
Topics in Graph Theory — Lecture Notes I (Tuesday)

1. Basics: Graphs and Spanning Trees

Notation: G = (V,E) means that G is a graph with vertices V and edges E. Each edge e has either one
or two vertices as endpoints; an edge with only one endpoint (equivalently, two equal endpoints) is called a
loop. Two edges e, e′ are allowed to have the same pairs of endpoints; such edges are called parallel. Unless
otherwise specified, all graphs are undirected—if the endpoints of e are v and w, we will write e = vw = wv.
If v and w are adjacent (that is, they share at least one edge), then we’ll write v ∼ w.

I’ll assume that everyone has seen graphs before, and is either familiar with, or can easily figure out, what
such elementary concepts as “vertex”, “edge”, “connected”, etc. mean. However, if you don’t know what
something means, you should ask immediately—I promise I won’t bite, and chances are that you are not the
only one!

Unless otherwise specified, all graphs are undirected—that is, each edge is an unordered pair of vertices.
Parallel edges are OK, but we may as well assume that our graphs have no loops; you’ll see why very soon.

Definition: A spanning tree of a connected graph G is a connected, acyclic subgraph of G that spans
every vertex. (Note that “acyclic” implies that a spanning tree has no loops; this is why we can assume that
G is a loopless graph.)

For example, the complete graph K5 on 5 vertices, which looks like this. . .

u1
u2 u 3

u
4

u
5

has exactly 125 spanning trees (as we’ll see soon), three of which are the following:

u1
u2 u 3

u
4

u
5

u1
u2 u 3

u
4

u
5

u1
u2 u 3

u
4

u
5

Let’s introduce the notation

T (G) := {spanning trees of G} ,
τ(G) := |T (G)|.

1

Note that every spanning tree of K5 has four edges. More generally, every spanning tree of G = (V,E) has
precisely |V | − 1 edges. This gives us a stupid upper bound for τ(G), namely

τ(G) ≤
(
|E|
|V | − 1

)
.

For example, τ(K5) ≤
(
10
4

)
= 210. But we can do better. As it turns out, there are two nice ways to calculate

τ(G) exactly.

2. Calculating τ(G) by Deletion-Contraction

Let G = (V,E) be a connected graph and e = vw ∈ E. The deletion G− e is just the graph (V,E − {e}).
The contraction G/e is obtained from G− e by identifying v and w (or “fusing” the two vertices together).
For contraction to make sense, we usually require that e not be a loop. For example, if G = K5 and e = 23,
then the deletion and contraction are as follows:

u1
u2 u 3

u
4

u
5

G− e

u1
u23

u
4

u
5

G/e

Proposition: Let e ∈ E. There are bijections

{T ∈ T (G) | e 6∈ T} ←→ T (G− e)
and

{T ∈ T (G) | e ∈ T} ←→ T (G/e).

That is, the spanning trees of G that don’t contain e are in bijection with the spanning trees of the deletion
G−e, and the spanning trees of G that do contain e are in bijection with the spanning trees of the contraction
G/e.

It is pretty easy to check these bijections; I’ll leave it as an exercise. Having done so, we have proven that

τ(G) = τ(G− e) + τ(G/e)

for any graph G and edge e. This gives an obvious algorithm to compute τ(G) for any graph; unfortunately,
it is computationally inefficient to do so—the runtime of the algorithm is O(2|E(G)|). However, this type of
deletion-contraction recurrence is theoretically very important; make a mental note of it!

3. The Kirchhoff Matrix-Tree Theorem

A less illuminating, but much more efficient way to calculate τ(G) uses linear algebra. Assume for the
moment that G has no loops—the loops are precisely the edges that belong to no spanning tree of G, so
deleting all the loops does not change the value of τ(G). Also, label the vertices of V = V (G) as {v1, . . . , vn}.

Define the valence of a vertex v ∈ V (G), denoted val(v) or valG(v), to be the number of edges having v as
an endpoint.1 Also, for two vertices vi 6= vj ∈ V (G), let us write εij for the number of edges joining i and j.
So εij ∈ N; we are not requiring that G be a simple graph, so εij ≥ 2 is possible.

We now define the Laplacian matrix of G to be the n× n matrix L(G) given by

[L(G)]ij =

{
valG(vi) if i = j,

−εij if i 6= j.

Note that εij = εji, so L(G) is a symmetric matrix. For example, if G is the 4-cycle with two adjacent edges
doubled, that is, u1 u 2

u3 u 4

then the Laplacian matrix is

L(G) =

val(1) −ε12 −ε13 −ε14
−ε21 val(2) −ε23 −ε24
−ε31 −ε32 val(3) −ε34
−ε41 −ε42 −ε43 val(4)

 =

4 −2 −2 0
−2 3 0 −1
−2 0 3 −1

0 −1 −1 2

 .
Notice that each row and column of L(G) sums to zero, so it is certainly true that detL(G) = 0. However,
something really neat happens with maximal square submatrixes:

Kirchhoff’s Matrix-Tree Theorem: Let vi ∈ V (G), and let L̂(G) be the matrix obtained from L(G) by
deleting the row and column corresponding to vi. Then

det L̂(G) = τ(G).

Impressive, isn’t it? There are several different ways to prove it; the way that I like the best is by deletion-
contraction (because I can understand it). Of course, you need some linear algebra machinery—See the
exercises.

There’s actually a fancy version of the Matrix-Tree Theorem (at least for simple graphs; I haven’t thought
about how to extend it to arbitrary graphs but it ought to be possible) which we’ll need later.

Souped-Up Matrix-Tree Theorem: Let G be a simple graph with vertices V = {v1, . . . , vn}. Introduce
an indeterminate εij for each edge e = vivj , and define the n×n weighted Laplacian matrix of G, denoted
L(G), by

[L(G)]ij =

∑

vj∼vi εij if i = j,

−εij if i 6= j and i ∼ j,
0 if i 6= j and i 6∼ j.

Choose a vertex vi, and let L̂(G) be the submatrix obtained by deleting the row and column corresponding
to vi. Then

det L̂(G) =
∑

T∈T (G)

 ∏
e=vivj∈T

εij

 .

1 This is usually called “degree”, but I prefer “valence” because “degree” already has far too many meanings in mathematics.
In chemistry, the valence of an atom in a molecule is (essentially) the number of bonds it forms, so it seems an appropriate

term to use here.

That is, the determinant, which is clearly a polynomial in the variables εij , is in fact a sum of monomials
corresponding to the spanning trees of G. Note that setting εij = 1 recovers the original Matrix-Tree
Theorem.

The Souped-Up Matrix-Tree Theorem is particularly useful when we replace the indeterminates εij with
“natural” weights on the edges—for instance, we might set εij = xixj to keep track of vertex valences.

4. Spanning Trees of Kn

Using the Matrix-Tree Theorem, one can prove the following remarkable formula (typically attributed to
Cayley):

(1) τ(Kn) = nn−2.

Using the Souped-Up Matrix-Tree Theorem, one can prove the following more general result. Define the
weight of a spanning tree T ⊂ E(Kn) to be the monomial

wt(T) =
n∏

i=1

x
valT (i)
i .

Then

(2)
∑

T∈T (Kn)

wt(T) = x1x2 · · ·xn(x1 + x2 + · · ·+ xn)n−2.

Note that setting all of the xi’s to 1 recovers (1), which is why this result is more general.

There is a beautiful combinatorial proof of (2) called Prüfer coding. (There are other proof known, but
this is the most popular!) The idea is to define a bijection

P : T (Kn)→ [n]n−2

by iteratively “pruning leaves” from a spanning tree T . Here [n] means {1, 2, . . . , n} (this is very standard
notation in combinatorics), so [n]n−2 denotes the set of (n− 2)-tuples of members of [n].

In general, a leaf of a graph is a vertex of valence 1. A tree with at least two vertices has at least two leaves
(prove this!), so it makes sense to speak of the smallest leaf of a tree (with respect to the labeling of the
vertices of Kn by the elements of [n]). For example, consider the following spanning tree of K8:

u1

u2

u
3 u4

u
5

u6u
7 u

8

u9

aa
aa

a

HH
HH

�
�
��
��

��H
HHH

The leaves are 2,3,4,7,8, so the smallest leaf is 2. To obtain the Prüfer code P (T), we run the following
algorithm:

(1) Let i = 1.
(2) Let x be the smallest leaf of T .
(3) Let vi be the “stem” (that is, the unique neighbor) of x.
(4) Replace T with T − v (that is, delete vertex v and edge vw).
(5) If i = n− 2, then STOP; otherwise, replace i with i+ 1 and go to step 2.

The Prüfer code P (T) is then the sequence (v1, . . . , vn−2) ∈ [n]n−2.

For the tree T shown above, we begin by deleting 2, writing down the stem v1 = 6, and replacing T with
the tree T − 2:

u1u
3 u4

u
5

u6u
7 u

8

u9

aa
aa

a

�
�
��
���

�HHH
H

Now the leaves are 3,4,7,9, so the smallest leaf is 3. We write down the stem v2 = 5 and delete vertex 3,
obtaining the tree

u1

u4

u
5

u6u
7 u

8

u9

aa
aa

a
���

�HHH
H

And so on. Ultimately, we obtain the Prüfer code

P (T) = (6, 5, 1, 9, 5, 6, 6) ∈ [9]7.

That the function P is a bijection is left an exercise to the reader (mwahahaha). It’s not that hard; you
essentially have to figure out how to run the algorithm in reverse.

Now here’s something interesting. For each vertex vi, Compare the valence valT (vi) with the number of
times that vi appears in the Prüfer code P (T):

Vertex 1 2 3 4 5 6 7 8 9
Valence in T 2 1 1 1 3 4 1 1 2

occurrences in P (T) 1 0 0 0 2 3 0 0 1

It certainly looks like

the number of occurrences of vi in P (T) is valT (vi)− 1.

This makes perfect sense—if vi starts life as a leaf, then vi can never be the stem of any other vertex and
hence cannot appear at all in P (T). On the other hand, if vi has more than one neighbor, then it does not
become a leaf until exactly valT (vi)− 1 of the neighbors of vi have been killed off, and each such off-killing
accounts for one instance of vi in P (T).

This observation leads to a purely combinatorial (as opposed to linear-algebraic) proof of the weighted version
(2) of Cayley’s formula:∑

T∈T (Kn)

wt(T) =
∑

P=(v1,...,vn)∈[n]n−2

n∏
i=1

x
1+(number of occurrences of i in P)
i

= x1 · · ·xn
∑

P=(v1,...,vn)∈[n]n−2

n∏
i=1

x
(number of occurrences of i in P)
i

= x1 · · ·xn(x1 + · · ·+ xn)n−2.

5. Spanning Trees of Qn

The n-cube Qn is the graph whose vertices are the bit strings of length n, with two vertices joined by an
edge if and only if they differ in exactly one bit. Thus |V (Qn)| = 2n and |E(Qn)| = n · 2n−1 (check this!)
For instance, the graph Q3 is as follows:

u000

u100 u010 u001

u110 u101 u011

u111

c
c

c
c
c

#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

c
c

c
c
c

c
c

c
c

c

#
#

#
#
#

c
c
c
c
c

A side note: A really cool way to draw the graph Q4 is as follows. First, draw a 7 × 7 chessboard. Put a
dot in the middle square of the top and bottom rows. Now, draw in all the ways to connect the two squares
by a sequence of four knight’s moves. Amazing.

Using the Matrix-Tree Theorem, one can prove the following surprising formula:

(3) τ(Qn) =
∏

S⊂[n]
|S|≥2

2|S| =

n∏
k=2

(2k)(
n
k).

Again, there is a weighted version of this fact, which appears in a paper I coauthored [2]. Define the direction
of an edge e ∈ E(Qn) to be the unique bit in which its endpoints differ; this is a number dir(e) ∈ [n].

Theorem: Introduce indeterminates q1, . . . , qn. For a spanning tree T ∈ T (Qn), define

wt(T) =
∏
e∈T

qdir(e) =

n∏
i=1

qnumber of edges of direction i in T
i .

Then

(4)
∑

T∈T (Qn)

wt(T) = q1 . . . qn
∏

S⊂[n]
|S|≥2

(
2
∑
i∈S

qi

)
=

∑
T∈T (Qn)

wt(T) = 22
n−n−1q1 . . . qn

∏
S⊂[n]
|S|≥2

(∑
i∈S

qi

)
.

The factor q1 . . . qn can be explained pretty easily: as pointed out in class, every T ∈ T (Qn) must use at least
one edge from each of the n possible directions. (For instance, if T ∈ T (Q3) contains no edge in direction 2,
then there is no way to get from 001 to 011 using only edges of T .)

Setting all of the qi’s to 1 specializes (4) to (3). As we shall soon see, even (4) can be strengthened. However,
according to the “Bible of Combinatorics” [3], no bijective proof is known. Your job is to find a proof!

UPDATE: In 2012, Olivier Bernardi found a beautiful combinatorial proof of (4) (among other formulas).
See [1].

References

[1] Olivier Bernardi, On the spanning trees of the hypercube and other products of graphs, Electronic J. Combin. 19, no. 4

(2012), Paper P51. [Link to published version]

[2] Jeremy L. Martin and Victor Reiner, Factorizations of some weighted spanning tree enumerators, J. Comb. Theory Ser.

A 104, no. 2 (2003), pp. 287–300. [Hyperlink to arXiv version]

[3] R.P. Stanley, Enumerative Combinatorics, Volume II. Cambridge Studies in Advanced Mathematics 62. Cambridge Uni-
versity, 1999.

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p51
http://arxiv.org/abs/math/0302213

	References

