated ex-
periment for evaluating the learning effectiveness of using simulations in software
project management education. Empirical software . . . , pages 367–395, 2003.

18 Nauman bin Ali and Michael Unterkalmsteiner

31. M. Prensky and M. Prensky. Digital Game-Based Learning. Mcgraw Hill, 2001.
32. A. Reznitskaya, L.-j. Kuo, M. Glina, and R. C. Anderson. Measuring argumenta-

tive reasoning: What’s behind the numbers? Learning and Individual Differences,
19(2):219–224, June 2009.

33. D. Rodriguez. e-Learning in project management using simulation models: A case
study based on the replication of an experiment. Education, IEEE . . . , 49(4):451–
463, 2006.

34. W. W. Royce. Managing the development of large software systems: concepts and
techniques. In Proceedings of the 9th International Conference on Software Engi-
neering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press.

35. V. Sampson and D. B. Clark. Assessment of the ways students generate argu-
ments in science education: Current perspectives and recommendations for future
directions. Science Education, 92(3):447472, 2008.

36. W. A. Sandoval. Conceptual and epistemic aspects of students’ scientific explana-
tions. Journal of the Learning Sciences, 12(1):5–51, 2003.

37. R. Schank and H. Saunders. Virtual learning: A revolutionary approach to building
a highly skilled workforce. Wiley Online Library, 2001.

38. B. B. Schwarz, Y. Neuman, J. Gil, and M. Ilya. Construction of collective and
individual knowledge in argumentative activity. Journal of the Learning Sciences,
12(2):219–256, 2003.

39. S. E. Toulmin. The uses of argument. Cambridge University Press, Cambridge,
U.K.; New York, 1958.

40. C. von Wangenheim and F. Shull. To game or not to game? Software, IEEE, pages
92–94, 2009.

41. A. Zapalska, D. Brozik, and D. Rudd. Development of Active Learning with Sim-
ulations and Games. US-China Education Review, 2:164–169, 2012.

42. A. Zohar and F. Nemet. Fostering students’ knowledge and argumentation skills
through dilemmas in human genetics. Journal of Research in Science Teaching,
39(1):3562, 2002.

43. O. Zuber-Skerritt. A model of values and actions for personal knowledge manage-
ment. Journal of Workplace Learning, 17(1/2):49–64, Jan. 2005.

