Problem 1

Compute

$$
\int_{\Gamma} \frac{1}{z^{2}+1} d z
$$

where $\Gamma=\{z| | z \mid=2\}$.

Solution

Function $f(z)=\frac{1}{z^{2}+1}$ has two isolated singular points $z_{1}=i ; z_{2}=-i$ that are simple poles. These points are inside the circle $|z|=2$.

Let's find residues of the function f at points z_{1}, z_{2}.

$$
\begin{gathered}
\operatorname{res}_{z=i} f(z)=\lim _{z \rightarrow i}(z-i) f(z)=\lim _{z \rightarrow i} \frac{1}{z+i}=\frac{1}{2 i} \\
\operatorname{res}_{z=-i} f(z)=\lim _{z \rightarrow-i}(z+i) f(z)=\lim _{z \rightarrow-i} \frac{1}{z-i}=-\frac{1}{2 i}
\end{gathered}
$$

Using the formula

$$
\int_{\Gamma} f(z) d z=2 \pi i\left(\operatorname{res}_{z=i} f(z)+\operatorname{res}_{z=-i} f(z)\right)=2 \pi i\left(\frac{1}{2 i}-\frac{1}{2 i}\right)=0
$$

we get that integral equals to 0 .

Problem 2

Compute

$$
\int_{\Gamma} z e^{\frac{1}{z-1}} d z
$$

where Γ is the boundary of the region $|z-1|<2$.

Solution

Function $f(z)=z e^{\frac{1}{z-1}}$ has one isolated singular point $z=1$ inside the circle $|z-1|=2$. Laurent series for the function $f(z)=z e^{\frac{1}{z-1}}$ about a point $z=1$ is given by

$$
f(z)=z+1+\sum_{n=1}^{\infty} \frac{n+2}{(n+1)!(z-1)^{n}},|z-1|>0
$$

Residual of function f at point $z=1$ equals to the coefficient c_{-1} at $\frac{1}{z-1}$ of the Laurent series of the function f.

Thus $c_{-1}=\operatorname{res}_{z=1} z e^{\frac{1}{z-1}}=\frac{3}{2}$. So

$$
\int_{\Gamma} z e^{\frac{1}{z-1}} d z=2 \pi i \cdot \operatorname{res}_{z=1} f(z)=2 \pi i \cdot \frac{3}{2}=3 \pi i
$$

