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1 Introduction

To understand human memory is to understand what concepts are: how they
are stored and retrieved, how they overlap with and trigger one another. And
it does not take much thought to recognize that understanding the nature of
concepts is nothing short of understanding the essence of the mental. Thus,
a complete theory of memory would not merely be a theory of one aspect
of mind; it would be a complete theory of mind. Pentti Kanerva’s theory of
associative retrieval and storage represents a significant step in that direction.

Sparse Distributed Memory (SDM) began in 1974 as a paper written for
a class on human memory given by Gordon Bower of Standford’s psychology
department. The main ideas were developed then, and in a couple of years
Pentti Kanerva continued working on it until he felt all the bugs were out
of it. His monograph named “Sparse Distributed Memory” was published in
1988 [14]. It has lost none of its freshness or originality till today.

Kanerva’s SDM can be regarded as a generalized random-access memory
wherein the memory addresses and data words come from high-dimensional
vector spaces. As in a conventional random-access memory (RAM), there ex-
ists an array of storage locations, each identified by a number (the address of
the location) with associated data being stored in these locations as binary
words. However, unlike conventional RAMs which are usually concerned with
addresses and data words only about 32 bits long, SDM is designed to work
with address and data vectors with much larger dimensions. Due to the astro-
nomical size of the vector space spanned by the address vectors, it is physically
impossible to build a memory containing every possible location of this space.
However, it is also unnecessary since only a subset of the locations will ever
be used in any application. This provides the primary motivation for Kan-
erva’s model: only a sparse subset of the address space is used for identifying
data locations and input addresses are not required to match stored addresses
exactly but to only lie within a specified distance (radius) from an address to
activate that address.

SDM can be also regarded as a three-layered feed-forward neural network.
The main advantages of this net are: (1) learning is very fast, (2) we can
understand sense of weights. So, the study of SDM can help us to understand
other types of neural nets.
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2 The SDM Study

2.1 Associative memories

Associative memory is a memory that can recall data when a reference address
is sufficiently closed (not only exact equal as in random-access memories) to
the address at which the data were stored. It is very useful if the reference
address is corrupted by random noise or outright errors or if this address
is only partially specified. Autoassociative memory implements a mapping
Φ(~xi) = ~xi. Heteroassociative memory implements a mapping Φ(~xi) = ~yi.

2.2 SDM as a Neural Net

The SDM may be regarded as an artificial neural net. This net has three
layers of neurons — n inputs, L hidden neurons and P output neurons. Input
layer neurons copy input vectors only, hidden layer neurons have radial basis
functions (RBF) and output layer neurons have linear basis functions (LBF).

Algorithm of weights calculation (for T training pairs (xt, yt)) follows.
First the weights are initialized:

wjk =

{
1 if Random(1) > 1

2
0 otherwise

j = 1 . . . L, k = 1 . . . n

vij = 0 i = 1 . . . P, j = 1 . . . L

(1)

where Random(1) is a real random number from 〈0, 1〉.
Then, the output weights are computed from the training set:

for t = 1 to T do
for j = 1 to L do

if Hamming distance(~xt, ~wj) ≤ Radius then
for i = 1 to P do vij = vij + yti

(2)

where ~wj = (wj1, wj2, . . . , wjn).
The thresholds are given by

Θi =
1
2

L∑
j=1

vij (3)
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Recall of the net (i.e. reading from the address ~x) is done in the similar
way:

for i = 1 to P do ui = 0
for j = 1 to L do

if Hamming distance(~xt, ~wj) ≤ Radius then
for i = 1 to P do ui = ui + vij

for i = 1 to P do
if ui ≥ Θi then yi = 1 else yi = 0

(4)

SDM Modification It is very difficult to design the SDM for very large
input and output vectors (N · P ≥ 1, 000, 000) and for technically possible
number of hidden neurons. The radius must be very big and the overlappings
of hyperspheres are unacceptable large in these cases. On the other hand there
is not any active hidden neuron for some input patterns and the net does not
produce any response. One way to overcome the described problem may be
found in changes of the initial setting of the ~wj weight vectors.

One of possible modification of the SDM [38] supposes that the number of
training pairs T is considerable smaller than that of hidden neurons (T � L).
All hidden neurons are then distributed to T subsets with L

T neurons. The
principle of initial setting of the ~wj weight vectors goes out from the RCE net.
These weight vectors of hidden neurons in each subset are generated randomly
from unique “parent” input vector with Hamming distances from this parent
input vector less than given radius Rg. One of hidden neurons may have ~wj
weight vector equal to parent input vector. The modification is discussed in
the section 4.2.1.

2.3 SDM as an Extension of RAM

The idea of distributed storage is that many storage locations participate in a
single write or read operation — in marked contrast to conventional computer
memories, in which only one location is active at once. Somewhat surprisingly,
this gives the memory the appearance of a random-access memory with a
very large address space and with data retrieved on the basis of similarity of
address. More specifically, if the word ζ is stored at the address a, then reading
from a retrieves ζ, and, what is more important, reading from an address x
that is sufficiently similar to a retrieves a word ξ that is even more similar to
ζ than x is to a (the similarities are comparable because the addresses to the
memory and the data are elements of the same metric space, N).
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Fig. 1: SDM as an extension of a RAM

The SDM developed by Kanerva may be regarded as an extension of a
classical random-access memory (RAM). The main SDM alterations to the
RAM are:

• The SDM calculates Hamming distances between the reference address
and each location address. For each distance which is less or equal to
the given radius the corresponding location is selected.

• The own memory is represented by L ·P counters (when L is number of
locations and P is the output data length) instead of single-bit storage
elements.

• Writing to the memory, instead of overwriting, is done in this way:
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– if the i-bit of the input data is 1, the corresponding counters (coun-
ters in the selected locations (rows) and in the i-th colums) are
incremented,

– if the i-bit of the input data is 0, the corresponding counters are
decremented.

• Reading (or recall) from the memory is done in a similar way:

– The contents of the selected locations are summed columnwise.

– Each sum is thresholded. If the sum is greater than or equal to
the threshold value the corresponding output bit is set to 1, in the
opposite case it is cleared. Note that the thresholds may be zero,
if the training input vectors are closed to orthogonal ones, as is
shown in the figure 1.

2.4 Jaeckel-Karlsson’s Design

In the Jaeckel Selected-Coordinate Design [8] the activation mechanism is
based on selecting an activation pattern for each hard location.

4/0, 23/1, 37/0

7/1, 12/1, 64/0

. . . . . .

1

2

L hard locations

-

Input address

Hard-location’s
activation pattern,

k pairs
Data

Fig. 2: The Jaeckel Selected-Coordinate Design.

The activation pattern consists of a list of k pairs bit-number/value. The
hard location is defined to be “near” the input address if the values (of the
activation bits) match exactly. In the example in figure 2, the first hard
location is activated by an input address if the bits 4, 23, 37 in the input
address have the values 0, 1, 0.
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If the number of activation bits is k, the probability of activation is p = 2−k.
If the number of hard locations is L, the mean number of activations per access
is Amean = L · 2−k.

A table is used in the Karlsson Selected-Coordinate Design [15]. The num-
ber of entries (A) in the table equals the number of desired activation when
accessing the memory with an input address. Each entry in the table specifies
a subset of k addres bits. In the example in figure 3 the selected address bits
for the first table location are 4, 23, 37. On access, the specified bits (in the
input address) are used as an index to a block of 2k hard locations. In the
example this means that 3 bits in the address are used as an index to one of
8 positions in a block. The hard-location memory consists of A such blocks,
i.e., the size of the hard-location memory is therefore L = A · 2k.

4, 23, 37

7, 12, 64

. . . . . .

2k

111
. . .001
000
111
. . .001
000

L = A · 2k hard locations

-

Input address

Activation pattern
k

Data

Fig. 3: The Karlsson Design as a restricted Jaeckel Design.

Compared to the earlier designs, the number of access calculations is de-
creased by a factor 2k. The number of bits (k) is usually in the range 5− 20,
making the decrease in access time between 2 and 6 orders of magnitude.

The activation patterns in the table are substantially fewer than in the
Jaeckel design (A patterns vs. L patterns). It is not a good idea to generate
the activation patterns in the table at random. A bad choice of activation
patterns might lead to very unsatisfactory results. In order to remove this
problem, a restriction is introduced for choosing bits in the activation patterns:
a bit cannot be chosen if there exists any other bit that have been used less
times. Note that this optimization is neither necessary nor used in the Jaeckel
model.

The Karlsson’s design can be viewed as a restricted version of Jaeckel’s
design (figure 3), with identical functionality (but much slower) since the
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Karlsson’s design could be implemented by dividing Jaeckel’s hard-location
memory into A blocks each with 2k locations, and by using in each block all
combination of 0s and 1s in a fixed subset of the address bits.

The two main advantages of the Karlsson’s design are: (1) it is much faster
and (2) the number of activations is fixed to A. One disadvantage may be that
it is less random, e.g., there may be problems with interference between the
choice of activation pattern and some input data. One constraint on the basic
version of the Karlsson’s desing is that the number of hard locations is fixed
to L = A · 2k. Of course, this can be remedied by not using all 2k locations.

3 Dissertation aims

I have defined the aims of my dissertation thesis in three items. The center of
work lies in theoretical analysis in the first item and then it drifts to practical
analysis in the third item.

3.1 Relation between Data and the Net Efficiency

Adjustment of the net parameters depends on many conditions, for example
on the net purpose and the required net merit. Clearly, the radius is a most
sensitive net parameter. It can strengthen or weaken a generalization proper-
ties of the net. Some other parameters can affect capacity of the net. Analysis
of this influence have been shown in [2] and [Gre1]. But, the net behavior also
depends on statistical properties of the pattern set, i. e. distances and rela-
tions between patterns. Therefore, an optimal parameter adjustment is rather
tricky. The aim is to find the net parameters with respect to the pattern set
properties.

3.2 SDM Extension

Both the address and data vectors are required to be binary in the standard
model of the SDM. An attempt of SDM extension should include integer or
real input and output data vectors. There are very important analyses of
the extension and the comparison both with standard SDM and with RCE or
other classifiers. In some cases, the extension can be found to be equivalent
to an existing design.
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3.3 Construction of the Hierarchical Networks Consist-
ing of SDMs

A human cerebrum has a hierarchical structure. Designing artificial neural
nets, we believe that the best strategy is to learn from the brain itself. We
are studying how to synthesize a neural network model which has the same
ability as the human brain. As a result of this approach, a pattern-recognition
system called the “neocognitron” has been developed (see [4], [5], [27]). The
aim is to find a way how to construct similar system using SDM. The system
will be probably used in pattern recognition.

4 Research and Results

4.1 Data Analysis

The problem of storing non-random data (with non-uniform distribution) is
discussed in this section. We concern to the autoassociative SDM and look
for optimal radius value in dependence of statistical data properties.

Distances between pattern addresses are the most interesting data prop-
erty. If pattern data are random vectors, then (respecting tendency of orthog-
onality of the space {0, 1}n) most of them lie about the mean distance n/2
from a point. In this case we can get approximately optimal radius value r
solving equation:

N(r) = 0.01, see Cibulka [2] and Kanerva [14]. (5)

Computed value is rounded to integer and SDM working with this radius is
maximally efficient. But, pattern data from real applications are not random.
It causes less SDM efficiency. So, we look for a way how to find optimal radius
for non-random pattern data.

Let {t0 . . . tT−1} is set of T patterns. Let D is matrix of distances between
pairs of pattern addresses:

Dij = d(ti, tj), i, j = 0..T − 1, (6)

It is clear that Dij = 0 for i = j. Now we define the mean pattern distance
as a mean value of triangular part of matrix D:

dmean =
2

T (T − 1)

T−1∑
j=1

j−1∑
i=0

Dij . (7)
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We can define the standard pattern deviation in a similar way:

ddev =

√√√√ 2
T (T − 1)

T−1∑
j=1

j−1∑
i=0

(Dij − dmean)2 (8)

Hypothesis 1 The optimal radius is less than the mean pattern distance:

ropt < dmean. (9)

In the ideal case, pattern data are random and mean pattern distance
approximately equals to n/2. Probability N(n/2) = 1/2. Clearly, solving
equation N(r) = 0.01 we get radius less then n/2. In the ideal case the
hypothesis 1 is performed. We can constitute a stricter hypothesis:

Hypothesis 2 The optimal radius is less than the mean pattern distance mi-
nus the standard pattern deviation:

ropt < dmean − ddev. (10)

If pattern vectors are random, the standard pattern deviation approxi-
mately equals to

√
n/2. Probability N(n/2 −

√
n/2) = F{−1} .= 0.159 (F is

the normal distribution function). We can solve equation F{x} = 0.01 for x
and find x

.
= −2.33. It means that optimal radius for random pattern data is

about dmean − 2.33ddev. In the ideal case the hypothesis 2 is performed too.
Validity of the hypotheses is demonstrated in [Gre11].

4.2 SDM Modifications

4.2.1 Modifications of Location Addresses Initialization

In real applications, we often do not require the whole address space. Further-
more, for very large input vectors it can be very difficult to generate whole
address space with satisfactory number of locations. So, we look for a way
to generate only necessary part of the space. One method was proposed by
Zbořil in [38] (see section 2.2). In the following, we will analyze the method
in details.



14 4 RESEARCH AND RESULTS

Data Driven Distribution (DDD) The proposed modification of the
SDM supposes that the number of training pairs T is considerable smaller
than the number of hidden neurons (T � L). All hidden neurons are then
distributed to T subsets with L

T neurons. The principle of initial setting of
the ~wj weight vectors goes out from the RCE net. These weight vectors of
hidden neurons in each subset are generated randomly from unique “parent”
input vector with Hamming distances from this parent input vector less than
some given radius r. One of hidden neurons may have ~w weight vector equal
to parent input vector [38]. The algorithm of a location generation can be
written as:

~wj = ~x;
for b = 1 to r do {
k = Random(n);
invert bit wjk

}

(11)

Figure 4 shows distribution of circle generated by this algorithm for n = 100
and radius r = 40. The radius is even, then according to the algorithm, only
vectors with even Hamming distance can be generated. Mean distance is 27.62
bits, standard deviation 3.45 bits.
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Fig. 4: Distribution of Hamming distance in a circle generated by DDD
algorithm 11. n = 100, radius r = 40.
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The whole data driven SDM initialization algorithm can be defined as
follows:

for t = 1 to T do
for j = 1 + (t− 1)L/T to t · L/T do {
~wj = ~xt;
for b = 1 to r do {
k = Random(n);
invert bit wjk

}
}

(12)

The algorithm is fast and easy, but has some drawback — generated subspace
has distribution very dissimilar to original {0, 1}n. There are two reasons:
first, distribution at figure 4 differs from distribution of circle (see mathe-
matical foundations in [14]), second, circles for different patterns overlap (see
figure 7). The overlapping causes this effect: if we generate 100 locations
for each pattern and given radius, more then 100 locations will be selected
when reading or writing a pattern with the radius. In other words, over-
lapping increases selection probability in unpredictable way. So, SDM with
locations initialized by DDD algorithm does not show the same behaviour as
basic Kanerva’s SDM.

Binomial distribution We can choose another simple algorithm for gen-
erating SDM location address:

p = r/n;
~wj = ~x;
for k = 1 to n do

if Random(n) < p then invert bit wjk

(13)

This algorithm generates random vectors within the whole space {0, 1}n with
binomial distribution of Hamming distance (figure 5). Parameters of the
distribution are n and p = r

n , so the mean value is np = r and variance
npq = r(1− r

n ). About half of the generated vectors lies within a circle with
radius r centered at x. The other vectors are distributed outside the circle. If
we use this algorithm for whole SDM initialization, it causes circle overlapping
like the DDD algorithm. So, we look for a simple algorithm which allows us
to generate a region of {0, 1}n with distribution similar to Kanerva’s SDM.
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Fig. 5: Binomial distribution of Hamming distance in a circle generated by
algorithm 13. n = 100, radius r = 40.

Selected Uniform Distribution (SUD) The idea of the following algo-
rithm is very simple — we will generate random addresses with uniform dis-
tribution and choose only one which lies within given circle:

repeat

for k = 1 to n do wjk =

{
1 if Random(1) > 1

2
0 otherwise

until d(~wj , ~x) ≤ r

(14)

Figure 6 shows distribution of circle generated by this algorithm for n = 100
and radius r = 40. The mean distance is 38.55 bits, standard deviation 1.68.
The algorithm can be easily modified to generate all locations according to
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Fig. 6: Distribution of Hamming distance in a circle generated by algorithm
14 “Selected Uniform”. n = 100, radius r = 40.

the whole pattern set:

for j = 1 to L do
repeat

for k = 1 to n do wjk =

{
1 if Random(1) > 1

2
0 otherwise

selected = false;
for t = 1 to T do
selected = selected or (d(~wj , ~x) ≤ r)

until selected

(15)

All patterns are passed at once and that is why circle overlapping is restricted
(figure 7). The algorithm generates a region of {0, 1}n with distribution ex-
actly same as in the Kanerva’s SDM. The main disadvantage of an algorithm
based on (14) is its very low speed for small radiuses. When radius is reduced
to a (relatively) small value, probability of selection decreases rapidly and very
large number of loops (attempts) is necessary.

The algorithm (14) can be slightly accelerated by combining with algorithm
(13) where probability p = 2·R/N(1−R/N) (binomial approximation of circle
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Full overlapping Restricted overlapping

Fig. 7: Circle overlapping

distribution, see [14]):

p = 2 rn (1− r
n );

~wj = ~x;
repeat

for k = 1 to n do
if Random(n) < p then invert bit wjk

until d(~wj , ~x) ≤ r

(16)

but the full overlapping problem comes back, because the algorithm can only
work with one pattern at once.

Another Address Initialization Some another methods can be used for
SDM location address initialization, such as self-organizing techniques [9] or
genetic algorithms [1]. This methods are not discussed there.

4.2.2 SDM Efficiency Measuring

This section presents an experiment with artificial pattern set. The experiment
should confirm validity of hypotheses introduced in section 4.1.

A pattern set {t0 . . . tT−1} was generated by the algorithm below:

for i = 0 to T − 1 do

for k = 1 to N do tik =
{

1 if Random(1) > q
0 otherwise

(17)

where q was so called q-Factor. If q = 1
2 , the patterns are uniformly dis-

tributed through the space {0, 1}n, mean distance dmean = n
2 , the vectors are

orthogonal. When q increases to 1, the mean distance decreases to 0. Figure 8
shows the statistics of pattern sets in dependence on q-Factor: mean pattern
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distance, standard distance deviation and the greatest radius solving equation
(10) — hypothesis 2. The radius (labeled H2) was used for some of tested
SDMs.
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Fig. 8: Statistics of pattern sets

Each of used SDMs had address (and data) width n = 100 bits, location
count L = 10, 000. Four SDMs were used in the experiment:

i. Basic Kanerva’s SDM with fixed radius r = 38 bits. The radius value
was calculated solving equation (5) for n = 100 bits.

ii. Basic Kanerva’s SDM with radius r = H2 (depends on used pattern set,
see chart at figure 8)

iii. SDM using data driven method of initialization (see section 4.2.1, algo-
rithm 12). Radius r = H2.

iv. SDM using selected uniform distribution in initialization (algorithm 15).
Radius r = H2.

The experiment was composed of a global reading error measuring for all given
values of q-Factor. The measuring was done in the following steps:
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1. A pattern set was generated for a given q — algorithm 17. The mean
pattern distance (7), the standard distance deviation (8) and radius H2
(10) were also computed.

2. SDMs were adjusted and re-initialized according to the pattern set.

3. All patterns are written to SDMs.

4. All patterns are read from SDMs. The global error is computed for each
SDM as a sum of Hamming distances between written and read vectors.

5. For each SDM, the mean global errors are computed from the global
errors. Then, the mean errors should be normalized in dependence of
pattern set property. Dividing by the mean pattern distance is used
here.

6. Normalized mean errors are written to a log file.
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Fig. 9: Results of SDM efficiency measuring
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A chart at figure 9 shows results of the experiment. SDM efficiency can
be considered as inverse normalized mean error, e.g. eff = 1 − err, but it is
more convenient to use error directly. I have some comments to the chart:

• Basic Kanerva’s SDM works well for q from 0.5 to 0.64 (with constant
radius r = 38 bits).

• All SDMs, except the DDD modification, shows approximately equal
efficiency for the radius 38 bits (q ≈ 0.68). The second and the fourth
SDM shows better efficiency than the first (basic Kanerva’s) SDM when
q > 0.68.

• The significant error accumulation of the second SDM for q > 0.75 is
induced by deficiency of address locations. If radius is less or equal to
24 bits, no location is selected during writing and reading.

• Similarly, error accumulation of the last SDM for q > 0.8 is induced
by deficiency of address locations. If radius is less or equal to 27 bits,
the SUD location generation algorithm (15) is highly time-consuming,
so the required number of locations can not be generated.

• Basic Kanerva’s SDM shows an interesting effect for q > 0.72: normal-
ized error decreases. It can be caused by the generalization ability of
SDM — generalized response is better than no response.

• The third SDM (DDD modification) does not get desirable results be-
cause of overlapping problem (see figure 7, section 4.2.1, page 18). It
should use a less radius than H2 for better efficiency. In spite of this,
the DDD modification shows the best efficiency for q > 0.86.

4.2.3 SDM Working with Vectors of Reals

We need to use SDM with real numbers in the real applications. One possible
solution is a data transforming. Another solution is a modification of SDM
which can work with vectors of real numbers directly. It is clear that some
SDM mechanisms must be slightly changed. I propose following modifications:

• Location addresses are represented by vectors of reals now. Initialization
algorithm should distribute them randomly through a hypercube, e.g.
〈−1, 1〉n. This method can be combined with self-organizing techniques.
Methods described in section 4.2.1 can be also adapted.
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• Hamming distance should be replaced by another metrics, e.g. Euclidean
distance.

• Selecting mechanism may be changed. We can add an activation func-
tion A(d) : 〈0,∞) → 〈0, 1〉 to the SDM model. Graphs in figure 10
show some of possible activation functions: a) represents the standard
Kanerva’s activation, b) is the linear fall, c) is a nonlinear fall.
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Fig. 10: Some of possible activation functions

• Integer counters should be replaced by real counters. Writing algorithm
should distribute data through locations according to activation func-
tion.

• Reading algorithm should use the same activation function as the writ-
ing algorithm and should compute a weighted average of data from the
activated locations.

A possible modification of SDM which implements suggestions above (called
Self-Organized SDM) was adapted from Rao [26]. Detailed description and
results from prediction applications were published in [Gre9] and [Gre10]. The
results showed that a Self-Organized SDM provides an efficient platform for
storing and retrieving sequences.

4.3 Construction of Hierarchical Nets

Visual pattern recognition, such as reading characters or distinguishing shapes,
can easily be done by human beings, but it is very difficult for a machine. We
believe that the best strategy is to learn from the brain itself. The brain seems
to have a hierarchical structure with huge parallelism. Simple features are first
extracted from a stimulus pattern, and then integrated into more complicated
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ones. This section discusses the possibility of constructing hierarchical nets
using SDM.

4.3.1 Autoassociative Loop

An SDM may be used as an autoassociative memory. One of simple construc-
tion composed of the autoassociative memory is the autoassociative loop. The
initial pattern is loaded into the input of the autoassociative SDM through
the first input of the multiplexer. The associated pattern is produced on the
output of this memory, but it may not be very precise. The output value
is therefore loaded to the input again and the loop can continue while some
changes in output are detected. Thus, the autoassociative SDM loop produce
something like “fall to an attractor”. The autoassociative loop was described
and tested in an image processsing application [Gre5].

4.3.2 Heteroassociative Loop (Coupled SDMs)

If we insert an heteroassociative SDM into autoassociative loop, we get a
very interesting combination of two SDMs — heteroassociative loop (coupled
SDMs). It can work in this way: the initial pattern is loaded into the input
of the heteroassociative SDM through the first input of the multiplexor. The
associated pattern is produced on the output of this memory, but it may not
be very precise. The output value of the heteroassociative SDM is therefore
loaded to the input of the autoassociative SDM and the precise output pattern
is produced on this SDM output now. Obtained output value is passed through
the second input of the multiplexor to the input of the heteroassociative SDM
as a new input pattern, and so on. Thus, the coupled SDMs produce something
as “thinking”. Note that order of auto and hetero associative SDMs can be
reversed. In this case, the input is corrected by the autoassociative SDM, and
then the heteroassociative SDM makes a “step”. The heteroassociative loop
was described and tested in the “Bonmot” application [Gre2].

4.3.3 Shifted SDM

Classical Kanerva’s SDM is tolerant to a random noise in the address. It is a
good property, when we use the SDM for the visual pattern recognition. But,
we also need a tolerance to image shift and shape warping. Simple SDM does
not provide this additional properties. So, we can try to design a hierarchical
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net which provides tolerance to the shift and warping. Figure 11 shows a
possible suggestion.

SDM 
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...
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Threshold
Read

Fig. 11: Hierarchical SDM for visual pattern recognition

A layer of autoassociative SDMs is connected to a black-and-white im-
age. Each of the SDMs scans a square part of the image. Outputs are given
by extended reading (without thresholding) and summed in a square array
of counters. Then, the array of counters is thresholded to two-level image
and passed to the input of single autoassociative SDM which corrects result.
Output from the autoassociative SDM is passed to SDM classifier which de-
termines class of the object.

The layer of autoassociative memories consists of identical SDMs. It can be
implemented as a sequential shifting of single SDM around the image. It can
alse be very easy parallelized (it is a typical single-instruction-multiple-data
problem).

The hierarchical net (shifted SDM) was tested in a simple digit recognition
application [Gre12].

5 Conclusions

My work was concentrated to the Sparse Distributed Memory as a kind of
artificial neural net and associative memory. The SDM captures some basic
properties of human long-term memory. Although human memory is much
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more complicated than SDM model, it is essential to understand simple models
of the right kind before we can home to develop more comprehensive models
and to understand the full phenomenon of memory. The SDM model is offered
in that spirit.

The first aim of my work was to analyze SDM efficiency in dependence
on the pattern data properties. I have studied some statistical properties of
pattern data and I have developed two hypotheses (section 4.1) which can be
useful for algorithmic SDM adjusting. The hypotheses limits the radius value,
the most important SDM parameter. Validity of the hypothesis was shown by
efficiency measuring in section 4.2.2 and by a digit recognition application in
[Gre11].

The second aim of my work was directed to an extension of SDM. Original
SDM model proposed by Kanerva has several weaknesses: it assumes a uni-
form distribution for the input address vectors, it uses a single fixed threshold
(radius) for activating address locations, both the address and data vectors
are required to be binary. An extension of original SDM should remove some
of weaknesses. In the section 4.2.1 I have analyzed and extend an SDM mod-
ification which uses a new method of the location address initialization. The
modification was used in many experiments. In the section 4.2.3 I have sup-
posed an SDM modification which can serve vectors of reals in the input and
output. Implementation details and results of prediction experiments were
published in [Gre9] and [Gre10].

The last aim of my work was the construction of a hierarchical network
consisting of SDMs. The brain seems to have a hierarchical structure with huge
parallelism. Simple features are first extracted from a stimulus pattern, and
then integrated into more complicated ones. Many of complex artificial neural
systems are inspired by this strategy. In the section 4.3.3 I have proposed a
hierarchical SDM motivated by Fukushima’s Neocognitron. The utility of the
hierarchical SDM was shown in the digit recognition experiment described in
[Gre12].
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[40] Zbořil, F.: Neural Associative Memories, In: Proceedings of the MO-
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ogy Zlin, Zĺın, 1999, p. 17–22, ISBN 80-214-1424-3
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[Gre12] Grebeńıček, F.: Constructing Hierarchical Neural Nets Using Sparse
Distributed Memory, In: ASIS 2000 Proceedings, MARQ Ostrava,
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Abstrakt

Práce pojednává o druhu neuronové asociativńı paměti nazývané Sparse Dis-
tributed Memory (SDM). Teorii SDM rozvinul Pentti Kanerva ve své mono-
grafii [14] vydané v roce 1988. Kanervovu SDM můžeme považovat za zobec-
něnou pamět’ RAM. Stejně jako u konvenčńı RAM, existuje u SDM pole tzv.
nosič̊u, z nichž každý je identifikován svou adresou a uchovává asociovaná
data. Zat́ımco konvenčńı RAM běžně pracuje s vektory o š́ı̌rce maximálně 32
bit̊u, SDM umožňuje pracovat vektory širokými stovky až tiśıce bit̊u. Základńı
myšlenkou Kanervova modelu je využ́ıt jenom podmnožinu adresového pros-
toru. Při čteńı z paměti nemuśı vstupńı adresa přesně odpov́ıdat adrese, na
které jsou uložena data – k aktivaci nosiče stač́ı, když vstupńı adresa lež́ı
v bĺızkém okoĺı (definovaném globálńım poloměrem) adresy nosiče. Tento
mechanismus odpov́ıdá neuronovým śıt́ım s radiálńı bázovou funkćı – SDM lze
popsat jako tř́ıvrstvou dopřednou neuronovou śıt’. Výhodou SDM je rychlé
učeńı, nav́ıc dovedeme interpretovat váhy mezi neurony. Studium SDM tedy
může přispět i k pochopeńı jiných typ̊u śıt́ı.

Práce měla tři ćıle:

1. Analyzovat chováńı SDM v závislosti na statistických vlastnostech za-
pisovaných dat. SDM pracuje nejlépe s daty náhodnými - s adresami
rovnoměrně rozloženými po celém adresovém prostoru. Za těchto před-
poklad̊u lze nalézt vztah pro optimálńı velikost poloměru, který záviśı
pouze na š́ı̌rce adresy. Pokud ale data nejsou náhodná, je třeba hledat
jiný zp̊usob nastaveńı poloměru. Jeden nový zp̊usob je v práci navržen
(kapitola 4.1) a pomoćı jednoduchých experiment̊u bylo ověřeno, že jej
lze použ́ıt v praktických aplikaćıch.

2. Rozš́ıřeńı SDM. Základńı SDM má několik nevýhod: (1) Algoritmus ini-
cializace nás nut́ı generovat rovnoměrně podmnožinu z celého adresového
prostoru, i když při práci s konkrétńımi daty využijeme jenom malou
část. Z toho vycháźı myšlenka na modifikaci algoritmu generováńı. Nové
algoritmy jsou popsány a analyzovány v kapitole 4.2.1. (2) Původńı
SDM pracuje pouze s vektory bit̊u. Rozš́ı̌reńı na vektory reálných č́ısel
lze realizovat podle návrhu v kapitole 4.2.3.

3. Využit́ı SDM při konstrukci složitěǰśıch śıt́ı. Hierarchická śıt’, navržená
v kapitole 4.3.3, je inspirována Neocognitronem [4, 5] a prokázala schop-
nost rozpoznávat deformované č́ıslice.
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