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ABSTRACT

Robot capability of hearing sounds, in particular, a mixture of sounds,
by its own microphones, that is, robot audition, is important in im-
proving human robot interaction. This paper presents the robot au-
dition open-source software, called “HARK” (HRI-JP Audition for
Robots with Kyoto University), which consists of primitive functions
in computational auditory scene analysis; sound source localization,
separation, and recognition of separated sounds. Since separated
sounds suffer from spectral distortion due to separation, the HARK
generates a time-spectral map of reliability, called “missing feature
mask”, for features of separated sounds. Then separated sounds are
recognized by the Missing-Feature Theory (MFT) based ASR with
missing feature masks. The HARK is implemented on the middle-
ware called “FlowDesigner” to share intermediate audio data, which
enables near real-time processing.

Index Terms— robot audition, computational auditory scene
analysis, Missing feature theory, simultaneous speakers

1. INTRODUCTION

Robot species have exploded at the time of AICHI EXPO 2005 like
the Cambrian explosion of species starting about 542 million years
ago. If the next step of evolution is species selection, what will
make some species proliferate for symbiosis between human and
robots? In human communication, speech signals and sounds are
critical. Therefore, we believe that auditory capability is critical for
such species selection for partner robots.

Robot audition is expected to facilitate capabilities similar to
those of human. For example, people can attend one conversation
and switch to another even in a noisy environment. This capabil-
ity is known as the cocktail party effect. For this purpose, a robot
should separate a speech stream from a mixture of sounds. It may
realize the hearing capability of “Prince Shotoku” that, according to
the Japanese legend, could listen to 10 people’s petitions at once.

Since a robot produces various sounds and should be able to
“understand” many kinds of sounds, auditory scene analysis is the
process of simulating useful intelligent behavior, and even required
when objects are invisible. While traditionally, auditory research
has been focusing on human speech understanding, understanding
auditory scenes in general is receiving increasing attention. Compu-
tational Auditory Scene Analysis (CASA) studies a general frame-
work of sound processing and understanding [1]. Its goal is to un-
derstand an arbitrary sound mixture including speech, non-speech
signals, and music in various acoustic environments.

The main research topics of CASA are sound source localization
(SSL), sound stream separation (SSS), and its recognition includ-
ing automatic speech recognition (ASR). In addition, CASA focuses
on a general model and mechanism of separating various kinds of
sounds, including voiced speech, music, and environmental sounds,
from a mixture of sounds [1].
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Based on primitive functions of CASA, A robot audition system
usually integrates various kinds of CASA modules. The goal of de-
sign and implementation of the robot audition system is summarized
as follows:

1. Minimum prior information for each module,
2. Portability for various robot configurations, and
3. Real-time processing by system integration.

In other words, the technical issues in robot audition systems
focus on system-integration technology rather than individual tech-
nologies. This paper describes how various modules are integrated
into the whole robot audition system and presents a portable robot
audition open-source software called “HARK” (HRI-JP Audition for
Robots with Kyoto University). It also demonstrates the feasibility
of the resulting robot audition system.

2. COMPUTATIONAL AUDITORY SCENE ANALYSIS

This section describes CASA modules that the HARK uses.

2.1. Sound Source Localization (SSL)

We use two SSLs, a steered beamformer with geometrical refinement
method [2] and a frequency-domain adaptive beamformer, MUSIC
(MUItiple Slgnal Classification), with eight microphones. The for-
mer decomposes the whole 3D space into smaller subspaces grad-
ually to obtain a peak power. MUSIC outperforms steered beam-
former for near-field sound source localization [3], because a sharp
local peak corresponding to a sound source direction is obtained
from the MUSIC spectrum. Our implementation uses impulse re-
sponses measured every 5 degrees to calculate a correlation matrix.

The selection of SSL depends on the configuration of micro-
phone. Since most SSS requires the direction of sound source, SSS
plays an important role in improving the performance of SSS. We use
MUSIC for a configuration of microphones embedded in the head of
a robot. We use a steered beamformer for a configuration of micro-
phones embedded in the body near arms, because robot’s arms affect
impulse responses.

Microphones
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Fig. 5. Scheme of Multi-Channel Post-Filter

2.2. Sound Source Separation (SSS)

SSS consists of GSS and the multi-channel post-filter [4]. The orig-
inal GSS proposed by [5] is modified in order to speed up adapta-
tion by using a stochastic gradient and shorter time frame estima-
tion. The multi-channel post-filter is used to enhance the output of
GSS (Figure 5) based on the optimal estimator originally proposed
by Ephraim [6]. This original method is extended to support multi-
channel signals so that they can estimate both stationary and non-
stationary noise. These estimations are used to estimate the reliabil-
ity of acoustic features of separated sounds.

In spite of these simplifications, our implementation of SSS at-
tained almost the same performance as the Valin’s original imple-
mentation. SSS improved 10.3 dB in signal-to-noise ratio on average
for separation of three simultaneous speech signals [4].

Usually multi-channel sound source separation techniques such
as GSS cause spectral distortion. Such a distortion affects acoustic
feature extraction for ASR, especially the normalization processes
of an acoustic feature vector, because the distortion causes fragmen-
tation of the target speech in the time-spectral space, and produces a
lot of sound fragments. To reduce the influence of spectral distortion
for ASR, we employed two techniques; a multi-channel post-filter
and white noise addition.

2.3. Reliability Estimation of Separated Sounds
2.3.1. Acoustic features

To estimate reliability of acoustic features, we exploit the fact that
noises and distortions are usually concentrated in some areas in the
time-spectral space. As an acoustic feature, most conventional ASR
systems use Mel-Frequency Cepstral Coefficient (MFCC) but noises
and distortions are spread to all coefficients in MFCC. Thus, we use
Mel-Scale Log Spectrum (MSLS) as an acoustic feature.

MSLS is obtained by applying inverse discrete cosine transfor-
mation to MFCCs. Then three normalization processes are applied
to obtain noise-robust acoustic features; mean power normalization,
spectrum peak emphasis and spectrum mean normalization. The de-
tails are described in [7]. Each of three normalization processes cor-
responds to one of the three normalization performed against MFCC;
CO normalization, liftering, and Cepstrum mean normalization.

2.3.2. Missing Feature Mask (MFM)

Based on the reliability estimation of separated sounds, a time-spectral
map of reliability, called “Missing Feature Map” (MFM), is created.
A MFM is created by comparing the input and the output of the
multi-channel post-filter as shown in Figure fig:Post-Filter. Most
studies on MFT have focused on a single channel input, but it is
difficult to obtain enough information to estimate the reliability of
acoustic features. We adopted a multi-channel approach using an
8-ch microphone array to alleviate this difficulty.
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For each Mel-frequency band, the feature is considered reliable
if the ratio of the output energy over the input energy is greater than
threshold 7'. The reason for this choice is based on the assumption
that the more noise present in a certain frequency band, the lower the
post-filter gain will be for that band. The continuous missing feature
mask my (¢) is thus computed as follows:

| ST + Nl
(e O

where S (i) and Sg“* (i) are the post-filter input and output energy
for frame & at Mel-frequency band ¢, and Ni(7) is the background
noise estimate for that band. The main reason for including the noise
estimate N (7) in the numerator of Eq. (1) is that it ensures that the
missing feature mask equals 1 when no speech source is present.
Finally, we derive a hard mask My (3) as follows:

N1 i me(i) > T,
Mi(i) = { 0 otherwise

where 7' is an appropriate threshold. This reliability can be either a
continuous value from 0 to 1 (called “soft mask”), or a binary value
of 0 or 1 (called “hard mask”). In this paper, hard masks were used.

(¢))

2.3.3. White noise addition

An additional method of recovering distortion is addition of a white
noise to separated speech signals. This idea is motivated by the psy-
chological evidence that noise may help human perception, which is
known as auditory induction. This evidence is also useful for ASR,
because an additive noise plays a role to blur the distortions, that
is, to avoid the fragmentation. Actually, the addition of a colored
noise has been reported to be effective for noise-robust ASR [8].
They added office background noise after spectral subtraction, and
showed the feasibility of this technique in noisy speech recognition.

2.4. Missing Feature Theory based ASR (MFT-ASR)

Missing Feature Theory (MFT) approaches use MFM of reliability
to improve ASR. We adopted a classifier-modification method with
marginalization, because other approaches such as cluster-based re-
construction of feature-vector imputation is not robust against mel-
frequency based features [9]. Unreliable acoustic features caused by
errors in preprocessing are masked using MFMs, and only reliable
ones are used for a likelihood calculation in the ASR decoder. We
use “Multi-band Julis” [7] as a MFT-ASR. The estimation process
of output probability in the decoder is modified in MFT-ASR.

Let M (i) be a MEM vector that represents the reliability of the
i-th acoustic feature, z(z) be an acoustic feature vector, N be the size
of the acoustic feature vector, and S; be the j-th state. Let P(-) be a
probability operator The output probability b; (x) is given below:

L N
bj(z) =) P(lS;) exp {Z M (i) log f(z(2)|l, S]-)} ;@

In accordance with the addition of white noises, we create a
white-noise-added (WNA) acoustic model by training with both
clean speech and white-noise-added speech. This WNA acoustic
model is used as a single acoustic model for HARK’s ASR, which
reduces prior information for ASR.

3. HARK: PORTABLE ROBOT AUDITION SOFTWARE

The HARK robot audition system integrates CASA modules de-
scribed in the previous section in two ways; by Missing Feature
Theory in the signal processing level and by data-flow oriented mid-
dleware, “FlowDesigner” [10] in the implementation level. Conven-
tional robot audition systems considered SSS as preprocessing for
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Fig. 6. Overview of the real-time robot audition system, HARK

ASR [11, 12]. They focused on the improvement of SNR and real-
time processing without such integration.

The HARK consists of six modules as shown in Figure 6: Sound
Source Localization (SSL), Sound Source Separation (SSS),
Parameter Selection, Acoustic Feature Extraction, Automatic
Missing Feature Mask Generation, and Missing Feature The-
ory based Automatic Speech Recognition (MFT-ASR).

The HARK allows various kinds of microphone configuration.
Figure 1, 2 and 3 show an 8-ch microphone array embedded in Hu-
manoid SIG2, Robovie R2, and Honda ASIMO, respectively. Fig-
ure 4 shows a 7.1-ch surround microphone, H2Pro, of Holosound
Inc. The positions of the microphones are bilaterally symmetric for
all of them. This is because the longer the distance between micro-
phones is, the better the performance of GSS is.

The five modules except MFT-ASR are implemented as compo-
nent blocks of FlowDesigner. The reason why MFT-ASR is treated
separately is twofold; First, it needs a heavy CPU load in recognizing
speech. Second, it uses a light-weighted data format in communica-
tion with the other modules. It uses acoustic features and MFM for
communication with the other modules, while the other modules use
raw signal data for their communication. This kind of communica-
tion is done by a function call with a pointer in FlowDesigner.

4. EVALUATION OF HARK

We evaluated the robot audition system in terms of the following
three points; (1) recognition performance of simultaneous speech,
(2) improvement of ASR by localization, and (3) processing speed.

4.1. Recognition of Simultaneous Speech Signals

To evaluate how MFT and white noise addition improve the perfor-
mance of automatic speech recognition, we conducted isolated word
recognition of three simultaneous speech. In this experiment, Hu-
manoid SIG2 with an 8-ch microphone array was used in a 4m X
5 m room. Its reverberation time (R7%0) was 0.3-0.4 seconds.

Three simultaneous speech for test data were recorded with the
8-ch microphone array of SIG2 by using three loudspeakers (Gen-
elec 1029A). The distance between each loudspeaker and the center
of the robot was 2m. One loudspeaker was fixed to the front (cen-
ter) direction of the robot. The locations of left and right loudspeak-
ers from the center loudspeaker varied from 10 to £90 degrees at
the intervals of 10 degrees. ATR phonemically-balanced word-sets
were used as a speech dataset. A female (f101), a male (m101) and
another male (m102) speech sources were used for the left, center
and right loudspeakers, respectively. Three words for simultaneous
speech were selected at random. In this recording, the power of robot
was turned off.

The recognition performance of three simultaneous speakers is
evaluated with the following six conditions:

(1) The raw input captured by the left-front microphone was rec-
ognized with the clean acoustic model.

Recognition result
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(2) The sounds separated by SSS were recognized with the clean
acoustic model.

(3) The sounds separated by SSS were recognized with MFM
generated automatically and the clean acoustic model.

(4) The sounds separated by SSS were recognized with automat-
ically generated MFM and the WNA acoustic model.

(5) The sounds separated by SSS were recognized with automat-
ically generated MFM and the MCT acoustic model.

(6) The sounds separated by SSS were recognized with a pri-
ori MFM generated manually and the clean acoustic model .
Since this mask is ideal, its result may indicate the potential
upper limit of HARK.

The clean acoustic model was trained with 10 male and 12 female
ATR phonemically-balanced word-sets excluding the three word-
sets (f101, m101, and m102) which were used for the recording.
Thus, it was a speaker-open and word-closed acoustic model. The
MCT acoustic model was trained with the same ATR word-sets
and separated speech datasets. The latter sets were generated by
separating three-word combinations of f102-m103-m104 and f102-
m105-m106, which were recorded in the same way as the test data.
The WNA acoustic model was trained with the same ATR word-
sets, and the clean speech to which white noise was added by 40 dB
of peak power. Each of these acoustic models was trained as 3-state
and 4-mixture triphone HMM, because 4-mixture HMM had the best
performance among 1, 2, 4, 8, and 16-mixture HMMs.

The results were summarized in Figure 8. MFT-ASR with Au-
tomatic MFM Generation outperformed the normal ASR. The MCT
acoustic model was the best for MFT-ASR, but the WNA acoustic
model performed almost the same. Since the WNA acoustic model
does not require prior training, it is the most appropriate acoustic
model for robot audition. The performance at the interval of 10-
degrees was poor in particular for the center speaker, because any
current sound source separation methods fails in separating such
close three speakers. The fact that A priori mask showed quite a
high performance may suggest some possibilities to improve the al-
gorithms of MFM generation.

4.2. Evaluation of Sound Source Localization Effects

This section evaluates how the quality of sound source localization
methods including manually given localization, steered Beamformer
and MUSIC affects the performance of ASR. SIG2 used steered BF.
Since the performance MUSIC depends on the number of micro-
phones on the same plane, we used Honda ASIMO shown in Fig-
ure 3, which was installed in a 7m X 4 m room. Its three walls were
covered with sound absorbing materials, while the other wall was
made of glass which makes strong echoes. The reverberation time
(RT%0) of the room is about 0.2 seconds. We used the condition (4),
and used three methods of sound source localization with clean and
WNA acoustic models.

The results of word correct rates were summarized in Table 1.
With the clean acoustic model, MUSIC outperformed steered BF,
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Fig. 8. Word correct rates of three simultaneous speakers with our system

Table 1. Word correct rate of the center speaker (in %)
Acoustic model White noise addition Clean model
direction \ Interval || 30° | 60° | 90° || 30° | 60° | 90°

manually given 90.0 | 88.5 | 91.0 || 85.0 | 845 | 87.0
steered BF 823 | 90.5 | 89.0 || 655 | 70.6 | 724
MUSIC 86.0 | 83.3 | 86.7 || 57.0 | 74.0 | 64.5

while with the WNA acoustic mode, both the performances were
comparable. In case of given localization, improvement by white
noise addition training was small. On the other hand, training with
white noise addition improved word correct rates greatly for both
steered beamformer and MUSIC. We think that the ambiguity in
sound source localization caused voice activity detection to be more
ambiguous, which degraded recognition performance with the clean
acoustic model. On the other hand, white noise addition to separated
sounds with the WNA acoustic model reduced such degradation.

4.3. Processing Speed

The processing time when HARK separated and recognized speech
signals of 800 seconds on a Pentium 4 2.4 GHz CPU is 499 second
consisting of 369 sec for FlowDesigner and 130 sec for MFT-ASR.
The output delay is 0.446 second. As a whole, our robot audition
system ran in real time.

5. LISTEN TO THREE SIMULTANEOUS SPEAKERS

We presents two applications of the HARK for recognizing actual
human speakers. The HARK used the WNA acoustic model trained
with Japanese Newspaper Article Sentences (JNAS) corpus of 306
speakers. Thus, these applications were speaker- and word-open.

One application is a referee for a rock-paper-scissors sound game
that includes a recognition task of two or three simultaneous utter-
ances. ASIMO was located at the center of the room, and three
speakers stood 1.5 m away from ASIMO at 30 degree intervals (Fig-
ure 7). A speech dialog system specialized for this task was con-
nected with the HARK. ASIMO judged who won the game by us-
ing only speech information, i.e., without using visual information.
Because they said rock, paper, or scissors simultaneously in an envi-
ronment where robot noises exist, the SNR input sound was less than
-3dB. All of the three utterances had to be recognized successfully
to complete the task. The completing rate of referee task is around
60% and 80% in the cases of three and two speakers, respectively.

Another application is that Robovie accepts simultaneous meal
orders that three actual human speakers place. The HARK recog-
nizes each meal order and confirms their orders one by one and tells
the total amount of the orders. The FlowDesigner implementation
reduces the response time from 8.0 sec to 1.9 sec. If the same input
is given by an audio file, the response time is about 0.4 sec.
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6. CONCLUSION

This paper described the HARK portable real-time robot audition
system. The key technology is MFT-based integration of sound source
separation and MFT-based ASR by automatically generating missing
feature masks. We showed the effectiveness of HARK through sev-
eral experiments. Since the HARK is open source free software, we
hope that it would contribute human robot interaction and “hands-
free” ASR. Several detailed experiments remains; The robustness
against speech contaminated non-speech directional noise sources
like music, and reverberation should be evaluated.
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