
CRYPTANALYSIS OF RSA USING ALGEBRAIC AND

LATTICE METHODS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Glenn Durfee

June 2002

c© Copyright by Glenn Durfee 2002

All Rights Reserved

ii

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Dan Boneh
(Principal Advisor)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

John Mitchell

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Ramarathnam Venkatesan

Approved for the University Committee on Graduate

Studies:

iii

Preface

We study the security of public key cryptosystems. In particular we study the RSA

public key cryptosystem and several variants. We obtain our results using tools from

the theory of integer lattices.

We begin with an introduction to the theory of integer lattices and describe the

main results to be used throughout the rest of the work. We then review the concept

of a public key cryptosystem and in particular the RSA public key cryptosystem.

Next we introduce a novel algorithm for the factorization of class of integers closely

related to those used by RSA and other public key cryptosystems in the literature,

showing that a new class of integers can be efficiently factored. We go on to introduce

new attacks on the RSA public key cryptosystem which use partial knowledge of a

user’s secret key, showing that leaking one quarter of the bits of the secret key is

sufficient to compromise RSA. Next we describe new attacks on the RSA public key

cryptosystem when a short secret exponent is used. Lastly, we describe the three

Sun-Yang-Laih key generation schemes for RSA, and introduce attacks to break two

of these schemes.

iv

Acknowledgments

It is impossible to thank enough everyone who has been of help over the past four

years. It has been truly an honor and a pleasure to be a part of such a vibrant

community of researchers, faculty, students, and friends, and I can make only a rough

attempt to express my appreciation.

I want to express my great gratitude to Dan Boneh, who has been both an advisor

and a friend these many years. I would also like to thank my coauthors Yair Frankel,

Nick Howgrave-Graham, and Phong Nguyen; working with them has been a great

pleasure.

During my time at Stanford I had the opportunity to interact with many people.

I had the pleasure of working with Cynthia Dwork, Matt Franklin, John Mitchell,

Moni Naor, Victor Shoup, and Ramarathnam Venkatesan. For many enlightening

conversations I would like to thank Ajay Chander, Nancy Durgin, Philippe Golle,

Sudipto Guha, Snorri Gylfason, Jeremy Horwitz, Ben Hsu, Piotr Indyk, Chris Jaeger,

Ilya Mironov, Nagendra Modadugu, Ben Lynn, Venessa Teague, and Jon Yard.

I would like to thank my family, whose strength and support have been with me

without fail throughout the years. Thank you Mom, Dad, Pam, Nan and Grandpa

S., Grandpa and Grandma D.

I would like to thank my partner, Chandra Boston, for her love and support

through the joys and trials of the past few years.

Finally, I would like to express my gratitude for the late Michael Muuss, with

whom I worked during many high school and college summers at the U.S. Army

Research Laboratory. He brought enthusiasm, wit, and wisdom to technology and

used it to change the world.

v

Contents

Preface iv

Acknowledgments v

1 Introduction 1

1.1 Overview of This Work . 4

1.2 Notation . 5

2 Lattice Theory 7

2.1 Lattices . 7

2.2 The LLL Algorithm . 9

2.3 Finding Small Solutions to Univariate Polynomial Congruences 11

2.4 Finding Small Solutions to Bivariate Polynomial Congruences 16

3 Public Key Cryptography 21

3.1 The RSA Public Key Cryptosystem 23

3.2 Previous Attacks on RSA . 24

3.2.1 Factoring . 24

3.2.2 H̊astad’s Attack on Broadcasted Messages 24

3.2.3 Coppersmith Attack on Short Random Pads 26

3.2.4 Wiener’s Attack on Short Secret Exponent 27

3.3 Cryptanalysis via the Defining Equation 28

vi

4 The Lattice Factoring Method 30

4.1 The Lattice Factoring Method . 31

4.1.1 Lattice-based factoring . 33

4.2 Applications . 36

4.2.1 Factoring N = pq with a Hint 36

4.2.2 Polynomial-Time Factoring for N = prq, r = Ω(log p) 40

4.3 Experiments . 40

4.4 Comparison to Other Factoring Methods 42

4.5 Conclusions . 45

5 Partial Key Exposure Attacks 46

5.1 Summary of Partial Key Exposure Attacks on RSA 47

5.1.1 Notation . 49

5.2 Partial Key Exposure Attacks on Short Public Exponent RSA 49

5.3 Partial Key Exposure Attacks on Medium Exponent RSA 54

5.3.1 Prime Public Exponent . 56

5.3.2 Public Exponent with Unknown Factorization 58

5.3.3 Further Results . 59

5.4 Experiments . 60

5.5 Conclusions . 61

6 Attacks on Short Secret Exponent RSA 62

6.1 Overview: The Small Inverse Problem 63

6.2 Solving the Small Inverse Problem . 64

6.3 Improved Determinant Bounds . 68

6.4 Cryptanalysis of Arbitrary Public Exponents 75

6.5 Experiments . 76

6.6 Conclusions . 77

7 Attacks on RSA Variants 78

7.1 The Sun-Yang-Laih Key Generation Schemes 79

7.2 The Attack Algorithm . 81

vii

7.2.1 Comparison with the Bivariate Approach 87

7.3 Experiments . 88

7.4 Conclusions . 88

Bibliography 90

A Solutions to Modular Quadratic Equations 99

B Approximate Square Roots 101

C Determinants for Short Secret Exponent 103

D Proof of Theorem 6.3.1 105

E Determinants for the Sun-Yang-Laih Schemes 112

viii

List of Figures

2.1 Example H̊astad Lattice . 14

2.2 Example Coppersmith Lattice . 15

4.1 Example LFM Lattice . 34

4.2 Running times for LFM . 41

4.3 Asymptotic comparison of LFM with ECM and NFS 44

5.1 Running times of LSBFact used in partial key exposure attacks 60

6.1 Example lattice used in attacks on short secret exponent RSA 65

6.2 Running times for short secret exponent attack 76

7.1 Example lattice used in attacks on the Sun-Yang-Laih schemes 85

7.2 Success region of attacks on Sun-Yang-Laih schemes 86

7.3 Running times of attacks on Sun-Yang-Laih schemes. 88

ix

Chapter 1

Introduction

Cryptology is the study of secret codes. In speaking of cryptology, we discuss two

main branches: cryptography is concerned with the writing of messages in secret code

and the creation of these methods, while cryptanalysis is concerned with reading

encrypted messages by breaking secret codes.

Ancient times saw many examples of cryptography. Over three thousand years

ago, Egyptian scribes made use of hieroglyphic transformations to obscure the mean-

ing of written messages. Mesopotamian and Babylonian scribes employed similar

techniques to render cuneiform tablets unreadable to the uninitiated. The Greeks

employed cryptography (and the closely related steganography, which is concerned

with concealing the existence of communication rather than content) for military and

tactical purposes. Even the Kāma-sūtra of ancient India touches on cryptography,

listing secret writing as one of the sixty-four fundamental arts. Hundreds of other

examples occur in ancient civilizations; in short, cryptography has appeared more or

less spontaneously in every culture in which literacy has become widespread [45].

Cryptanalysis, on the other hand, took considerably longer to develop as a rigorous

subject of study. The earliest surviving descriptions of systematic methods of code-

breaking come from fifteenth century, in the Arabic encyclopedia S. ubh. al-a ‘sha [45].

It gives the first known written description of the technique of frequency analysis,

where the frequencies of letters and letter groupings of a language are used to unravel

secret codes.

1

CHAPTER 1. INTRODUCTION 2

Cryptology has played a role in political and military matters from medieval times

through the 20th century. Perhaps most famous is the cryptologic effort of Great

Britain and the United States during World War II. The efforts of thirty thousand

employees at Britain’s Bletchley Park in cryptanalyzing Germany’s Enigma trans-

missions is said to have shortened the war by several years [45], and it led to the

development of the first digital computer, Colossus. Similar efforts in the United

States to break Japanese codes aided American intelligence in the war, convincing

American authorities of the importance of cryptologic expertise and eventually lead-

ing to the establishment of the National Security Agency in 1952.

With the rise of digital computer networks in the 1970s, securing communication

became an increasingly important task in the private sector as well. The needs of the

banking industry, in particular, for secure digital communication became especially

urgent. Developments at IBM led to the design of Lucifer, one of the first public

ciphers for computer communications. The National Security Agency offered several

improvements to Lucifer, and in 1975 the National Bureau of Standards presented the

modified version as the Data Encryption Standard, or D.E.S. Thus the first public

standard for encryption began to gain widespread use.

A method of securing communication is called a cryptosystem. The sender en-

crypts (or enciphers) a message using an encryption algorithm together with a secret

key. This produces a ciphertext which is sent to the recipient. The recipient, who

also possesses a key, receives the ciphertext and decrypts (or deciphers) using the key

to recover the original message, called the plaintext.

In the history of cryptology up to 1975, all cryptosystems required the sender and

the receiver to agree beforehand on the same key, a key that had to be rigorously

protected from exposure to an adversary. This is known as symmetric or secret key

cryptography. Arranging to share a secret key between two parties is often a difficult

problem, and does not scale well to scenarios in which many individuals or computers

might communicate with each other.

In 1976, Martin Hellman, a professor at Stanford University, and Whitfield Diffie, a

graduate student, introduced the concept of asymmetric or public key cryptography in

their seminal paper New Directions in Cryptography. They speculated that a method

CHAPTER 1. INTRODUCTION 3

of encryption might exist in where the encryption key differed from the decryption

key. In such a scheme, a user’s encryption key could be announced to the public;

any outsider could obtain this public encryption key and use it to send encrypted

messages to the user. Since only the user would posses the decryption key, only she

could obtain the decryption of the message. Public key cryptography also opened

doors for many other applications, such as digital signatures and electronic cash.

The concept of public key cryptography circulated in the research community for

some time before the first practical proposal for such a scheme was made.1 In Au-

gust 1977 the RSA public key cryptosystem, named after inventors Ron Rivest, Adi

Shamir, and Len Adleman, was introduced in Martin Gardner’s column on Math-

ematical Games in Scientific American [32]. The RSA cryptosystem, outlined in

Section 3.1, has survived over twenty years of study by cryptanalysts in the public

sector, and it is the most widely used public key cryptosystem in the world. It is

used, among other places, in the SET protocol [84] for secure credit card transactions

and the SSL protocol [30] for secure communication on the Internet.

Public discussion and research in cryptography in business and academia started

in the last quarter of the 20th century, and continues at a furious rate. New methods

for encryption are publicly announced; researchers then study these methods for

weaknesses by applying the tools of cryptanalysis.2 Only after intense public scrutiny

does a new cryptosystem gain a sense of legitimacy. Studying and using methods

for breaking cryptosystems is an essential step in the development of new designs for

more secure cryptosystems. By learning how things break, we learn how to make

them stronger.

It is in this spirit that this thesis is written. This work uses mathematical tools

to study the RSA public key cryptosystem and several variants. We use tools from

1In the public literature. It is claimed that Great Britain’s GCHQ invented public key cryptog-
raphy several years before the public community. [83]

2It might be argued that disclosing a method of encryption unnecessarily opens it to attack; that
designs kept secret will be somehow inherently safer. This, however, runs counter to the historic
lessons of cryptology. Cryptanalysts are notoriously famous for their aptitude in reverse engineering
undisclosed cryptographic algorithms, and the leaks of designs occur all too easily. The popular
wisdom is perhaps best summarized in Kerckhoffs’ principle, which states that “the security of a
cryptosystem should rest not in the secrecy of the algorithm, but in the secrecy of the key” [46].

CHAPTER 1. INTRODUCTION 4

numerical algebra and the geometry of numbers to get our results. Algebraic crypt-

analysis has proven to be one of the most effective methods in the study of public

key cryptosystems.

1.1 Overview of This Work

This thesis applies tools from the geometry of numbers to solve several problems

in cryptanalysis. We use algebraic techniques to cryptanalyze several public key

cryptosystems. We focus on RSA and RSA-like schemes, and use tools from the theory

of integer lattices to get our results. We believe that this field is still underexplored,

and that much more work can be done utilizing connections between lattices and

cryptography.

Chapter 2 provides an introduction to the theory of lattices and describes several

important results needed later. In particular, Sections 2.3 and 2.4 set the founda-

tion for the rest of the work by describing a method for finding roots to polynomial

congruences developed by H̊astad, Coppersmith, and others.

We then provide basic facts about public key cryptography in Chapter 3, and in

particular the RSA public key cryptosystem in Section 3.1. Here the basic equations

are established that will be carefully analyzed in later chapters.

In Chapter 4 we use these techniques to introduce a novel algorithm for the factor-

ization of integers. We are particularly interested in integers with repeated factors,

that is, integers of the form N = prq. Such integers were previously proposed for

various cryptographic applications. For sufficiently large r our algorithm runs in

polynomial time (in log N). Hence, we obtain a new class of integers that can be

efficiently factored. When r ≈
√

log p the algorithm is asymptotically faster than

the Elliptic Curve Method. These results suggest that integers of the form N = prq

should be used with care. This is especially true when r is large, namely r greater

than
√

log p. Our method also provides an efficient mechanism for factoring integers

of the form N = pq when half of the bits of one of the factors is known; our method

is substantially more efficient than previous methods.

CHAPTER 1. INTRODUCTION 5

Chapter 5 studies the security of the RSA public key cryptosystem under par-

tial key exposure. We show that for short public exponent RSA, given a quarter of

the bits of the private key an adversary can recover the entire private key. Similar

results (though not as strong) are obtained for larger values of the public exponent

e. Our results point out the danger of partial key exposure in the RSA public key

cryptosystem.

In Chapter 6 we show that if the secret exponent d used in the RSA public

key cryptosystem is less than N0.292, then the system is insecure. This is the first

improvement over an old result of Wiener showing that when d is less than N0.25 the

RSA system is insecure.

Finally, in Chapter 7 we address the security of a variant of RSA proposed in

Asiacrypt ’99 by Sun, Yang, and Laih. The Sun-Yang-Laih variants of RSA resisted

all known attacks, including the short secret exponent attacks covered in Chapter 6.

We show that two of the three schemes they propose can be broken by very efficient

attacks.

1.2 Notation

Rings and Fields

We use standard notation and write Z to denote the ring of integers, Q for the field

of rationals, and R for the field of real numbers. When a ∈ R we denote by aZ the

ring with base set {r ∈ R | r = an for some n ∈ Z}.
We will also work with the group ZN of integers modulo N and the group Z∗

N of

units modulo N .

We denote by Zn (resp. Qn and Rn) the vector space with elements that are

n-tuples of elements of Z (resp. Q and R). We endow these vector spaces with the

Euclidean norm: if a ∈ Rn, then ‖a‖2 =
∑

i a
2
i .

We also work with the rings of univariate polynomials Z[x], Q[x], and R[x], as

well as multivariate polynomials in Z[x, y], Q[x, y], and R[x, y].

CHAPTER 1. INTRODUCTION 6

Norms of polynomials

Given a polynomial g(x) =
∑

i aix
i we define the norm of g(x) by

‖g(x)‖2 =
∑

i

a2
i .

Given nonnegative X ∈ R we define the weighted norm of g(x) by

‖g(xX)‖2 =
∑

i

(aiX
i)2.

Similarly, given a polynomial h(x, y) =
∑

i,j bi,jx
iyj we define the norm of h(x, y) by

‖h(x, y)‖2 =
∑
i,j

b2
i,j.

Given nonnegative X, Y ∈ R we define the weighted norm of h(x, y) by

‖h(xX, yY)‖2 =
∑
i,j

(bi,jX
iY j)2.

A univariate polynomial is said to be monic when the coefficient of the leading term

is equal to 1.

Cardinality

When S is a finite set we use |S| to denote the number of elements in S.

Exponentiation

The symbol “e” always refers to the public exponent used in the RSA public key

cryptosystem (see Section 3.1) and never to the constant 2.78 · · ·. This is especially

important to keep in mind when reading the many instances where e is exponentiated

as eα for various values of α.

Chapter 2

Lattice Theory

This chapter introduces several important concepts from the geometry of numbers.

Of primary importance in this work is the notion of a lattice, defined in the next

section. In the past twenty years, lattices have played an extremely important role in

cryptology (see the recent survey [62] for a discussion). In this chapter we state only

the results about lattices that we will need later in this work, and refer the reader

elsewhere [55] for a comprehensive introduction.

2.1 Lattices

Let u1, . . . , uw be linearly independent vectors in an normed n-dimensional vector

space. The lattice L spanned by 〈u1, . . . , uw〉 is the set of all integer linear combinations

of u1, . . . , uw. We call w the dimension or rank of the lattice L, and that the lattice

is full rank when w = n. We alternatively say that L is generated by 〈u1, . . . , uw〉 and

that 〈u1, . . . , uw〉 forms a basis of L.

We work mostly with lattices in two vector spaces:

• The set Rn endowed with the Euclidean norm; and,

• The set of polynomials in R[x] of degree at most n− 1, endowed with the norm

given by ‖
∑n−1

i=0 aix
i‖2 =

∑n−1
i=0 a2

i .

7

CHAPTER 2. LATTICE THEORY 8

There is a natural isomorphism between these two vector spaces given by identifying

a polynomial with its coefficients vector, and throughout this work switch freely

between representations as convenient.

We denote by 〈u∗
1, . . . , u

∗
w〉 the vectors obtained by applying the Gram-Schmidt

orthogonalization process to the vectors u1, . . . , uw. We define the determinant of the

lattice L as

det(L) :=
w∏

i=1

‖u∗
i ‖.

For example, if L is full rank lattice with basis in Rn, then the determinant of L

is equal to the determinant of the w × w matrix whose rows are the basis vectors

u1, . . . , uw.

We note that every nontrivial lattice in Rn has infinitely many bases. This gives

rise to the notion of the quality of a basis for a lattice. The notion of quality applied to

a lattice depends on the application, but usually includes some measure of the lengths

or orthogonality of the vectors in a basis. There are many striking examples of how

good bases are useful in cryptographic applications [62], and we shall see several in

subsequent chapters.

The goal of lattice reduction is to find good lattice bases. The theory of lattice re-

duction goes back to the work of Lagrange [49], Gauss [33], Hermite [38], and Korkine

and Zolotarev [48], who were interested in the reduction of quadratic forms. Lattice

theory was given its geometric foundation in Minkowski’s famous work Geometrie der

Zahlen (The Geometry of Numbers) [59] in the late nineteenth century.

Minkowski proved that there is always a basis u1, . . . uw for a lattice L satisfying∏
‖ui‖ ≤ γw · det(L) for some γw that depends only on w (and not on the entries of

ui). However, his proof is nonconstructive, and it would be almost a century before

the first polynomial-time algorithm to compute reduced bases of lattices of arbitrary

dimension was discovered. This is the celebrated Lenstra-Lenstra-Lovász lattice basis

reduction algorithm. This algorithm is of primary importance to the results in this

work, and is summarized in Section 2.2.

CHAPTER 2. LATTICE THEORY 9

Representations of Lattices

In order to discuss the running times of algorithms operating on lattices we must

describe the representation of lattices given as input to these algorithms. Suppose

u1, . . . , uw are vectors in Zn. The running time of an algorithm with input 〈u1, . . . , uw〉
is parameterized by w, n, and by the largest element of the ui, defined by

ulargest := max
i,j

uij.

For lattices in Qn, the situation is slightly more complex. Suppose we are given the

vectors u1, . . . , uw in Qn. There is some least integer D such that Du1, . . . , Duw are

all in Zn. Then we define the largest element by

ulargest := max
i,j

(Duij).

We note that all lattices in Rn used in this work are in fact lattices in Qn since they

are represented using rational approximations.

2.2 The LLL Algorithm

Fact 2.2.1 (LLL) Let L be a lattice spanned by 〈u1, . . ., uw〉. The LLL algorithm,

given 〈u1, . . ., uw〉, produces a new basis 〈b1, . . ., bw〉 of L satisfying:

(1) ‖b∗i ‖2 ≤ 2‖b∗i+1‖2 for all 1 ≤ i < w.

(2) For all i, if bi = b∗i +
∑i−1

j=1 µjb
∗
j then |µj| ≤ 1

2
for all j.

The algorithm performs O(w4`) arithmetic operations, where ` = log ulargest .

We note that an LLL-reduced basis satisfies some stronger properties, but those

are not relevant to our discussion.

We denote by TLLL(w, n) the running time of the LLL algorithm on a a basis

〈u1, . . . , uw〉 satisfying log2 ulargest ≤ n. When 〈b1, . . . , bw〉 is the output of the LLL

algorithm on a basis for a lattice L, we say that it is an LLL-reduced basis. We

CHAPTER 2. LATTICE THEORY 10

will make heavy use of the following fundamental fact about the first vector in an

LLL-reduced basis.

Fact 2.2.2 Let L be a lattice and b1, . . ., bw be an LLL-reduced basis of L. Then

‖b1‖ ≤ 2(w−1)/4det(L)1/w.

Proof Since b1 = b∗1 the bound immediately follows from:

det(L) =
∏

i

‖b∗i ‖ ≥ ‖b1‖w · 2−w(w−1)/4.

In subsequent chapters we may also need to bound the length of the second vector in

an LLL-reduced basis. This is provided in the following fact.

Fact 2.2.3 Let L be a lattice and b1, . . ., bw be an LLL-reduced basis of L. Then

‖b2‖ ≤ 2w/4

[
det(L)

‖b1‖

]1/(w−1)

.

Proof Observe

det(L) =
∏

i

‖b∗i ‖ ≥ ‖b1‖ · ‖b∗2‖w−1 · 2−(w−1)(w−2)/4,

giving us

‖b∗2‖ ≤ 2(w−2)/4

[
det(L)

‖b1‖

]1/(w−1)

.

Then the bound follows from

‖b2‖ ≤ ‖b∗2‖+
1

2
‖b1‖ ≤ (1 +

1

2
√

2
)‖b∗2‖ ≤

√
2‖b∗2‖.

CHAPTER 2. LATTICE THEORY 11

2.3 Finding Small Solutions to Univariate Polyno-

mial Congruences

Much of the work described in this thesis was inspired by the seminal work of Cop-

persmith for finding small solutions to polynomial congruences [17]. We use this very

effective technique as a starting point for many of our results. In subsequent chapters

we will apply and extend this technique to solve a number of cryptanalytic problems,

and discuss subtleties in its implementation and use. In this section we will introduce

the general Coppersmith approach and provide a few simple examples. We use a

simplified version due to Howgrave-Graham [39, 40, 41].

Suppose we are given a polynomial f(x) and a real number M , and we wish to

find a value x0 ∈ Z for which f(x0) ≡ 0 mod M . The main tool we use is stated in

the following simple fact. This has been attributed to many authors. Its first use we

are aware of is in the work of H̊astad [37]; it was later used was used implicitly by

Coppersmith [17], and stated in nearly the following form by Howgrave-Graham [41].

Recall that if h(x) =
∑

aix
i then ‖h(xX)‖2 =

∑
i(X

iai)
2.

Fact 2.3.1 Let h(x) ∈ R[x] be a polynomial of degree w, and let X ∈ R be given.

Suppose there is some |x0| < X such that

(1) h(x0) ∈ Z, and

(2) ‖h(xX)‖ < 1/
√

w.

Then h(x0) = 0.

Proof Observe

|h(x0)| =
∣∣∣∑ aix

i
0

∣∣∣ =

∣∣∣∣∑ aiX
i
(x0

X

)i
∣∣∣∣ ≤∑∣∣∣∣aiX

i
(x0

X

)i
∣∣∣∣ ≤∑∣∣aiX

i
∣∣ ≤ √

w ‖h(xX)‖ < 1,

but since h(x0) ∈ Z we must have h(x0) = 0.

Fact 2.3.1 suggests we should look for a polynomial h(x) of small weighted norm

satisfying h(x0) ∈ Z. To do this we will build a lattice of polynomials related to f

CHAPTER 2. LATTICE THEORY 12

and use LLL to look for short vectors in that lattice.

Our first observation is that f(x0)/M ∈ Z because f(x0) ≡ 0 mod M . Define

gi,k(x) := xi(f(x)/M)k.

Observe that gi,k(x0) = xi
0(f(x0)/M)k ∈ Z for all i, k ≥ 0. Furthermore, this is true

for all integer linear combinations of the gi,k(x). The idea behind the Coppersmith

technique is to build a lattice L from gi,k(xX) and use LLL to find a short vector

in this lattice. The first vector b1 returned by the LLL algorithm will be a low-

norm polynomial h(xX) also satisfying h(x0) ∈ Z. If its norm is small enough,

Fact 2.3.1 would imply h(x0) = 0. Traditional root-finding methods [66] such as

Newton-Raphson would then find x0.

To use Fact 2.3.1 we must have ‖h(xX)‖ < 1. Fortunately, Fact 2.2.2 allows us

to compute a good bound on the norm of the first vector in an LLL-reduced basis.

We see

det(L) < 2−w(w−1)/4w−w/2 ⇒ ‖h(xX)‖ < 1/
√

w. (2.1)

Usually the “error term” of 2−w(w−1)/4w−w/2 is insignificant compared to det(L) and

this condition is simplified as

det(L) � 1 ⇒ ‖h(xX)‖ < 1/
√

w. (2.2)

The determinant of L depends on the choice of polynomials gi,k(xX) defining the

lattice. In general it is a difficult problem to compute the determinant of a lattice

when the basis has symbolic entries. However, a careful choice of basis polynomials

gi,k(xX) may lead to a lattice with a determinant that can be easily computed. Ideally,

we will be able to choose a basis so that the matrix whose rows are the coefficients

vectors of gi,k(xX) is full-rank and diagonal, with an explicit formula for the entries

on the diagonal.

We illustrate this technique with a few examples.

Example 2.3.2 A numerical example.

CHAPTER 2. LATTICE THEORY 13

Suppose we wish to find a root x0 of the polynomial

x2 − 2849x + 5324 ≡ 0 (mod 10001) (2.3)

satisfying |x0| ≤ 17. Define f(x) := (x2 − 2849x + 5324)/10001. We build a lattice

with basis polynomials

{
1, 17x, f(17x), 17xf(17x), f 2(17x)

}
.

Writing this as a matrix gives us
1 0 0 0 0

0 17 0 0 0

5324·10001−1 −2849·17·10001−1 172·10001−1 0 0

0 5324·17·10001−1 −2849·172·10001−1 173·10001−1 0

28344976·10001−2 −30336152·17·10001−2 8127449·172·10001−2 −5698·173·10001−2 174·10001−2


The determinant of this lattice is just the product of the entries on the diagonal:

det(L) = 1710 · 10001−4 ≈ 2.0 · 10−4.

Recall we require det(L) < γ, where

γ = 2−5(5−1)/45−5/2 ≈ 5.6 · 10−4.

Hence, condition (2.1) is satisfied. We find that the LLL algorithm returns the poly-

nomial

h(17x) = (−417605x4 − 7433369x3 + 1970691x2 − 2625174x + 7250016)/100012.

This leads to

h(x) = (−5x4 − 1513x3 + 6819x2 − 154422x + 7250016)/100012.

The roots of h(x) over the reals are {16,−307.413 . . .}. We find the only integer

CHAPTER 2. LATTICE THEORY 14

solution x0 to equation (2.3) satisfying |x0| ≤ 17 is x0 = 16.

Example 2.3.3 H̊astad’s original result.

Suppose we are given a monic polynomial f(x) of degree d with integer coefficients,

along with integers X and M . We wish to find an integer x0 such that |x0| < X and

f(x0) ≡ 0 mod M . An early attempt to solve this problem was given by H̊astad [37].

We reformulate its presentation slightly for consistency with the rest of the work.

We take as a basis for our lattice L the polynomials

{
1, Xx, (Xx)2, . . . , (Xx)d−1, f(Xx)/M

}
.

For instance, when d = 6 this results in a lattice spanned by the rows of the matrix

in Figure 2.1.

1 :
Xx :

(Xx)2 :
(Xx)3 :
(Xx)4 :
(Xx)5 :

f(Xx)/M :



1
X

X2

X3

X4

X5

− − − − − − X6M−1


H̊astad’s lattice for finding small solutions to a polynomial congruence. The “–” sym-
bols denote nonzero off-diagonal entries whose values do not affect the determinant.

Figure 2.1: Example H̊astad Lattice

The dimension of this lattice is w = d + 1 and its determinant is

det(L) = Xw(w−1)/2M−1.

To satisfy condition (2.1) we require det(L) < 2−w(w−1)/4w−w/2. This leads to

X < γd ·M2/d(d+1), (2.4)

where 1
2
√

2
≤ γd < 1√

2
for all d. Hence, when X satisfies bound (2.4), the LLL

algorithm will find a short vector h(xX) satisfying h(x0) = 0 and ‖h(xX)‖ < 1/
√

d.

CHAPTER 2. LATTICE THEORY 15

Standard root-finding techniques will recover x0 from h.

The running time of this method is dominated by the time to run LLL on a lattice

of dimension d + 1 with entries of size at most O(log M).

Example 2.3.4 Coppersmith’s generic result.

The first major improvement over H̊astad’s result came from Coppersmith [17].

Coppersmith suggested including powers and shifts of the original polynomial in the

lattice; as we shall see, this is the reason for improved results. We use a presentation

by Howgrave-Graham [40]. Again, suppose we are given a monic polynomial f(x) of

degree d with integer coefficients, along with integers X and M . We wish to find an

integer x0 such that |x0| < X and f(x0) ≡ 0 mod M .

Let m > 1 be an integer to be determined later. Define

gi,k(x) := xi(f(x)/M)k.

We use as a basis for our lattice L the polynomials gi,k(xX) for i = 0, . . . , d− 1 and

k = 0, . . . ,m − 1. For instance, when d = 3 and m = 3 this results in the lattice

spanned by the rows of the matrix in Figure 2.2.

g0,0(xX) :
g1,0(xX) :
g2,0(xX) :
g0,1(xX) :
g1,1(xX) :
g2,1(xX) :
g0,2(xX) :
g1,2(xX) :
g2,2(xX) :



1
X

X2

− − − X3M−1

− − − X4M−1

− − − X5M−1

− − − − − − X6M−2

− − − − − − X7M−2

− − − − − − X8M−2


Coppersmith’s lattice for finding small solutions to a polynomial congruence. The “–”
symbols denote nonzero off-diagonal entries whose values do not affect the determi-
nant.

Figure 2.2: Example Coppersmith Lattice

The dimension of this lattice is w = md and its determinant is

det(L) = Xw(w−1)/2M−w(m−1)/2.

CHAPTER 2. LATTICE THEORY 16

We require det(L) < 2−w(w−1)/4w−w/2; this leads to

X < M (m−1)/(w−1)2−1/2w−1/(w−1)

which can be simplified to

X < γw ·M
1
d
−ε,

where ε = d−1
d(w−1)

and 1
2
√

2
≤ γw < 1√

2
for all w. As we take m →∞ we have w →∞

and therefore ε → 0. In particular, if we wish to solve for up to X < M
1
d
−ε0 for

arbitrary ε0, it is sufficient to take m = O(k/d) where k = min{1/ε0, log M}.

We summarize this in the following theorem.

Theorem 2.3.5 (Univariate Coppersmith) Let a monic polynomial f(x) of de-

gree d with integer coefficients and integers X, M be given. Suppose X < M
1
d
−ε for

some ε > 0. There is an algorithm to find all x0 ∈ Z satisfying |x0| < X and f(x0) ≡ 0

mod M . This algorithm runs in time O(TLLL(md, m log M)) where m = O(k/d) for

k = min{1/ε, log M}.

We note that the generic result is in some sense “blind” to the actual polynomial

being used (it takes into account only the degree, but not the coefficients), and that

there may be a more optimal choice of polynomials gi,k to include in the lattice to

solve a particular problem. In Chapter 4 we will see an example that improves over

this generic result by taking into account an optimized set of polynomials.

2.4 Finding Small Solutions to Bivariate Polyno-

mial Congruences

In this section we generalize the results of the previous section to finding solutions of

bivariate polynomial congruences. We note that this is a different application of these

techniques than the solution of bivariate polynomial equations (over the integers) [17].

We note that, in contrast to the previous approach, the method here is only a heuristic

(for reasons that will be discussed shortly.)

CHAPTER 2. LATTICE THEORY 17

In order to analyze bivariate polynomial congruences we must introduce a few

observations. The first is that there is a simple generalization of Fact 2.3.1 to multi-

variate polynomials.

Fact 2.4.1 Let h(x, y) ∈ R[x, y] be a polynomial which is a sum of at most w mono-

mials, and let X, Y ∈ R be given. Suppose that

(1) h(x0, y0) ∈ Z for some |x0| < X and |y0| < Y , and

(2) ‖h(xX, yY)‖ < 1/
√

w.

Then h(x0, y0) = 0.

Suppose we are given a polynomial f(x, y) and a real number M , and we wish

to find a pair (x0, y0) ∈ Z × Z for which f(x0, y0) ≡ 0 mod M . The idea is a

straightforward generalization of the approach in Section 2.3. We define

gi,j,k(x, y) := xiyj(f(x, y)/M)k,

and observe gi,j,k(x0, y0) ∈ Z for all i, j, k ≥ 0. We build a lattice from gi,j,k(xX, yY)

by selecting certain indices (i, j, k) so that the determinant of the resulting lattice

is “small enough”, and compute an LLL-reduced basis for this lattice. Fact 2.2.2

bounds the norm of the first vector h1(xX, yY) of this LLL-reduced basis, allowing

us to use Fact 2.4.1 to show that h1(x0, y0) = 0.

However, a single bivariate equation may be insufficient to recover the desired root.

To obtain another relation, we use the second vector h2(xX, yY) of the LLL-reduced

basis. Fact 2.2.3 tells us

‖h2(xX, yY)‖ ≤ 2w/4

[
det(L)

‖h1(xX, yY)‖

]1/(w−1)

. (2.5)

So we must also provide a lower bound on the norm of h1.

Suppose the indices of the gi,j,k are chosen so that k ≤ m for some m. Then all

coefficients of gi,j,k(xX, yY) are integer multiples of M−m. Thus, since h1(xX, yY) 6=
0, we know it has at least one coefficient greater than or equal to M−m in absolute

CHAPTER 2. LATTICE THEORY 18

value. So ‖h1(xX, yY)‖ ≥ M−m. Equation (2.5) becomes

‖h2(xX, yY)‖ ≤ 2w/4 (Mmdet(L))1/(w−1) .

This gives us

det(L) < M−m2−w(w−1)/4w−(w−1)/2 ⇒ ‖h2(xX, yY)‖ < 1/
√

w. (2.6)

In practice this condition is usually simplified as

det(L) � M−m ⇒ ‖h2(xX, yY)‖ < 1/
√

w. (2.7)

Hence, we obtain another polynomial h2(x, y) ∈ R[x, y] such that h2(x0, y0) = 0. It

follows that h1(x, y) and h2(x, y) are linearly independent. If we make the assumption

that h1(x, y) and h2(x, y) are also algebraically independent, we can solve for y0 by

computing the resultant h(y) = Resx(h1, h2). Then y0 must be a root of h(y), and

these roots are easily determined. From this we may find x0 as a root of h1(x, y0).

It is not clear why linear independence of h1 and h2 should imply algebraic inde-

pendence, and in fact it is easy to construct (artificial) examples where this is not the

case. for instance, the polynomial x − y ≡ 0 mod M has too many solutions (even

in Z2) thus the method must fail at this step (since all other steps are provable.) So

at the moment this step of the method is only a heuristic. However, growing exper-

imental evidence [44, 3, 9, 27] shows that it is a very good heuristic for polynomials

of interest in cryptology.

Example 2.4.2 Generic result.

Suppose we are given a polynomial f(x, y) of total degree d with at least one

monic monomial xayd−a of maximum total degree. Also suppose integers X, Y , and

M are given. We wish to find an integer pair (x0, y0) such that |x0| < X, |y0| < Y ,

and f(x0, y0) ≡ 0 mod M .

We will follow an approach suggested by Coppersmith [17], worked out in detail

CHAPTER 2. LATTICE THEORY 19

by Jutla [44]. Let m > 1 be an integer to be determined later. Define

gi,j,k(x) := xiyj(f(x)/M)k.

We use as a basis for our lattice L the polynomials gi,j,k(xX, yY) where the indices

(i, j, k) come from the following set:

S :=
{
(i, j, k) ∈ Z3 | i + j + kd ≤ md and i, j, k ≥ 0 and (i < a or j < d− a)

}
.

Denote by Sm the set of polynomials gi,j,k(xX, yY) such that (i, j, k) ∈ S. Every

g ∈ Sm has total degree less than md. Indeed, the set Sm is in one-to-one corre-

spondence with the set of monomials
{
xαyβ | α + β ≤ md

}
given by gi,j,k(xX, yY) ↔

xi+kayj+k(d−a). We may write these polynomials as the rows of a matrix in a way that

puts the coefficient of the corresponding monomial on the diagonal. The resulting

matrix is lower diagonal, and the contribution of gi,j,k(xX, yY) ∈ Sm to the diago-

nal is M−kX i+kaY j+k(d−a). A straightforward but tedious calculation shows that the

resulting lattice has determinant

det(L) =

(
md∏
α=0

md−α∏
β=0

XαY β

)(
M−m

m−1∏
k=0

(M−k)
d
2
((2m−2k−1)d+3)

)
.

For simplicity we carry out the computation using low-order terms. We find

det(L) = (XY)
d3

6
m3+o(m3)M− d2

6
m3+o(m3).

To use condition (2.7) we require1 det(L) � M−m. This leads to

XY < M (1/d)−ε

where ε → 0 as m →∞.

1We note that to use the more precise condition (2.6) requires det(L) < γm ·M−m where γm =
2−w2/2w−w/2 for w = O(m2d2). So − logM γm = O(m4d4)/ log M , implying the method will not
work if m is too large and M is too small. In most applications, however, we find logM γm ≈ 0 and
this term may be safely ignored.

CHAPTER 2. LATTICE THEORY 20

We note that the shape or coefficients of a particular polynomial may allow for a

better selection of basis polynomials gi,j,k. For instance, when f(x, y) has degree d in

each variable separately and is monic in the monomial xdyd, a different choice of basis

leads to the improved bound XY < N2/3d. In Chapter 6 we will see an example where

the shape of the polynomial allows for a substantial improvement over the generic

result.

Chapter 3

Public Key Cryptography

In this chapter we present the notion of a public key cryptosystem, and in particular,

the RSA public key cryptosystem. There are many good formal definitions for public

key cryptosystems [34, 23, 57, 75], and we do not try to cover all of them here. Instead

we try to develop the intuition that will be useful later.

A public key (or asymmetric) cryptosystem is a method for securing communi-

cation between parties who have never met before. More precisely, a public key

cryptosystem is described by the following:

• a set M of plaintexts (or messages), and a set C of ciphertexts;

• a set Kp of public keys, and a set Ks of secret keys;

• a key generation algorithm key-gen : Z → Kp ×Ks;

• an encryption algorithm E : Kp ×M→ C; and,

• a decryption algorithm D : Ks × C →M.

The key generation, encryption, and decryption algorithms can be randomized and

should run in expected time polynomial in the length of their inputs. For all 〈Kp, Ks〉
output by key-gen and all messages M ∈ M we must have that D(Ks, E(Kp, M)) =

M .

The input to the key generation algorithm is called the security parameter. The

hope is that as the security parameter increases, the resources required to break the

21

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 22

cryptosystem using the resulting keys should increase more rapidly than the resources

required to use it. Ideally, the running time of a break should be a (sub-)exponential

function of n, while the running time of key-gen, E, and D should be some (small)

polynomial in n.

Suppose Alice is a user of a public key cryptosystem. To initialize she chooses a

security parameter n and computes 〈Kp, Ks〉 := key-gen(n). When another user Bob

wishes to send a message to Alice securely, he obtains1 Alice’s public key Kp and

computes the ciphertext C := E(Kp, M). He sends ciphertext C is sent to Alice, who

upon obtaining it computes the original message M = D(Ks, C).

The security requirements of a cryptosystem can be defined in many ways. In

general, when defining a security goal it is important to state what resources are

available to an attacker and what success criteria the attacker must fulfill. A very

basic requirement is that it should not be possible to derive the secret key from

the public key efficiently; indeed, it is considered the most devastating cryptanalytic

break to compute Ks from Kp in (say) time polynomial in the security parameter.

We will see examples of this in Chapters 4, 6, and 7. We might consider security

against partial key exposure, where information about Ks (say perhaps a subset of

bits of Ks) allows an attacker to compute all of Ks; examples of this are considered in

Chapter 5. There are many issues that arise in determining good notions of security,

and we do not try to address them all here. There are many good surveys on the

subject [57, 23].

Since the publication of New Directions, there have been countlessly many pro-

posals for public key cryptosystems. Our primary focus in this work, however, will

be on the RSA public key cryptosystem and simple variants [69, 77, 76]. We present

the basic RSA scheme in the next section, and postpone discussion of RSA variants

until the relevant chapters.

1Say, from a directory of public keys. Care must be taken to ensure Bob is able to obtain Alice’s
true public key, and not that of an impostor. There are a variety of proposals to achieve this [82].

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 23

3.1 The RSA Public Key Cryptosystem

In this section we outline the basic RSA public key cryptosystem [69].

Let n be a security parameter. The key generation algorithm for RSA computes

primes p and q approximately n/2 bits in length, so that N := pq is an integer n bits

in length. More precisely, p and q are random primes subject to the constraint that

N = pq is a n-bit number and

√
N

2
< q < p < 2

√
N.

We denote the set of all such N as Z(2). Typically n = 1024, so that N is 1024 bits

in length; p and q are primes typically chosen to be approximately 512 bits each.

The key generation algorithm selects integers e and d such that ed ≡ 1 modulo

φ(N), where φ(N) = N − p− q + 1 (also called the Euler totient function). We call

e the public exponent and d the secret exponent. The value N is called the public

modulus. An RSA public key is the pair of integers 〈N, e〉. The corresponding secret

key is the pair 〈N, d〉. Thus Kp = Ks = Z(2) × Z.

How e and d are chosen depends on the application. Typically, e is chosen to satisfy

certain constraints (say e is small, like e = 3), then d is picked from {1, . . . , φ(N)} to

satisfy ed ≡ 1 mod φ(N). However, this process may be done in reverse, and in many

applications d is chosen first (say to make d short, as in Section 3.2.4 and Chapter 6).

Messages and ciphertexts are represented as elements of M = C = Z∗
N . Suppose

Bob wishes to send a message M ∈ Z∗
N to Alice. He obtains Alice’s public key 〈N, e〉

and computes C ≡ M e mod N which he sends to Alice. Upon receiving C Alice may

compute

Cd ≡ M ed ≡ M (mod N),

where the last equivalence follows from Euler’s Theorem.

For digital signing, the roles of these operations are reversed. If Alice intends to

sign the message M she computes S ≡ Md mod N and sends 〈M, S〉 to Bob. Bob

checks M
?≡ Se mod N .

This presentation simplifies RSA encryption and signing; in practice, randomized

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 24

padding of the messages [1, 5] is required before exponentiation to prevent several

security flaws [2, 21, 20]. We will not go into the details here, since all attacks in

subsequent chapters succeed regardless of the padding scheme that is being used.

3.2 Previous Attacks on RSA

In this section we summarize several previously-known attacks on the RSA public key

cryptosystem relevant to this work. We follow the presentation of the recent survey

of attacks on RSA [6] and refer to it for a comprehensive listing of attacks on RSA.

3.2.1 Factoring

The most straightforward attack on RSA is factorization of the modulus N = pq.

Once a factor p is discovered, the factor q = N/p may be computed, so φ(N) =

N − p− q + 1 is revealed. This is enough to compute d ≡ e−1 mod φ(N).

The current fastest method for factoring is the General Number Field Sieve [35].

It has a running time of exp
(
(c + o(1)) · (log N)1/3(log log N)2/3

)
for some 1 < c <

2. The size of N is chosen to foil this attack. The largest integer that has been

successfully factored using this method was the 512-bit RSA challenge modulus RSA-

155, factored in 1999 using a massive distributed implementation of GNFS on the

Internet [14]. Even though the speed of computer hardware continues to accelerate,

it seems unlikely that the best factoring algorithms will be able to factor say 1024-bit

RSA moduli in the next twenty years.

3.2.2 H̊astad’s Attack on Broadcasted Messages

In order to speed up RSA encryption (and signature verification) it is useful to use

small value for the public exponent e, say e = 3. However, this opens up RSA to the

following attack, discovered by H̊astad [37].

Let us start with a simpler version. Suppose Bob wishes to send the same message

M to k recipients, all of whom are using public exponent equal to 3. He obtains the

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 25

public keys 〈Ni, ei〉 for i = 1, . . . , k, where ei = 3 for all i. Naively, Bob computes the

ciphertext Ci = M3 mod Ni for all i and sends Ci to the ith recipient.

A simple argument shows that as soon as k ≥ 3, the message M is no longer

secure. Suppose Eve intercepts C1, C2, and C3, where Ci = M3 mod Ni. We may

assume gcd(Ni, Nj) = 1 for all i 6= j (otherwise, it is possible to compute a factor of

one of the Ni’s.) By the Chinese Remainder Theorem, she may compute C ∈ Z∗
N1N2N3

such that C ≡ Ci mod Ni. Then C ≡ M3 mod N1N2N3; however, since M < Ni for

all i, we have M3 < N1N2N3. Thus C = M3 holds over the integers, and Eve can

compute the cube root of C to obtain M .

H̊astad proves a much stronger result. To understand it, consider the following

naive defense against the above attack. Suppose Bob applies a pad to the message

M prior to encrypting it so that the recipients receive slightly different messages. For

instance, if M is m bits long, Bob might encrypt i · 2m + M and send this to the ith

recipient. H̊astad proved that this linear padding scheme is not secure. In fact he

showed that any fixed polynomial applied to the message will result in an insecure

scheme.

Theorem 3.2.1 (H̊astad) Suppose N1, . . . , Nk are relatively prime integers and set

Nmin = mini(Ni). Let gi(x) ∈ ZNi
[x] be k polynomials of maximum degree d. Suppose

there exists a unique M < Nmin satisfying

gi(M) = 0 (mod Ni) for all i ∈ {0, . . . , k}.

Furthermore suppose k > d. There is an efficient algorithm which, given 〈Ni, gi(x)〉
for all i, computes M .

Proof Since the Ni are relatively prime, we may use the Chinese Remainder Theorem

to compute coefficients Ti satisfying Ti ≡ 1 mod Ni and Ti ≡ 0 mod Nj for all i 6= j.

Setting g(x) :=
∑

i Tigi(x) we see g(M) ≡ 0 mod
∏

Ni. Since the Ti are nonzero we

have that g(x) is not identically zero. If the leading coefficient of g(x) is not one,

then we may multiply by its inverse to obtain a monic polynomial g(x).

The degree of g(x) is at most d. By Coppersmith’s Theorem (Theorem 2.3.5) we

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 26

may compute all integer roots x0 satisfying g(x0) ≡ 0 mod
∏

Ni and |x0| < (
∏

Ni)
1/d.

But we know M < Nmin < (
∏

Ni)
1/k < (

∏
Ni)

1/d, so M is such a root.

This can be applied to the problem of broadcast RSA as follows. Suppose the ith

plaintext is padded with a polynomial fi(x), so that Ci ≡ (fi(M))ei mod Ni. Then

the polynomials gi(x) := (fi(x))ei−Ci satisfy the above relation. The attack succeeds

once k > maxi(ei · deg fi).

We note that H̊astad’s original result was significantly weaker, requiring k = O(d2)

messages where d = maxi(ei · deg fi). This is because the original result used the

H̊astad method for solving polynomial congruences (see Example 2.3.3) instead of

the full Coppersmith method.

This attack suggests that randomized padding should be used in RSA encryption.

3.2.3 Coppersmith Attack on Short Random Pads

Like the previous attack, this attack exploits a weakness of RSA with public exponent

e = 3. Coppersmith showed that if randomized padding is used improperly then

RSA encryption is not secure [17]. Coppersmith addressed the following question: if

randomized padding is used with RSA, how many bits of randomness are needed?

To motivate this question, consider the following attack. Suppose Bob sends a

message M to Alice using a small random pad before encrypting. Eve obtains this

and disrupts the transmission, prompting Bob to resend the message with a new

random pad. The following attack shows that even though Eve does not know the

random pads being used, she can still recover the message M if the random pads are

too short.

For simplicity, we will assume the padding is placed in the least significant bits,

so that Ci = (2mM + ri)
e mod N for some small m and random r < 2m. Eve now

knows

C1 = (2mM + r1)
e (mod N) and C2 = (2mM + r2)

e (mod N)

for some unknown M , r1, and r2. Define f(x, y) := xe−C1 and g(x, y) := (x+y)e−C2.

We see that when x = 2mM +r1, both of these polynomials have y = r2−r1 as a root

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 27

modulo N . We may compute the resultant h(y) := Resx(f, g) which will be of degree

at most e2 Then y = r2−r1 is a root of h(y) modulo N . If |ri| < (1/2)N1/e2
for i = 1, 2

then we have that |r2 − r1| < N1/e2
. By Coppersmith’s Theorem (Theorem 2.3.5)

we may compute all of the roots h(y), which will include r2 − r1. Once r2 − r1 is

discovered, we may use a result of Franklin and Reiter [19] to extract M (see [6] for

details).

3.2.4 Wiener’s Attack on Short Secret Exponent

To speed up RSA decryption and signing, it is tempting to use a small secret exponent

d rather a random d ≤ φ(N). Since modular exponentiation takes time linear in log2 d,

using a d that is substantially shorter than N can improve performance by a factor

of 10 or more. For instance, if N is 1024 bits in length and d is 80 bits long, this

results in a factor of 12 improvement while keeping d large enough to resist exhaustive

search.

Unfortunately, a classic attack by Wiener [80] shows that a sufficiently short d

leads to an efficient attack on the system. His method uses approximations of con-

tinued fractions. This attack is stated in the following theorem.

Theorem 3.2.2 (Wiener) Suppose N = pq and
√

N
2

< q < p <
√

N . Furthermore

suppose d < 1
3
N1/4. There is an algorithm which, given N and e, generates a list of

length log N of candidates for d, one of which will equal d. This algorithm runs in

time linear in log N .

Proof Since ed ≡ 1 mod φ(N), there is some k such that ed− kφ(N) = 1. We may

write this as ∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ =
1

dφ(N)
.

Hence e
φ(N)

is an approximation to k
d
. The attacker does not know φ(N), but he

does know N . Since
√

N
2

< q < p < 2
√

N we have p + q − 1 < 3
√

N , and thus

N − φ(N) < 3
√

N . Now if the attacker uses e
N

as an approximation we find∣∣∣∣ e

N
− k

d

∣∣∣∣ =

∣∣∣∣ed− kφ(N) + kφ(N)− kN

Nd

∣∣∣∣

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 28

=

∣∣∣∣1− k(N − φ(N))

Nd

∣∣∣∣ ≤
∣∣∣∣∣3k

√
N

Nd

∣∣∣∣∣ =

∣∣∣∣ 3k

d
√

N

∣∣∣∣ .
Since e < φ(N), we know k < d < 1

3
N1/4. Thus∣∣∣∣ e

N
− k

d

∣∣∣∣ ≤ 1

dN1/4
<

1

2d2
.

This is a classic approximation relation, and there are well-known methods [36, Thm.

177] to solve it. Such methods produce a list of all integers pairs (ki, di) satisfying

gcd(ki, di) = 1 and ∣∣∣∣ e

N
− ki

di

∣∣∣∣ < 1

2d2
i

.

This list is of length at most log N . Since ed − kφ(N) = 1 we know gcd(k, d) = 1.

Hence, d = di for some i ∈ {1, . . . , log N}.

3.3 Cryptanalysis via the Defining Equation

The results of Chapter 5, 6, and 7 come from carefully studying the defining equation

for RSA. Since ed ≡ 1 mod φ(N), this implies there exists an integer k such that

ed + k(N + 1− (p + q)) = 1. (3.1)

This equation succinctly summarizes the RSA, and we will refer to it frequently

throughout this work.

As discussed earlier, a break of the RSA public key cryptosystem can be defined

in several ways. Most obviously the scheme is broken if an attacker is able to recover

the secret exponent d. Since factorization of the modulus N = pq leads to recovery of

the private key d, this is also a total break. All of the attacks presented in subsequent

chapters are of this type, and involve either a direct computation of the private key

d or one of the factors p of the public modulus N , given the public key information

〈N, e〉 alone.

In later chapters we shall see several examples where the value s = p + q is

CHAPTER 3. PUBLIC KEY CRYPTOGRAPHY 29

computed from the public information. We note that this immediately allows the

recovery of the factorization of N ; indeed, when s = p + q, then p and q are the two

roots of the equation x2 − sx + N = 0.

We emphasize that our results come from the basic RSA equations; our attacks

do not use plaintext/ciphertext pairs or signatures, so they hold regardless of any

padding schemes used. It is an interesting open question to determine if the attacks

presented in this work can be improved if a particular padding is in use, or if the

adversary is given access to known or chosen plaintext/ciphertext pairs or chosen

signatures.

Chapter 4

The Lattice Factoring Method

In recent years, integers of the form N = prq have found applications in cryptography.

For example, Fujioke et al. [31] use a modulus N = p2q in an electronic cash scheme.

Okamoto and Uchiyama [64] use N = p2q for an elegant public key system. Recently

Takagi [77] observed that RSA decryption can be performed significantly faster by

using a modulus of the form N = prq. In all of these applications, the factors p and

q are primes of approximately the same size. The security of the system relies on the

difficulty of factoring N .

We show that moduli of the form N = prq should be used with care. In particular,

let p and q be integers (not necessarily prime) of a certain length, say 512 bits each.

We show that factoring N = prq becomes easier as r gets bigger. For example, when r

is on the order of log p, our algorithm factors N in polynomial time. This is a new class

of integers that can be factored efficiently. This is discussed in Section 4.2.2. When

N = prq with r on the order of
√

log p, our algorithm factors N faster than the best

previously-known method — the elliptic curve method (ECM) [54]. Hence, if p and q

are 512-bit primes, then N = prq with r ≈ 23 can be factored by our algorithm faster

than with ECM. These results suggest that integers of the form N = prq with large

r are inappropriate for cryptographic purposes. In particular, Takagi’s proposal [77]

should not be used with a large r.

Here is a rough idea of how the algorithm’s efficiency depends on the parameter r.

Suppose p and q are k-bit integers and N = prq. When r = kε, the our method runs

30

CHAPTER 4. THE LATTICE FACTORING METHOD 31

(asymptotically) in time T (k) = 2(k1−ε)+O(log k). Hence, when ε = 1, the modulus N is

roughly k2 bits long and the algorithm will factor N in polynomial time in k. When

ε = 1
2
, the algorithm asymptotically outperforms ECM. The algorithm’s efficiency and

its comparison with previously-known factoring methods is discussed in Section 4.4.

We ran experiments to compare our method to ECM factoring. It is most inter-

esting to compare the algorithms when ε ≈ 1/2, namely r ≈
√

log p. Unfortunately,

since N = prq rapidly becomes too large to handle, we could only experiment with

small values of p. Our largest experiment involves 96-bit primes p and q and r = 9.

In this case, N is 960 bits long. Our results suggest that although our algorithm is

asymptotically superior, for such small prime factors the ECM method is better. Our

experimental results are described in Section 4.3.

An additional feature of our algorithm is that it is able to make use of partial

information about a factor. This is sometimes called factoring with a hint. In partic-

ular, our method gives an algorithm for factoring N = pq when half of the bits of the

factor p are known. This gives an elegant restatement of a theorem originally due to

Coppersmith [17] for factoring with a hint using bivariate polynomial equations. In

the case that r = 1, our presentation also coincides with a extension of Coppersmith’s

theorem developed by Howgrave-Graham [40]. Our version has several practical ad-

vantages, and will be an important tool used in partial key exposure attacks discussed

in the next chapter. This is discussed in Section 4.2.1.

4.1 The Lattice Factoring Method

Our goal in this section is to develop an algorithm to factor integers of the form

N = prq. The main theorem of this section is given below. Recall that exp(n) = 2n

and logarithms should be interpreted as logarithms to the base 2.

Theorem 4.1.1 Let N = prq where q < pc for some c. The factor p can be recovered

from N , r, and c by an algorithm with a running time of:

exp

(
c + 1

r + c
· log p

)
·O(γ),

CHAPTER 4. THE LATTICE FACTORING METHOD 32

where γ = TLLL(r2, (r + c) log N). The algorithm is deterministic, and runs in poly-

nomial space.

Note that γ is polynomial in log N . It is worthwhile to consider a few examples

using this theorem. For simplicity, we assume c = 1, so that both p and q are roughly

the same size. Taking c as any small constant gives similar results.

• When c ≈ 1 we have that c+1
r+c

= O(1
r
). Hence, the larger r is, the easier the

factoring problem becomes. When r = ε log p for a fixed ε, the algorithm is

polynomial time.

• When r ≈ log1/2 p, then the running time is approximately exp(log1/2 p). Thus,

the running time is (asymptotically) slightly better than the Elliptic Curve

Method (ECM) [54].

• For small r, the algorithm runs in exponential time.

• When c is large (e.g. on the order of r) the algorithm becomes exponential

time. Hence, the algorithm is most effective when p and q are approximately

the same size. All cryptographic applications of N = prq we are aware of use p

and q of approximately the same size.

We prove Theorem 4.1.1 by extending the approach for finding solutions to uni-

variate congruences developed in Section 2.3. The main tool we will need is the

following slight variant of Fact 2.3.1.

Fact 4.1.2 Let h(x) ∈ R[x] be a polynomial of degree w, and let m ∈ Z and X ∈ R
be given. Suppose there is some |x0| < X such that

(1) h(x0) ∈ q−mZ, and

(2) ‖h(xX)‖ < q−m/
√

w.

Then h(x0) = 0.

Proof Apply Fact 2.3.1 to the polynomial qmh(x).

Note that for simplicity we assume r and c are given to the algorithm of Theo-

rem 4.1.1. Clearly this is not essential since one can try all possible values for r and

c until the correct values are found.

CHAPTER 4. THE LATTICE FACTORING METHOD 33

4.1.1 Lattice-based factoring

We are given N = prq. Suppose that in addition, we are also given an integer P

that matches p on a few of p’s most significant bits. In other words, |P − p| < X for

some large X. For now, our objective is to find p given N , r, and P . This is clearly

equivalent finding the point x0 := P − p.

Define the polynomial f(x) := (P + x)r/N and observe f(x0) = 1/q. Let m > 0

be an integer to be determined later. For k = 0, . . . ,m and any i ≥ 0 define:

gi,k(x) := xifk(x).

Observe that gi,k(x0) = xi
0q

−k ∈ q−mZ for all i ≥ 0 and all k = 0, . . . ,m.

Fact 4.1.2 suggests that we should look for a low-norm integer linear combination

of the gi,k of weighted norm less than q−m/
√

w. Let L be the lattice spanned by:

(1) gi,k(xX) for k = 0, . . . ,m− 1 and i = 0, . . . , r − 1, and

(2) gj,m(xX) for j = 0, . . . , w −mr − 1.

The values of m and w will be determined later. To use Fact 2.2.2, we must bound

the determinant of the resulting lattice. Let M be a matrix whose rows are the

coefficients vectors for the basis of L (see Figure 4.1). Notice that M is a triangular

matrix, so the determinant of L is just the product of the diagonal entries of M . This

is given by

det(M) =

(
m−1∏
k=0

r−1∏
i=0

Xrk+iN−k

)(
w−1∏
j=mr

XjN−m

)
g ≤ Xw2/2Nmr(m+1)/2−wm.

Fact 2.2.2 guarantees that the LLL algorithm will find a short vector h(xX) in L

satisfying

‖h(xX)‖w ≤ 2w2/4det(L) ≤ 2w2/4Xw2/2Nmr(m+1)/2−wm. (4.1)

Furthermore, since h(xX) is an integer linear combination of the gi,k(xX), the corre-

sponding h(x) as an integer linear combination of the gi,k(x). Therefore h(x0) ∈ q−mZ.

CHAPTER 4. THE LATTICE FACTORING METHOD 34

1 x x2 x3 x4 x5 x6 x7 x8

g0,0(xX)
g1,0(xX)
g0,1(xX)
g1,1(xX)
g0,2(xX)
g1,2(xX)
g0,3(xX)
g1,3(xX)
g2,3(xX)



1
X

− − X2N−1

− − X3N−1

− − − − X4N−2

− − − − X5N−2

− − − − − − X6N−3

− − − − − − X7N−3

− − − − − − X8N−3


Example LFM lattice for N = p2q when m = 3 and d = 9. The entries marked with
“−” represent non-zero off-diagonal entries we may ignore.

Figure 4.1: Example LFM Lattice

To apply Fact 4.1.2 we also require that

‖h(xX)‖ < q−m/
√

w.

Plugging in the bound on ‖h(xX)‖ from equation (4.1) and reordering terms, we see

this condition is satisfied when:

(
√

2X)w2/2 < q−wmNwmN−mr(m+1)/2/(
√

w)w. (4.2)

We may substitute q−1N = pr. Because q < pc for some c, we know N < pc+r. So

inequality (4.2) is satisfied when the following holds:

(
√

2X)w2/2 < pwm−mr(c+r)(m+1)/2/(
√

w)w.

We note that (
√

w)(2/w) ≤
√

2 for all w ≥ 4, so this leads to

X < (1/2)p2m/w−mr(c+r)(m+1)/w2

.

Larger values of X allow us to use weaker approximations P , so we wish to find the

CHAPTER 4. THE LATTICE FACTORING METHOD 35

largest X satisfying the bound. The optimal value of m is attained at m0 =
⌊

w
r+c

− 1
2

⌋
,

and we may choose w0 so that w0

r+c
− 1

2
is within 1

2r+c
of an integer. Plugging in m = m0

and w = max{w0, 4} and working through tedious arithmetic results in the bound:

X < (1/2)p1− c
r+c

− r
w

(1+δ) where δ =
1

r + c
− r + c

4w
.

Since δ < 1 we obtain the slightly weaker, but more appealing bound:

X < (1/2)p1− c
r+c

−2 r
w . (4.3)

So when X satisfies inequality (4.3), the LLL algorithm will find a vector h(xX) in L

satisfying ‖h(xX)‖ < q−m/
√

w. The polynomial h(x) is an integer linear combination

of the gi,k(x) and thus satisfies h(x0) ∈ q−mZ. But since ‖h(xX)‖ is bounded, we

have by Fact 2.3.1 that h(x0) = 0. Traditional root-finding methods [66] such as

Newton-Raphson can extract the roots of h(x). Given a candidate for x0, it is easy

to check if P + x0 divides N . Since h is of degree w− 1, there are at most w roots to

check before x0 is found and the factorization of N is exposed.

We summarize this result in the following lemma.

Lemma 4.1.3 Let N = prq be given, and assume q < pc for some c. Furthermore

assume that P is an integer satisfying

|P − p| < (1/2)p1− c
r+c

−2 r
w

for some w. Then the factor p may be computed from N , r, c, and P by an algorithm

whose running time is dominated by TLLL(w, b2w/rc · log N).

Note that as w tends to infinity, the bound on P becomes |P − p| < (1/2)p1− c
r+c .

When c = 1, taking w = r2 provides a similar bound and is sufficient for practical

purposes. We can now complete the proof of the main theorem.

Proof of Theorem 4.1.1 Suppose N = prq with q < pc for some c. Let w =

2r(r + c). Then, by Lemma 4.1.3 we know that given an integer P satisfying

|P − p| < (1/2)p1− c+1
r+c

CHAPTER 4. THE LATTICE FACTORING METHOD 36

the factorization of N can be found in time TLLL(w, b2w/rc · log N). Let ε := d c+1
r+c
e.

We proceed as follows:

(a) For all k = 1, . . . , d(log N)/re do:

(b) For all j = 0, . . . , 2εk+1 do: n

(c) Set P = 2k + j · 2(1−ε)k−1.

(d) Run the algorithm of Lemma 4.1.3 using the approximation P .

The outermost loop to determine the length k of p is not necessary if the size of p is

known. If p is k bits long then one of the candidate values P generated in step (c)

will satisfy |P − p| < 2(1−ε)k−1 and hence |P − p| < (1/2)p1−ε as required. Hence, the

algorithm will factor N in the required time.

4.2 Applications

4.2.1 Factoring N = pq with a Hint

One immediate application of Lemma 4.1.3 is the factorization of integers of the

form N = pq when partial information about one of the factors is known. Suppose

(n/4) + δ bits of one of factors of an n-bit value N = pq is known for some small

δ > 0 Coppersmith showed [17] how to apply a bivariate version of his technique

to solve the integer factorization problem using this partial information. The lattice

factoring method described here is the first application of the univariate Coppersmith

method to the problem of integer factorization with a hint. This method generalizes

to integers of the form N = prq, while the bivariate method does not. Therefore it

appears this technique appears to be superior to the original bivariate Coppersmith

approach.

Our method has significant performance advantages over the original bivariate

method of Coppersmith. Given (n/4) + δ bits of one of the factors of N = pq, the

bivariate method of Coppersmith builds a lattice n2/(9δ2) with entries of size at most

n2/(2δ). Our method creates lattices of dimension n/δ with entries of size at most

2n2/δ. This results in a substantial performance improvement.

CHAPTER 4. THE LATTICE FACTORING METHOD 37

Factoring N = pq knowing MSBs of p

We first describe the result for N = pq when most significant bits of p are known.

Corollary 4.2.1 (MSBFact) Let N = pq of binary length n be given and assume

q < p. Furthermore assume P > 0 and t > n/4 are integers satisfying

|P − p| < 2(n/2)−t.

Then there is an algorithm that given N , P , and t computes the factor p in time

TLLL(w, 2nw), where w = d n
t−(n/4)

e. We denote the running time of this algorithm by

TMSBFact(n, t).

Proof In order to use Lemma 4.1.3 we must choose w such that |P − p| <

(1/2)p1− 1
2
− 2

w . This is achieved once |P − p| ≤ 2
n
2 (

1
2
− 2

w), i.e., w ≥ n
t−(n/4)

.

Some comments:

• When P and p are n/2-bit integers such that P matches p on the t most signif-

icant bits, we have |P − p| < 2(n/2)−t. Informally, we say that MSBFact is given

the t most significant bits of p.

• Note that as t increases, TMSBFact(n, t) decreases. While this follows from the

fact that w is inversely proportional to t, it is also makes intuitive sense since

the factoring problem naturally becomes easier as more bits of p are given to

MSBFact.

• This algorithm can be extended to t ≤ n/4 by running MSBFact sequentially

with approximations

Pj := P − 2(n/2)−t + (2j − 1)2(n/4)−1

for j = {1, . . . , 2(n/4)−t+1}. One of these Pj will satisfy |Pj−p| < 2(n/4)−1. Hence

the total running time is 2(n/4)−t+1 · TMSBFact(n, (n/4) + 1).

CHAPTER 4. THE LATTICE FACTORING METHOD 38

• For t = (n/4) + 1 we have w = n. In practice this may result in a lattice too

large to handle (e.g. factoring n = 1024 bit RSA moduli). The previous trick

can be applied to get a running time of 2(n/4)−t+C · TMSBFact(n, (n/4) + C) for

any C > 0 to get w = dn/Ce.

• In most cases w can be taken to be much smaller, but the method is no longer

provable.

Factoring N = pq knowing LSBs of p

We now describe a slight variant of the lattice factoring method that can be used to

factor N = pq when least significant bits of a factor p are known.

Corollary 4.2.2 (LSBFact) Let N = pq of binary length n be given and assume

q < p. Furthermore assume P > 0, R > 0, and n/2 ≥ t > n/4 are integers satisfying

P ≡ p (mod R), R ≥ 2t.

Then there is an algorithm that given N , P , R, and t computes the factor p in time

TLLL(w, 6nw), where w = d n
t−(n/4)

e. We denote the running time of this algorithm by

TLSBFact(n, t).

Proof In this problem we are seeking to discover the value x0 := (P − p)/R, where

|x0| < 2n/2−t. We cannot apply Lemma 4.1.3 directly, so we derive the following vari-

ant. We have gcd(R,N) = 1 (otherwise we know the factorization of N immediately),

so we can compute a and b satisfying aR + bN = 1. Define the polynomial

f(x) := (aP + x)r/N,

and observe

f(aRx0) = (aP + aRx0)
r/N = (ap)r/N = ar/q ∈ q−1Z.

But f(aRx0) = f(x0 − bNx0) = f(x0) + C for some C ∈ Z, so f(x0) ∈ q−1Z.

CHAPTER 4. THE LATTICE FACTORING METHOD 39

This encodes the factorization problem as a univariate root-finding problem, and

we use exactly the same techniques used in Section 4.1.1 to solve it. Namely, let

m > 0 be an integer to be determined later. For k = 0, . . . ,m and any i ≥ 0 define:

gi,k := xifk(x).

Then gi,k(x0) ∈ q−mZ for all i ≥ 0 and all k ≤ m. We build a lattice from these

polynomials and use LLL to find a short vector. The proof follows as in Lemma 4.1.3,

and we derive the same bound |x0| < (1/2)p1− c
r+c

−2 r
w . In this case r = c = 1, so the

bound is achieved once |x0| ≤ 2
n
2 (

1
2
− 2

w), i.e., w ≥ n
t−(n/4)

.

Some comments:

• When P and p are n/2-bit integers such that P matches p on the t least signif-

icant bits, we have P ≡ p mod 2t. Informally, we say that LSBFact is given the

t least significant bits of p.

• Note that as t increases, TLSBFact(n, t) decreases. While this follows from the

fact that w is inversely proportional to t, it is also makes intuitive sense since

the factoring problem naturally becomes easier as more bits of p are given to

LSBFact.

• This algorithm can be extended to t ≤ n/4 by running LSBFact with R′ =

2(n/4)−t · R and approximations Pj := P + (j − 1)R for j = {1, . . . , 2(n/4)−t}.
One of these Pj will satisfy Pj ≡ p mod R′, where R′ ≥ 2n/4. Hence the total

running time is 2(n/4)−t+1 · TLSBFact(n, (n/4) + 1).

• For t = (n/4) + 1 we have w = n. In practice this may result in a lattice too

large to handle (e.g. factoring n = 1024 bit RSA moduli). The previous trick

can be applied to get a running time of 2(n/4)−t+C · TLSBFact(n, (n/4) + C) for

any C > 0 to get w = dn/Ce.

• In most cases w can be taken to be much smaller, but the method is no longer

provable. See Figure 5.1 for examples.

CHAPTER 4. THE LATTICE FACTORING METHOD 40

4.2.2 Polynomial-Time Factoring for N = prq, r = Ω(log p)

When r ≈ log p the lattice factoring method runs in time polynomial in log N . This

is a new class of integers that can be efficiently factored. We state this formally in

the following.

Corollary 4.2.3 Let N = prq where q < pc for some c. Suppose r = M log p. The

factor p can be recovered from N , r, and c by an algorithm with a running time of

2(c+1)/M · TLLL((1/M) log N, (r + c) log N). The algorithm is deterministic, and runs

in polynomial space.

Proof This follows from Theorem 4.1.1 with the observation that(
c + 1

r + c

)
log p =

c + 1

M
− (c + 1)c

M log p + c
≤ c + 1

M

and r2 = (1/M) log N .

4.3 Experiments

We implemented the lattice factoring method using Maple version 5.0 and Victor

Shoup’s Number Theory Library package [72]. The program operates in two phases.

First, it guesses the most significant bits P of the factor p, then builds the lattice

described in Section 4.1. Using NTL’s implementation of LLL, it reduces the lattice

from Section 4.1, looking for short vectors. Second, once a short vector is found, the

corresponding polynomial is passed to Maple, which computes the roots for compar-

ison to the factorization of N .

We tested MSBFact, LSBFact, and the algorithm of Lemma 4.1.3. The algorithm of

Theorem 4.1.1 uses Lemma 4.1.3 and simple exhaustive search. Examples of running

times for LSBFact are given in Section 4.3. Running times for MSBFact are similar.

Here we restrict attention to the core algorithm given in Lemma 4.1.3. Example

running times of this algorithm are listed in Figure 4.2.

To extend this to the full version (Theorem 4.1.1) would require exhaustive search

for the “bits given”. This introduces a large multiplicative factor in the running times

CHAPTER 4. THE LATTICE FACTORING METHOD 41

p (bits) N (bits) r bits given lattice dim. running time
64 576 8 16 49 14 minutes
80 1280 15 20 72 5.2 hours
96 768 7 22 60 1.6 hours
96 960 9 22 65 3.2 hours
100 600 5 23 69 1.7 hours

Experiments performed on a 1GHz Intel Pentium III running Linux.

Figure 4.2: Running times for LFM

listed above. The resulting running times are not so impressive; for such small N ,

ECM performs much better. However, we expect the running time to scale polyno-

mially with the size of the input, quickly outpacing the running times of ECM and

NFS, which scale much less favorably.

Optimizations

The execution times of the algorithms presented in this chapter are dominated by

the running time of the LLL algorithm. In this section we address several practical

concerns that greatly improve the performance of this step.

The first observation is that in our experiments, the short vector returned by the

LLL algorithm almost always corresponds to a polynomial of degree w − 1. This

means that a linear combination which yields a short vector will include those basis

vectors corresponding to the gi,k and gj,k of greatest degree. We focus attention of

the LLL algorithm on these basis vectors by using the following ordering on the basis

vectors:

• gj,m(xX) for j = w −mr − 1, . . . , 0, followed by

• gi,k(xX) for k = m, m− 1, . . . , 0 and i = 0, . . . , r − 1.

This resulted in a speedup of over factor of two compared to the natural ordering, in

which LLL spent a large amount of time reducing a portion of the basis that would

ultimately be irrelevant.

CHAPTER 4. THE LATTICE FACTORING METHOD 42

The second observation is that in an LLL-reduced lattice, the worst-case result

for the shortest vector will be

‖b1‖ ≈ 2(w−1)/4det(L)1/w.

Implementations of LLL often try to improve this by reducing the “fudge factor”

of 2(w−1)/4. However, as the analysis from Section 4.1 shows, the final contribution

of this term is negligible. Thus a high-quality basis reduction is unnecessary, and

running times can be greatly improved by deactivating features such as Block Korkin-

Zolotarev reduction.

4.4 Comparison to Other Factoring Methods

We restate the Theorem 4.1.1 so that it is easier to compare lattice factoring to

existing algorithms. We first introduce some notation. Let Tα(p) be the function

defined by:

Tα(p) = exp ((log p)α)

This function is analogous to the Lα,β(p) function commonly used to describe the

running time of factoring algorithms [51]. Recall that

Lα,β(p) = exp
(
β(log p)α(log log p)1−α

)
One can easily see that Tα(p) is slightly smaller than Lα,1(p). We can now state a

special case of Theorem 4.1.1.

Corollary 4.4.1 Let N = prq be given where p and q are both k bit integers. Suppose

r = (log p)ε for some ε. Then given N and r, a non-trivial integer factor of N can be

found in time

γ · T1−ε(p) = exp
[
(log p)1−ε

]
· γ

where γ is polynomial in log N .

CHAPTER 4. THE LATTICE FACTORING METHOD 43

Asymptotic Comparison

Let p, q be k-bit primes, and suppose we are given N = prq. We study the running

time of various algorithms with respect to k and r, and analyze their behaviors as r

goes to infinity. We write r = (log p)ε. The standard running times [16, 50] of several

algorithms are summarized in the following table, ignoring polynomial factors.

Method Asymptotic running time

Lattice Factoring Method exp
(
(log p)1−ε

)
Elliptic Curve Method exp

(
1.414 · (log p)1/2(log log p)1/2

)
Number Field Sieve exp

(
1.902 · (log N)1/3(log log N)2/3

)
Since N = prq and r = kε, we know that

log N = r log p + log q ≥ rk = k1+ε.

Rewriting the above running times in terms of k yields the following list of asymptotic

running times.

Method Asymptotic running time

Lattice Factoring Method exp
(
k1−ε

)
= T1−ε(p)

Elliptic Curve Method exp
(
1.414 · k1/2(log k)1/2

)
> (T1/2(p))1.414

Number Field Sieve exp
(
1.902 · k(1+ε)/3((1 + ε) log k)2/3

)
> (T(1+ε)/3(p))1.902

We are particularly interested in the exponential component of the running times,

which is tracked in Figure 4.3. Notice that when ε = 1
2
, then all three algorithms run

in time close to T1/2(p).

Practical Comparison to ECM

Of particular interest in Figure 4.3 is the point at r =
√

log p (i.e. ε = 1
2
), where

ECM, LFM, and NFS have similar asymptotic running times. We refer the reader to

CHAPTER 4. THE LATTICE FACTORING METHOD 44

value r for which N = prq

running
time

Lattice Factoring Method
Elliptic Curve Method

Number Field Sieve

1
√

log p log p
T0(p)

T1/3(p)
T1/2(p)

T2/3(p)

T1(p)exponential
time

polynomial
time

Comparison of subexponential running times of current factoring methods as a func-
tion of r. Both axes are logarithmic, and polynomial time factors are suppressed.

Figure 4.3: Asymptotic comparison of LFM with ECM and NFS

Figure 4.2 for the sample running times with the lattice factoring method on similar

inputs.

Since some of the larger integers that we are attempting to factor exceed 1000 bits,

it is unlikely that current implementations of the Number Field Sieve will perform

efficiently. This leaves only the Elliptic Curve Method for a practical comparison.

Below, we reproduce a table of some example running times [81, 74] for factorizations

performed by ECM.

size of p running time with r = 1 predicted run time for large r

64 bits 53 seconds r = 8 : 848 seconds

96 bits 2 hours r = 9 : 50 hours

128 bits 231 hours r = 10 : 7000 hours

Clearly, the Elliptic Curve Method easily beats the lattice factoring method for small

integers. However, LFM scales polynomially while ECM scales exponentially. Based

on the two tables above we conjecture that the point at which our method will be

faster than ECM in practice is for N = prq where p and q are somewhere around 400

bits and r ≈ 20.

CHAPTER 4. THE LATTICE FACTORING METHOD 45

4.5 Conclusions

We showed that for cryptographic applications, integers of the form N = prq should

be used with care. In particular, we showed that the problem of factoring such N

becomes easier as r get bigger. For example, when r = ε log p for a fixed constant

ε > 0 the integer N can be factored in polynomial time. Hence, if p and q are k

bit primes, the integer N = pkq can be factored by a polynomial time algorithm.

Even when r ≈
√

log p such integers can be factored in time that is asymptotically

faster than the best current methods. For much smaller r, our algorithm provides an

efficient method for factoring N provided a “hint” of appropriate quality is available.

This is of important practical significance in the next chapter.

Our experiments show that when the factors p and q are small (e.g. under 100

bits) the algorithm is impractical and cannot compete with the ECM. However, the

algorithm scales better; we conjecture that as soon as p and q exceed 400 bits each,

it performs better than ECM when r is sufficiently large.

Surprisingly, our results do not seem to follow directly from Coppersmith’s results

on finding small roots of bivariate polynomials over the integers. Instead, we extend

the univariate root-finding technique. It is instructive to compare our results to the

case of unbalanced RSA where N = pq is the product of two primes of different size,

say p is much larger than q. Suppose p is a prime on the order of qs. Then, the larger

s is, the more bits of q are needed to efficiently factor N . In contrast, we showed that

when N = prq, the larger r is, the fewer bits of p are needed.

One drawback of the lattice factoring method is that for each guess of the most

significant bits of p, the LLL algorithm has to be used to reduce the resulting lattice.

It is an interesting open problem to devise a method that will enable us to run LLL

once and test multiple guesses for the MSBs of p. This will significantly improve the

algorithm’s running time. A solution will be analogous to techniques that enable one

to try multiple elliptic curves at once in the ECM. Another question is to generalize

the LFM to integers of the form N = prqs where r and s are approximately the same

size.

Chapter 5

Partial Key Exposure Attacks

Let N = pq be an RSA modulus and let e, d be encryption/decryption exponents,

i.e., ed ≡ 1 mod φ(N). In this chapter we study the following question: how many

bits of d does an adversary require in order to reconstruct all of d? Surprisingly, we

show that for short public exponent RSA, given only a quarter of the least significant

bits of d, an adversary can efficiently recover all of d. We obtain similar results,

summarized below, for larger values of e as well. Our results show that the RSA

public key cryptosystem, and particularly low public exponent RSA, are vulnerable

to partial key exposure. We refer to this class of attacks as partial key exposure attacks.

To motivate this problem consider a computer system which has an RSA private

key stored on it. An adversary may attempt to attack the system in a variety of ways

in order to obtain the private key. Some attacks (e.g. a timing attack [47]) are able

to reveal some bits of the key, but may fail to reveal the entire key [24]. Our results

show that attacks, such as the timing attack on RSA, need only be carried out until

a quarter of the least significant bits of d are exposed. Once these bits are revealed

the adversary can efficiently compute all of d. Another scenario where partial key

exposure comes up is in the presence of covert channels. Such channels are often slow

or have a bounded capacity. Our results show that as long as a fraction of the private

exponent bits can be leaked, the remaining bits can be reconstructed.

Let N = pq be an n-bit RSA modulus. The reader is reminded that we view the

private exponent d as an n-bit string, so that when referring to the t most significant

46

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 47

bits of d we refer to the t leftmost bits of d when viewed canonically as an n-bit string.

For instance, it is possible that the t most significant bits of d are all zero, for some

t. Similarly, a quarter of the bits of d always refers to n/4 bits.

5.1 Summary of Partial Key Exposure Attacks on

RSA

We summarize our results in the following two theorems. The proofs are given in the

subsequent sections. The first theorem applies to short public exponent RSA. The

second applies to larger values of e. Throughout this chapter we assume N = pq is

an RSA modulus with
√

N/2 < q < p < 2
√

N .

Theorem 5.1.1 Let N = pq be an n-bit RSA modulus with N = 3 mod 4. Let

1 ≤ e, d ≤ φ(N) satisfy ed ≡ 1 mod φ(N) and e < 2(n/4)−3. There is an algorithm

that given N , e, and the n/4 least significant bits of d computes all of d in time

polynomial in n and e.

As we shall see, the running time of the attack algorithm in the above theorem

is in fact linear in e log2 e. Consequently, as long as e is not “too large” the attack

can be efficiently mounted. For a very small value of e such as e = 3 we will show in

Section 5.4 that the attack runs in a reasonable amount of time. For larger values,

such as e = 65537, the attack is still feasible, though clearly takes much longer.

Theorem 5.1.2 Let N = pq be an n-bit RSA modulus with N = 3 mod 4. Let

1 ≤ e, d ≤ φ(N) satisfy ed ≡ 1 mod φ(N).

1. Suppose e is a prime in the range {2t, . . . , 2t+1} with n/4 ≤ t ≤ n/2. Then there

is an algorithm that given N , e, and the t most significant bits of d computes

all of d in time polynomial in n.

2. More generally, suppose e ∈ {2t, . . . , 2t+1} is the product of at most r distinct

primes 〈e1, . . . , er〉 with n/4 ≤ t ≤ n/2. Then there is an algorithm that given

N , 〈e1, . . . , er〉, and the t most significant bits of d computes all of d in time

polynomial in n and 2r.

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 48

3. When the factorization of e is unknown, we obtain a weaker result. Suppose e

is in the range {2t, . . . , 2t+1} with t ∈ 0 . . . n/2. Further, suppose d > εN for

some ε > 0. Then there is an algorithm that given N , e, ε, and the n− t most

significant bits of d computes all of d in time polynomial in n and 1/ε.

Theorem 5.1.2 applies to public exponents e in the range 2n/4 ≤ e ≤ 2n/2. Unlike

the previous theorem, Theorem 5.1.2 makes use of the most significant bits of d.

When e is prime, at most half the bits of d are required to mount the attack. Fewer

bits are needed when e is smaller. Indeed, if e is close to N1/4 only a quarter of the

msb bits of d are required. The same result holds when e is not prime, as long as we

are given the factorization of e and e does not have too many distinct prime factors.

The last part of the theorem applies to e < N1/2 when the factorization of e is not

known. To mount the attack, at least half the msb bits of d are required. More bits

are necessary, the smaller e is. The attack algorithm works for most e, but may fail

if d is significantly smaller than N .

One may refine Theorem 5.1.2 in many ways. It is possible to obtain other results

along these lines for public exponents e < N1/2. For instance, consider the case when

the factorization of e is unknown. If the adversary is given half the most significant

bits of d and a quarter of the least significant bits then we show the adversary can

recover all of d. When e < N1/4 this is better than the results of Theorem 5.1.2 part

(3). However, we view attacks that require non-consecutive bits of d as artificial. We

briefly sketch these variants in Section 5.3.3.

There has been recent work on protecting against partial key exposure using ex-

posure resilient cryptography. Initial progress was made several years ago by Chor et

al. [15], who develop the notion of t-resilient functions and discuss an application to

protection against partially leaked cryptographic keys. More recent work has focused

on exposure resilient functions, introduced by Canetti et al. [13], which can be used to

protect against partial key exposure for a variety of cryptographic primitives. These

ideas were later refined by Dodis [25] and Dodis, Sahai, and Smith [26]. Steinfeld and

Zheng [73] have shown that by carefully choosing p and q (instead of selecting them

at random as is typical in practice) the short public exponent partial key exposure

attacks presented in this chapter can be prevented.

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 49

5.1.1 Notation

Throughout this chapter we let N = pq denote an n-bit RSA modulus. We assume

the primes p and q are distinct and close to
√

N . More precisely, we assume

4 <
√

N/2 < q < p < 2
√

N (5.1)

Notice that equation (5.1) implies p + q < 3
√

N . Furthermore, it follows by equa-

tion (5.1) that

N/2 < N − 4
√

N < φ(N) < N, (5.2)

where φ(N) = N − p− q + 1 is the Euler totient function.

Let 1 ≤ e, d ≤ φ(N) be RSA encryption/decryption exponents. Recall the defining

equation for RSA:

ed + k(N + 1− (p + q)) = ed + kφ(N) = 1. (3.1)

For convenience, throughout this chapter we set s := p + q, and write equation (3.1)

as

ed + k(N + 1− s) = 1. (5.4)

Under the assumption p > q this implies:

p =
1

2
(s +

√
s2 − 4N). (5.5)

Since φ(N) > d we know that k < e.

5.2 Partial Key Exposure Attacks on Short Public

Exponent RSA

In this section we consider attacks on the RSA public key cryptosystem with a “short”

public exponent e. For our purposes, “short” implies that exhaustive search on all

values less than e is feasible. In particular, since k ≤ e holds, our attack algorithm

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 50

can exhaustively search all possible candidates k′ for k.

Suppose we are given the least-significant m-bit block of d for some m ≥ n/4.

That is, we know some d0 such that d0 ≡ d mod 2m. Reducing equation (3.1) modulo

2m and substituting q = N/p, we see that p mod 2m is a solution for x in the equation

ed0 ≡ 1 + k(N − x−N/x + 1) (mod 2m).

This leads to the following quadratic equation in x:

kx2 + (ed0 − k(N + 1)− 1)x + kN ≡ 0 (mod 2m). (5.6)

Initially, an attacker might have only a guess k′ for k, so it must obtain solutions to

the equation

k′x2 + (ed0 − k′(N + 1)− 1)x + k′N ≡ 0 (mod 2m). (5.7)

The attack will focus on finding solutions to this equation. The main tool we use is

stated in the following lemma.

Lemma 5.2.1 With the notation as in Section 5.1.1, suppose N ≡ 3 mod 4 and

e ≤ 2(n/4)−3, and k′ and m are integers. There is an algorithm that given N , e, k′,

and m computes a list of solutions 〈x1, . . . , x`〉 to equation (5.7) satisfying:

(1) If k′ = k, then all solutions to equation (5.7) are included in the list, and

(2) Let tk′ be the largest integer such that 2tk′ divides k′. Then the length of the list

satisfies ` ≤ 22+tk′ and the algorithm runs in time O(n32tk′).

Proof Suppose k′ = k. Notice that k divides the coefficients of the quadratic term

and the constant term of equation (5.6); to see that k divides the coefficient of the

linear term, observe ed0 − k(N + 1)− 1 = −k(p + q).

Suppose k = 2tkw for some integer tk and odd integer w. Then every solution x

to equation (5.6) satisfies

wx2 − w(p + q)x + wN ≡ 0 (mod 2m−tk).

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 51

Furthermore, w is odd so w−1 mod 2m−tk is well-defined, thus every such solution x

satisfies

x2 − (p + q)x + N ≡ 0 (mod 2m−tk). (5.8)

We may complete the square to obtain1

(x− (p + q)/2)2 ≡ ((p− q)/2)2 (mod 2m−tk). (5.9)

D. Redmond [68] describes an algorithm to find a solutions to equations of the form

y2 ≡ c mod 2u, when c ≡ 1 mod 8 and u ≥ 3. Since N ≡ 3 mod 4, we have p 6≡ q mod

4, and it follows that ((p − q)/2)2 ≡ 1 mod 8. Furthermore, tk ≤ log2 e ≤ (n/4) − 3

and m ≥ n/4, so m − tk ≥ 3. Thus equation (5.9) is in precisely the required form.

For completeness, we summarize this algorithm in Lemma A.1.1 in Appendix A.

The above produces one solution to equation (5.8). Lemma A.1.3 in Appendix A

shows that there are exactly four solutions to this equation and that given one of these

solutions the other three are easy to obtain. Call these four solutions {x1, x2, x3, x4}.
It follows that the solutions to equation (5.6) are xi + j · 2(n/4)+δ−tk for i ∈ {1, 2, 3, 4}
and j ∈ {0, . . . , 2tk − 1}.

In summary, when k′ = k, we expect equation (5.7) to have at most 22+tk solutions.

The above process will find them all, so condition (1) is satisfied. If more than 22+tk

solutions are discovered, we know k′ 6= k, so we may safely terminate after outputting

the first 22+tk solutions without violating condition (1). Hence, condition (2) is

satisfied.

We are now ready prove Theorem 5.1.1, restated more precisely as follows. Recall

that LSBFact is the algorithm of Corollary 4.2.2.

Theorem 5.2.2 With the notation as in Section 5.1.1, suppose N ≡ 3 mod 4 and

e ≤ 2(n/4)−3. There is an algorithm that given N , e, and the m ≥ n/4 least significant

bits of d factors N in time O(TLSBFact(n, m) · e log2 e).

Proof The attack works as follows: for every candidate value k′ for k in the range

{1, . . . , e} do:

1We note that the fractions in this expression represent division over the integers, which is well-
defined since p ≡ q mod 2.

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 52

1. Use the algorithm of Lemma 5.2.1 to compute all solutions for x mod 2m to equa-

tion (5.7).

2. For each solution x0 mod 2m so obtained use LSBFact to attempt to factor N .

Since one of these solutions will satisfy x0 ≡ p mod 2m the attack will succeed in

factoring N .

From Lemma 5.2.1 we may conclude that when k′ is odd, there are at most four

solutions to equation (5.7) to check; if k′ ≡ 2 mod 4, then there are at most eight

solutions to check, and so on. Since k′ is exhaustively searched in the range {0, . . ., e},
this implies that at most 4edlog2 ee solutions to equation (5.7) will be tested before

the correct value of x ≡ p mod 2m is obtained, exposing the factorization of N . Each

solution is tested using LSBFact; since TLSBFact(n,m) dominates the running time of

the other arithmetic operations (including root-finding and use of Lemma A.1.1), this

leads to a total running time that is O(TLSBFact(n,m) · e log2 e).

Remark 1. The case N ≡ 1 mod 4 requires careful analysis, and R. Steinfeld

and Y. Zheng show that a modification of the above attack has an expected running

time of O(TLSBFact(n,m) · n · e log2 e) over random choice of n/2-bit odd integers p

and q [73]. They go on to describe how to resist this partial key exposure attack by

forcing p ≡ q mod 2u for large values of u.

One may wonder whether a similar partial key exposure attack is possible using

the most significant bits of d. The answer is no. The reason is that low public

exponent RSA leaks half the most significant bits of d. In other words, the adversary

may obtain half the most significant bits of d from e and N alone. Consequently,

revealing the most significant bits of d does not help the adversary in exposing the

rest of d. This is stated more precisely in the following fact.

Fact 5.2.3 With the notation as in Section 5.1.1, suppose there exists an algorithm

A that given the n/2 most significant bits of d discovers all of d in time t(n). Then

there exists an algorithm B that breaks RSA in time et(n).

Proof Observe that by equation (5.4), we have d = (1 + k(N + 1− p− q))/e. Let

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 53

d̃ be

d̃ =

⌊
1 + k(N + 1)

e

⌋
Then

0 ≤ d̃− d ≤ k(p + q)/e ≤ 3k
√

N/e < 3
√

N

It follows that d̃ matches d on the n/2 most significant bits of d. Hence, once k

is known, the half most significant bits of d are exposed. With this observation,

algorithm B can work as follows: try all possible values k′ for k in the range {1, . . . , e}.
For each candidate k′, compute the corresponding value d̃ using k′ as a guess for k.

Run algorithm A giving it half the most significant bits of d̃. Once the k′ = k, the

entire private key is exposed.

Remark 2. Fact 5.2.3 demonstrates that computing the exponentiation associated

with the half high-order bits of d can be performed by an untrusted server. This may

be of use in server-aided RSA systems where techniques using the Chinese Remainder

Theorem cannot be employed. For instance, in threshold RSA [29], the factorization

of the modulus is not known to any party, so Chinese Remainder techniques are of

no help in accelerating computation. Fact 3.2 suggests that the half high-order bits

of d can be revealed to the server with no additional compromise in security, allowing

accelerated computation by off-loading that portion of the exponentiation operation.

Fact 5.2.3 explains why for low exponent RSA one cannot mount a partial key

recovery attack given the most significant bits of d. It is natural to ask whether one

can expose all of d given a quarter of the low order bits of d that are not necessarily

the least significant ones. For instance, the following attack uses n/4 bits of d in bit

positions n/4 to n/2, outlined below as Theorem 5.2.4. Is it possible to generalize

this result to every subsequence of n/4 bits from the n/2 low-order bits of d? At the

moment this is an open question.

Theorem 5.2.4 With the notation as in Section 5.1.1, suppose |p−q| ≥ 2(n/2)−2 and

e ≤ 2(n/4)−3, There is an algorithm that given N , e, and the m ≥ n/4 bits of d in

positions (n/2)−m to n/2 factors N in time O(TLSBFact(n, m) · e2).

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 54

Proof Using the approximation d̃ developed in Fact 5.2.3 and small exhaustive

search, we may obtain bits n/2 to n of d. We now know bits (n/2)−m to n of d; we

denote this by d1, so that |d− d1| < 2(n/2)−m. The attack tries every candidate value

k′ for k in the range {1, . . . , e}. Define

s1 := N + 1− ed1 − 1

k′
.

Let us consider the case k′ = k. We have

|s1 − s| =
∣∣∣ e
k
(d− d1)

∣∣∣ < 2(n/2)−m+log2 e.

Equation (5.5) suggests we take

p1 :=
1

2
(s1 +

√
s2
1 − 4N),

as an approximation to p. It turns out that this is a very good approximation, so

that

|p1 − p| ≤ 2(n/2)−m+5+log2 e.

This is proved as Lemma B.1.1 in Appendix B. So in at most 32e steps, exhaustive

search on the high-order bits of p1 will discover p∗1 such that |p∗1−p| ≤ 2(n/2)−m. Each

candidate for p∗1 is given to LSBFact to attempt to factor N .

In summary, once k′ = k, the attack algorithm will discover the factorization of

N . The testing of each candidate k′ runs in time 32e · TLSBFact(n, m); there are at

most e candidates to test, so the total running time is O(TLSBFact(n, m) · e2).

5.3 Partial Key Exposure Attacks on Medium Ex-

ponent RSA

We describe several attacks on the RSA system that can be employed when the public

key e is in the range 2n/4 to 2n/2. Unlike the previous section, these attacks require

the most significant bits of d to be given. We mount the attack by carefully studying

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 55

equation (5.4):

ed + k(N + 1− s) = 1

Recall that s = p + q.

The key to mounting these attacks is in finding k. Searching for k by brute force

is infeasible, since k is an arbitrary element in the range {1, . . . , e}. Fortunately,

given sufficiently many msb’s of d, we may compute k directly, eliminating it as an

unknown from equation (5.4). Once k is revealed, we are left with two unknowns, d

and s which we recover using various methods. The main tool for discovering k is

presented in the following theorem. It shows that as long as e <
√

N we can find k

given only log2 e msb bits of d. The theorem produces a small constant size interval

containing k. As always, we try all possible values of k in the interval until our attack

algorithm succeeds.

Theorem 5.3.1 With the notation as in Section 5.1.1, let t be an integer in the

range {0, . . . , n/2}. Suppose 2t < e < 2t+1. Then there is an algorithm that given N ,

e, and the t most significant bits of d efficiently computes the compute the unique k

satisfying equation (5.4) up to a constant additive error.

The proof of Theorem 5.3.1 relies on the following lemma, which provides general

conditions under which k can be deduced by rounding.

Lemma 5.3.2 Suppose d0 is given such that the following two conditions hold:

(i) |e(d− d0)| < c1N , and

(ii) ed0 < c2N
3/2.

Then the unique k satisfying ed+kφ(N) = 1 is an integer in the range [k̃−∆, k̃ +∆]

where k̃ = (ed0 − 1)/N and ∆ = 8c2 + 2c1.

Proof Let k̃ = (ed0 − 1)/N . Then

∣∣∣k̃ − k
∣∣∣ =

∣∣∣∣(ed0 − 1)

(
1

φ(N)
− 1

N

)
+

e(d− d0)

φ(N)

∣∣∣∣ < c2N
3/2

(
N − φ(N)

φ(N)N

)
+ c1

N

φ(N)

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 56

Since N − φ(N) < 4
√

N and φ(N) > N/2 it follows that∣∣∣k̃ − k
∣∣∣ < 8c2 + 2c1.

Consequently, k is an integer in the range {k̃ −∆, . . . , k̃ + ∆} as required.

We are now prepared to prove Theorem 5.3.1.

Proof of Theorem 5.3.1

The t most significant bits of d enable us to construct an integer d0 satisfying |d−d0| <
2n−t. We use Lemma 5.3.2 to compute k. By the restriction on e, condition (i) is

satisfied with c1 = 2. Since d0 < N , condition (ii) holds with c2 = 2. Hence k is an

integer in a known interval of width 40.

5.3.1 Prime Public Exponent

We are now ready to prove part (1) of Theorem 5.1.2. Theorem 5.3.1 enables us to

find k. Once k is found we reduce equation (5.4) modulo e. This removes d from the

equation. We can then solve for s mod e. Given s mod e we are able to factor the

modulus.

Theorem 5.3.3 With the notation of Section 5.1.1, let t be an integer in the range

n/4 ≤ t ≤ n/2. Suppose e is a prime in the range {2t, . . . , 2t+1}. Then there is

an algorithm that given N , e, and the t most significant bits of d factors N in time

O(TLSBFact(n, t)).

Proof The assumptions of the theorem satisfy the conditions of Theorem 5.3.1.

Consequently, k is known to be an integer in a constant size range. We try all

candidate values k′ for k. For each one we do the following:

1. Compute s′ ≡ k′−1 −N − 1 (mod e). This is well-defined since gcd(e, k′) = 1.

2. Compute a root p′ mod e for x in the quadratic

x2 − s′x + N ≡ 0 (mod e) (5.10)

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 57

This can be done efficiently (in probabilistic polynomial time) since e is prime.

Indeed, once s′ ≡ s ≡ p + q mod e, then p′ ≡ p mod e.

3. Use LSBFact to find p given p mod e. This is possible since t ≥ 2n/4.

Once the correct candidate k′ = k is found (after a constant number of attempts)

the factorization of N is exposed. Each attempt runs LSBFact with the hint p mod e

(equal to approximately t bits of information about p). This leads to a total running

time that is O(TLSBFact(n, t)).

A surprising consequence of this theorem is that, when e is prime and is roughly

∼= 2n/4, only the first n/4 msb’s of d are needed to mount the attack. This attack

is as strong as the one on low public exponent RSA. In any case, for prime e ∈
{2n/4, . . . , 2n/2}, the first n/2 most significant bits of d always suffice.

The proof shows that it is not necessary for e to be prime. As long as we can

solve the quadratic in step (2) the proof can be made to work. In order to solve the

quadratic we must be given the factorization of e. Unfortunately, modulo a composite,

the quadratic may have many roots. We must try them all. If e has r distinct prime

factors, there are at most 2r solutions to consider. As a result, we must also bound

the number of prime factors of e. We obtain part (2) of Theorem 5.1.2.

Corollary 5.3.4 As in Theorem 5.3.3 suppose e is an integer in {2t, . . . , 2t+1}. Sup-

pose e =
∏r

i=1 ei where e1, . . . , er are distinct primes. Then there is an algorithm

that given N , 〈e1, . . . , er〉, and the t most significant bits of d factors N in time

O(TLSBFact(n, t) · 2r).

We point out that when e is close to 2n/2 the same attack can be mounted even

if the factorization of e is unknown. In other words, for all e sufficiently close to

2n/2, half the msb’s of d are sufficient to reconstruct all of d. Indeed, the range

{1, . . . , d2n/2+2/ee} can be searched exhaustively to find ds/ee. Given the value of

ds/ee we can obtain s (since s mod e is already known.) Since s is now known in the

integers, we can directly find p using equation (5.5).

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 58

5.3.2 Public Exponent with Unknown Factorization

We now turn to proving part (3) of Theorem 5.1.2. We consider the case when e is

in the range {2t, . . . , 2t+1} with 0 ≤ t ≤ n/2. The factorization of e is unknown. The

following result establishes that we can still find all of d, given some of its msb’s. Our

attack works as long as k is not significantly smaller than e. At the end of the section

we note that the attack heuristically works for almost all e in the range {2t, . . . , 2t+1}.

Theorem 5.3.5 With the notation as in Section 5.1.1, let t be an integer in the range

{0, . . . , n/2}. Suppose e is in the range {2t, . . . , 2t+1}. Further suppose k > ε · e for

some ε > 0. Then there is an algorithm that given N , e, and the n−t most significant

bits of d finds all of d. The algorithm runs in time O(n3/ε).

Proof Given the n − t most significant bits of d we can construct a d0 such that

0 ≤ d − d0 < 2t. Since e < 2n/2 we can use d0 and Theorem 5.3.1 to limit k to a

constant size interval. For each candidate k′ for k we do the following:

1. Compute d1 ≡ e−1 mod k′. This is possible since e and k are relatively prime,

so only candidates k′ relatively prime to e are worth considering. Since ed −
kφ(n) = 1 we know that d1 ≡ d mod k′ when k′ = k.

2. By assumption k′ > ε2t. Note that at this point we know d mod k′ as well as

the n− t msb’s of d. We determine the rest of the bits by an exhaustive search.

More precisely, write

d = k′d2 + d1

Then d2 = d0/k
′ + (d− d0)/k

′ − d1/k
′. The only unknown term in this sum is

v = (d− d0)/k
′. Since k′ > ε2t we know that v = (d− d0)/k

′ < 1/ε. To find v,

we try all possible candidates v′ in the range {0, . . . , 1/ε}. For each pair (k′, v′)

of candidates we compute the corresponding value of d and test it.

3. Once the correct values v′ = v and k′ = k are found, d is exposed. Testing each

pair (k′, v′) of candidates takes O(n3) time, and there are O(1/ε) candidate

pairs to test.

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 59

Theorem 5.3.5 works without having to know the factorization of e. Unfortunately,

the results are not as strong as in the previous section. When e is close to N1/4,

Theorem 5.3.5 implies that 3/4 of the bits of d are needed to reconstruct d. This is

much worse than the corresponding bound achieved in the previous section, where

only 1/4 the bits were required. When e is close to N1/2 the theorem produces results

similar to the previous section.

Theorem 5.3.5 can only be applied when k > ε · e. Intuitively, k behaves roughly

as a random integer in the range {1, . . . , e}. As such, we should have k > e/10 for

about 90% of the e ∈ {2t, . . . , 2t+1}. Hence, heuristically the attack works efficiently

for almost all e.

5.3.3 Further Results

What if the factorization of e is unknown and e was not randomly chosen? Although

it may be computationally infeasible, it is possible for e, d to be specifically chosen as

factors of 1 + kφ(N) for very small k, violating the conditions of Theorem 5.3.5. We

stress that this is particularly unlikely, as not only would the rather large value of

1+kφ(N) would need to be factored into ed, but a factor e in the range {2n/4, . . . , 2n/2}
would need to be obtained, and one that itself cannot easily be factored (making it

vulnerable to Corollary 5.3.4). However, under these circumstances, the above attacks

would not apply. We conclude with the following general result which holds for all

e < 2n/2. Unfortunately, the result requires non-consecutive bits of d.

Theorem 5.3.6 With the notation as in Section 5.1.1, let t be an integer in {1,
. . ., n/2} and e in {2t, . . . , 2t+1}. There is an algorithm that given N , e, the t most

significant bits of d, and the m ≥ n/4 least significant bits of d factors N in time

O(TLSBFact(n, m)).

Proof Sketch Using Theorem 5.3.1 we may compute a constant size interval I

containing k. Observe that the proof of Theorem 5.2.2 applies for all e, as long as k

and the m least significant bits of d are known. To recover d, run the algorithm of

Theorem 5.2.2 on all candidate values of k in I.

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 60

length of N bits of d exposed LFM lattice dim. TLSBFact(n, m) max runtime
768 bits 208 bits 9 0.5 seconds 3.5 seconds
768 bits 198 bits 23 69 seconds 8 minutes
1024 bits 285 bits 9 0.9 seconds 6.5 seconds
1024 bits 264 bits 35 40 minutes 4.7 hours

Experiments performed on a 1GHz Intel Pentium III running Linux.

Figure 5.1: Running times of LSBFact used in partial key exposure attacks

5.4 Experiments

To test the effectiveness of our attacks, we implemented them using the C++ pro-

gramming language with the Number Theory Library package by V. Shoup [72]. The

running time of LSBFact dominates the running time of our attacks (all other steps are

efficient arithmetic operations), so its running time is the primary object of discussion

in this section.

We experimented with partial key exposure attacks with e = 3. We note that

when e = 3, we must have k = 2. Since k is known, we may eliminate the outer loop

in the algorithm of Theorem 5.2.2, so at most eight solutions to equation (5.7) are

computed. Only seven of these need to be checked, since at least one of them will

expose either p or q. Hence, the running time of the attack when e = 3 is at most

7 · TLSBFact(n,m).

Some experiments with e = 3 are summarized in Figure 5.1.

For medium public exponent e, where e is prime, the attack proceeds simi-

larly: with the right guess for k, the value p mod e can be determined. Thus,

the running time of an attack on medium, prime public exponent e will be equal to

TLSBFact(n, log2 e) times the number of candidates for k that must be checked, which

is always less than or equal to 40. With e of known factorization and r factors, there

is a multiplicative increase of 2r in running time to compute and check the distinct

solutions to equation (5.10).

When the factors of e are unknown and the (n − log2 e) bits of d are given, the

attack is immediate – the algorithm suggested in Theorem 5.3.5 involves only a few

CHAPTER 5. PARTIAL KEY EXPOSURE ATTACKS 61

simple arithmetic operations and a very small search.

5.5 Conclusions

We study the RSA public key cryptosystem’s vulnerability to partial key exposure.

We showed that for low exponent RSA, a quarter of the least significant bits of d are

sufficient for efficiently reconstructing all of d. We obtain similar results for larger

values of e as long as e <
√

N . For instance, when e is close to
√

N , half the most

significant bits of d suffice.

The results presented in this chapter demonstrate the danger of leaking a fraction

of the bits of d. We note that discrete log schemes (e.g. DSS, ElGamal) do not seem

vulnerable to partial key exposure. A fraction of the bits of the private key in a

discrete log based system does not seem to enable the adversary to efficiently break

the system.

There are a number of related open problems:

• Does there exist a polynomial time algorithm which enables one to break the

RSA system for values of e substantially larger than
√

N , given only a subset

of the bits of d?

• Our strongest result with respect to the fewest bits of d required to break the

system is for an e in the range {N1/4, . . . , N1/2} with known factorization. For

an e with unknown factorization and in the same range, does there exist a

polynomial time algorithm which provides as strong a result?

Chapter 6

Attacks on Short Secret Exponent

RSA

In this chapter, we show that if the secret exponent d used in the RSA public key

cryptosystem is less than N0.292, then the system is insecure. This is the first im-

provement over an old result of Wiener showing that when d is less than N0.25 the

RSA system is insecure.

To motivate this problem, consider the problem of speeding up RSA signature

generation. The most computationally expensive step in signature generation is the

operation m 7→ md mod N . Thus one is tempted to use a short secret exponent

d. Unfortunately, Wiener [80] showed over ten years ago that if one uses d < N0.25

then the RSA system can be broken. (See Section 3.2.4.) Since then there have been

no improvements to this bound. Verheul and Tilborg [79] showed that as long as

d < N0.5 it is possible to expose d in less time than an exhaustive search; however,

their algorithm requires exponential time as soon as d > N0.25.

In this chapter we describe the first substantial improvement to Wiener’s result.

We show that as long as d < N0.292 one can efficiently break the system. In particular,

when d < N0.292 an attacker can recover the short secret key given the public key.

Wiener describes a number of clever techniques for avoiding his attack while still

providing fast RSA signature generation. One such suggestion is to use a large value of

e. Indeed, Wiener’s attack provides no information as soon as e > N1.5. In contrast,

62

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 63

our approach is effective as long as e < N1.875. Consequently, larger values of e must

be used to defeat the attack. We discuss this variant in Section 6.4.

6.1 Overview: The Small Inverse Problem

Our main results will come from carefully examining the defining equation for RSA:

ed + k(N + 1− (p + q)) = 1. (3.1)

Writing s := −(p + q) and A := N + 1, equation (3.1) can be simplified to:

k(A + s) ≡ 1 (mod e).

Throughout the rest of the chapter we write e = Nα for some α. Typically, e is of

the same order of magnitude as N (e.g. e > N/10) and therefore α is very close to 1.

As we shall see, when α is much smaller than 1, our results become even stronger.

Suppose the secret exponent d satisfies d < N δ. Our goal is to find the largest

possible δ for which the value of d can be recovered efficiently from e and N . By

equation (3.1) we know that

|k| < de

φ(N)
≤ 3de/(2N) < (3/2)e1+ δ−1

α .

Similarly, since both p and q are less than 2
√

N we know that

|s| < 3N0.5 = 3e1/(2α).

To summarize, taking α ≈ 1 (which is the common case) and ignoring small

constants, we end up with the following problem: find integers k and s satisfying

k(A + s) ≡ 1 (mod e) where |s| < e0.5 and |k| < eδ. (6.2)

The problem can be viewed as follows: given an integer A, find an element “close” to

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 64

A whose inverse modulo e is “small”. We refer to this as the small inverse problem.

Clearly, if for a given value of δ one can efficiently list all the solutions to the small

inverse problem, then RSA with secret exponent smaller than N δ is insecure: simply

observe that s modulo e reveals all of s since s < e; once s = −(p + q) is revealed, it

is straightforward to recover p and q since N = pq is also known. We will show how

to solve the small inverse problem whenever δ < 1− 1
2

√
2 ≈ 0.292.

A first pass at a solution to the small inverse problem when α is close to 1 is given

in Section 6.2. In Section 6.3, we improve this approach and prove the main result

of the chapter. Section 6.4 provides a solution for arbitrary α. Finally, Section 6.5

describes experimental results with the attack algorithm.

6.2 Solving the Small Inverse Problem

In this section we focus on the case when e is of the same order of magnitude as N , i.e.

if e = Nα then α is close to 1. To simplify the exposition, in this section we simply take

α = 1. In Section 6.4 we give the general solution for arbitrary α. When α = 1 the

small inverse problem is the following: given a polynomial f(x, y) = (x(A+y)−1)/e,

find (x0, y0) satisfying

f(x0, y0) ∈ Z where |x0| < eδ and |y0| < e0.5.

We show that the problem can be solved whenever δ < 1 − 1
2

√
2 ≈ 0.292. We begin

by giving an algorithm that works when δ < 7
6
− 1

3

√
7 ≈ 0.284. Our approach follows

that outlined in Section 2.4, but we make several improvements specific to the small

inverse problem. For simplicity, let X = eδ and Y = e0.5.

The main tool we use is Fact 2.4.1, which suggests that we look for a polynomial

h(x, y) of small norm satisfying h(x0, y0) ∈ Z. For integers i, j, k ≥ 0 we define:

gi,k(x, y) := xifk(x, y) and hj,k(x, y) := yjfk(x, y).

We refer to the gi,k polynomials as x-shifts and the hj,k polynomials as y-shifts.

Observe that gi,k(x0, y0) ∈ Z and hj,k(x0, y0) ∈ Z for all i, j, k ≥ 0. We are interested

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 65

in finding a low-norm integer linear combination of the polynomials gi,k(xX, yY) and

hj,k(xX, yY). To do so we form a lattice spanned by these polynomials. Our goal is to

build a lattice that has sufficiently small vectors and then use LLL to find them. By

Fact 2.2.2 we must show that the lattice spanned by the polynomials has a sufficiently

small determinant.

Given an integer m, we build a lattice L spanned by the polynomials for k =

0, . . . ,m. For each k we use gi,k(xX, yY) for i = 0, . . . ,m − k and use hj,k(xX, yY)

for j = 0, . . . , t for some parameter t that will be determined later. For example, when

m = 3 and t = 1 the lattice is spanned by the rows of the matrix in Figure 6.1. Since

1 x xy x2 x2y x2y2 x3 x3y x3y2 x3y3 y xy2 x2y3 x3y4

1 1

x X

f – – e−1XY

x2 X2

xf – – e−1X2Y

f2 – – – – – e−2X2Y 2

x3 X3

x2f – – e−1X3Y

xf2 – – – – – e−2X3Y 2

f3 – – – – – – – – – e−3X3Y 3

y Y

yf – – e−1XY 2

yf2 – – – – – e−2X2Y 3

yf3 – – – – – – – – e−3X3Y 4

The matrix spanned by gi,k and hj,k for k = 0, . . . , 3, i = 0, . . . , 3 − k, and j = 0, 1.
The “–” symbols denote non-zero entries whose value we do not care about.

Figure 6.1: Example lattice used in attacks on short secret exponent RSA

the lattice is spanned by a lower triangular matrix, its determinant is only affected by

entries on the diagonal, which we give explicitly. Each “block” of rows corresponds

to a certain power of x. The last block is the result of the y-shifts. In the example in

Figure 6.1, t = 1, so only linear shifts of y are given. As we shall see, the y-shifts are

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 66

the main reason for our improved results.

We now turn to calculating the determinant of the lattice L. A routine calculation

shows that the determinant of the submatrix corresponding to all x shifts (i.e. ignoring

the y-shifts by taking t = 0) is

detx = e−m(m+1)(m+2)/6 ·Xm(m+1)(m+2)/3 · Y m(m+1)(m+2)/6.

For example, when m = 3 the determinant of the submatrix excluding the bottom

block is e−10X20Y 10. Plugging in X = eδ and Y = e0.5 we obtain

detx = em(m+1)(m+2)(4δ−1)/12 = e
4δ−1
12

m3+o(m3).

For us to be able to use Fact 2.3.1, we must have (roughly) detx < 1, implying

(4δ − 1) < 0. We obtain δ < 0.25. This is exactly Wiener’s result. It turns out that

any lattice formed by taking only the x-shifts cannot be used to improve on Wiener’s

result.

To improve on Wiener’s result we include the y-shifts into the calculation. For a

given value of m and t, the product of the elements on the diagonal of the submatrix

corresponding to the y-shifts is:

dety = e−tm(m+1)/2 ·X tm(m+1)/2 · Y t(m+1)(m+t+1)/2.

Plugging in the values of X and Y , we obtain:

dety = etm(m+1)(δ−1)/2+t(m+1)(m+t+1)/4 = e
2δ−1

4
tm2+ 1

4
mt2+o(tm2).

The determinant of the entire matrix is det(L) = detx · dety.

We intend to apply Fact 2.3.1 to the shortest vectors in the LLL-reduced basis of

L. To do so, we must ensure that the norm of b1 is less than 1/
√

w. Combining this

with Fact 2.2.2, we must solve for the largest value of δ satisfying

det(L) < 1/γ,

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 67

where γ = 2w2/4ww/2. Since the dimension w is only a function of δ (but not of

the public exponent e), γ is a fixed constant. Manipulating the expressions for the

determinant and the dimension to solve for δ requires tedious arithmetic. We provide

the exact solution in Appendix C. Here, we carry out the computation ignoring low

order terms. That is, we write

det(L) = e
4δ−1
12

m3+ 2δ−1
4

tm2+ 1
4
mt2+o(m3), loge(γ) ≈ 0.

To satisfy det(L) < 1/γ we must have

4δ − 1

12
m3 +

2δ − 1

4
tm2 +

1

4
mt2 < 0.

For every m the left hand side is minimized at t = m(1−2δ)
2

. Plugging this value in

leads to:

m2

[
−1 + 4δ − 3

2
(1− 2δ)2 +

3

4
(1− 2δ)2

]
< 0,

implying −7 + 28δ − 12δ2 < 0. Hence,

δ <
7

6
− 1

3

√
7 ≈ 0.284.

Hence, for large enough m, whenever d < N0.284−ε for any fixed ε > 0 we can find a

polynomial H1(x, y) ∈ R[x, y] such that H1(x0, y0) = 0.

One relation is not enough, so to obtain another we use Fact 2.2.3 to bound the

norm of the second vector of the LLL-reduced basis. Because every coefficient of

gi,k(xX, yY) and hj,k(xX, yY) is a multiple of e−m, we know ‖H1(xX, yY)‖ ≥ e−m.

Combining this with Fact 2.2.3 gives us the bound

det(L) < e−m/γ′ (6.3)

where γ′ = 2w(w−1)/4w(w−1)/2. For large enough m, this inequality is guaranteed

to hold, since the modifications only effect low order terms. Hence, we obtain

another polynomial H2(x, y) ∈ R[x, y] linearly independent of H1(x, y) such that

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 68

H2(x0, y0) = 0. If it turns out that H2(x, y) is algebraically independent, we solve for

y0 by computing the resultant H(y) = Resx(H1, H2). Then y0 must be a root of H(y).

The roots of H(y) are easily determined, and one such root will expose y0 = −(p+q),

allowing us to find the factorization of N .

The reader should be reminded that, just as in Section 2.4, the polynomials

H1(x, y), H2(x, y) are not guaranteed to be algebraically independent; they might

have a common factor. Indeed, in the general case we cannot guarantee that the

resultant H(y) is not identically zero. Consequently, we cannot claim this approach

as a theorem. At the moment it is a heuristic. Our experiments suggest show it is a

very good heuristic, as discussed in Section 6.5. We could not find a single example

where the algorithm fails. The reason the algorithm works so well is that in our

lattice, short vectors produced by LLL appear to behave as independent vectors.

6.3 Improved Determinant Bounds

The results of the last section show that the small inverse problem can be solved when

δ < 0.284. The bound is derived from the determinant of the lattice L, which gives

an upper bound on the lengths of the shortest vectors of the lattice. In this section,

we improve the bounds on the lengths of the shortest vectors of L, and show that

these improved bounds imply the attack is effective for all d < N0.292.

We begin with a brief discussion of how we may improve the bounds on the shortest

vectors. In the last section, we compute the determinant of a lattice L generated by

shifts and powers of f . Since L is full rank and its corresponding matrix triangular,

the determinant is just the product of the entries on the diagonal – carefully balanced

so that this product is less than (approximately) 1. Once δ > 0.284 the approach

no longer works, as this product exceeds 1 for every choice of m. But if some of the

larger terms of this product were removed, we might be able to afford greater values

of δ. Intuitively, this suggests that we should “throw away” rows of M with large

contributions to the diagonal. Unfortunately, the resulting lattice is not full rank,

and computing its determinant is not so easy. What we will show is that a judicious

choice of rows to eliminate results in lattice for which there is an improved bound on

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 69

the determinant, leading to a successful attack for all δ < 0.292. Specifically, we show

that as long as δ < 0.292, there is a sublattice L′ of L in which LLL will find vectors

that are short enough. Most of this section is devoted to developing the necessary

tools for bounding the determinant of non-full rank lattices. These results may be of

independent interest.

We use the following approach. First, we introduce the notion of geometrically

progressive matrices, and state the main theorem to be used to bound the determi-

nant of a submatrix of any geometrically progressive matrix. A proof of this theorem

is given in Appendix D. Second, we show that the portion of the matrix M devel-

oped in Section 6.2 corresponding to the y-shifts is geometrically progressive, yielding

desirable bounds on the rectangular matrix formed from selected rows of M . Third,

we review the new determinant computation and conclude that the attack outlined

in Section 6.2 works for all d < N0.292.

Geometrically Progressive Matrices

Recall the lattice L defined from the coefficients vectors of shifts and powers of the

bivariate polynomial f(x, y). Of particular interest is the inclusion of the y-shifts

hj,k(xX, yY), which lead to a result improving on Wiener’s bound. We begin by

noting that there is a natural organization of these rows corresponding to y-shifts into

“blocks” h1,k, . . . , ht,k for k = 0, . . . ,m, and that a similar organization is induced on

the corresponding columns (that is, those columns that are zero in every row induced

by an x-shift). To keep the results of this section general, we work with generic

matrices in which the rows and columns have been divided into a+1 blocks of size b.

Specifically, let a, b be positive integers and let M be an (a + 1)b × (a + 1)b matrix.

We index the columns by pairs (i, j), with i = 0, . . . , a and j = 1, . . . , b, so that the

pair (i, j) corresponds to the (b · i+j)th column of M . Similarly, we use the pair (k, `)

to index the (b · k + `)th row of M , for k = 0, . . . , a and ` = 1, . . . , b. The entry in

the (i, j)th column of the (k, `)th row is denoted M(i, j, k, `). Note that the diagonal

entries of M are precisely those of the form M(k, `, k, `).

Definition 6.3.1 Let C, D, c1, c2, c3, c4, β be real numbers with C, D, β ≥ 1. A

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 70

matrix M is said to be geometrically progressive with parameters (C, D, c1, c2, c3,

c4, β) if the following conditions hold for all i, k = 0, . . . , a and j, ` = 1, . . . , b:

(i) |M(i, j, k, `)| ≤ C ·Dc1i+c2j+c3k+c4`.

(ii) M(k, `, k, `) = Dc1k+c2`+c3k+c4`.

(iii) M(i, j, k, `) = 0 whenever i > k or j > `.

(iv) βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

When the parameters C, D, c1, c2, c3, c4, β are understood we say simply that M is

geometrically progressive.

The main tool we use in this section is the following theorem, which provides a

good bound on the determinant of a geometrically progressive matrix with deleted

rows. A proof is given in Appendix D.

Theorem 6.3.1 Let M be an (a + 1)b × (a + 1)b geometrically progressive matrix

with parameters (C, D, c1, c2, c3, c4, β), and let B be a real number. Define

SB := {(k, `) ∈ {0, . . . , a} × {1, . . . , b} | M(k, `, k, `) ≤ B} ,

and set sb := |SB|, the number of elements in SB.

If L is the lattice defined by the rows (k, `) ∈ SB of M , then

det(L) ≤ ((a + 1)b)sb/2(1 + C)s2
b

∏
(k,`)∈SB

M(k, `, k, `).

The basic idea is that when we remove rows with large entries on the diagonal, the

resulting submatrix yields a sublattice with a determinant close to what is expected,

to within a certain multiplicative error.

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 71

A Geometrically Progressive Submatrix

Recall the procedure outlined in Section 6.2 for creating the lattice L. We define the

polynomials

gi,k(x, y) = xifk(x, y) and hj,k(x, y) = yjfk(x, y),

and form a lattice from the coefficients vectors of every gi,k(xX, yY) and hj,k(xX, yY),

for k = 0, . . . ,m, i = 0, . . . ,m− k, and j = 1, . . . , t.

We denote by My the portion of the matrix M with rows corresponding to the

y-shifts hj,k(xX, yY) and columns corresponding to variables of the form xuyv, v > u.

Specifically, My is the (m + 1)t× (m + 1)t lower-right-hand submatrix of the matrix

M presented in Section 6.2. We make the following claim about the entries of My.

Lemma 6.3.2 For all positive integers m, t, the matrix My is geometrically progres-

sive with parameters (m2m, e, 1
2

+ δ, −1
2
, −1, 1, 2).

Proof For simplicity, we take e = Nα with α = 1. Let (k, `) be given with

k = 0, . . . ,m and ` = 1, . . . , t. The row (k, `) of My corresponds to the y-shift

h`,k(xX, yY). Observe

h`,k(xX, yY) = e−ky`Y `fk(xX, yY) =
k∑

u=0

u∑
v=0

cu,vx
uyv+`,

where

cu,v =

(
k

u

)(
u

v

)
(−1)k−ue−kAu−vXuY v+`.

The column (i, j) for i = 0, . . . ,m and j = 1, . . . , t corresponds to the coefficient of

xiyi+j in h`,k(xX, yY), which by the above is

My(i, j, k, `) = ci,i+j−` =

(
k

i

)(
i

i + j

)
(−1)k−ie−kA`−jX iY i+j.

It is easy to see that the above quantity equals 0 whenever i > k or j > `, satisfying

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 72

condition (iii). Writing X = eδ, Y = e
1
2 and knowing A < e, we see

|My(i, j, k, `)| ≤
∣∣∣∣(k

i

)(
i

i + j

)
(−1)k−ie(1

2
+δ)i− 1

2
j−k+`

∣∣∣∣ ≤ m2m · e(1
2
+δ)i− 1

2
j−k+`,

satisfying condition (i). Furthermore, routine calculation confirms

My(k, `, k, `) = e(1
2
+δ)k− 1

2
`−k+`,

satisfying condition (ii). Lastly, observe 2·(1
2
+δ)+(−1) = 2δ ≥ 0 and 2·−1

2
+1 ≥ 0, so

condition (iv) is met. Hence, My is geometrically progressive with parameters (m2m,

e, 1
2

+ δ, −1
2
, −1, 1, 2).

Remark 3. When α < 1 we find that My is geometrically progressive with parameters

(m2m, e, 1
2α

+ δ
α
, 1

2α
− 1, −1, 1, 2α). For α > 1, we have that My is geometrically

progressive with parameters ((2m)2m, e, 1
2α

+ δ
α
, − 1

2α
, −1, 1

α
, 2α). The proofs of these

statements follow as above, with the slight modification in the latter case where we

use A < 2e1/α instead of A < e.

Bounding the Determinant of the New Lattice

We now have the tools necessary to find improved bounds on the short vectors of L.

Namely, we now would like to show that for all d < N0.292, LLL finds short vectors

in M that give rise to polynomials H1(x, y) and H2(x, y) such that H1(x0, y0) =

H2(x0, y0) = 0.

We begin by setting the parameter t := (1 − 2δ)m. Note that this means our

lattice will include twice as many y-shifts as used in Section 6.2, which, as we shall

see, is the reason for the improved results. Define M1 as follows: Take every row gi,k

of M corresponding to the x-shifts, and take only those rows h`,k of M whose entry on

the diagonal is less than or equal to 1. That is, we throw away those rows h`,k where

the leading term exceeds 1. Clearly, the lattice L1 described by M1 is a sublattice of

L, so short vectors in L1 will be in L.

Since all x-shifts are present in M1, we may perform Gaussian elimination to set

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 73

the first (m + 1)(m + 2)/2 off-diagonal columns of every row to zero. Specifically,

there is a unitary matrix A over R such that M2 := AM1 is a matrix of the following

form:

1 x xy · · · xmym y · · · yt · · · xmym+1 · · · xmym+t

x-shifts Λ 0

selected y-shifts 0 M ′
y

where Λ is a diagonal matrix and M ′
y consists of our selected rows of My. Furthermore,

since A is unitary, the determinant of the lattice L2 described by M2 is equal to

det(L1).

We would like to obtain a good bound on det(L2). Since the x-shifts and selected y-

shifts portions of the lattice L2 are orthogonal, it is sufficient to bound the determinant

of each separately. Let w′ be the number of rows of M ′
y, and denote by L′

y the lattice

induced by M ′
y. The determinant of the lattice L2 is det(L2) = det(Λ) · det(L′

y), and

its dimension is w = (m + 1)(m + 2)/2 + w′. As we shall see, the dimension w is

only a function of δ (but not of e), so γ is only a fixed constant.

We begin by computing w′. Let S ⊆ {0, . . . ,m} × {1, . . . , t} be the subset of

indices such that My(k, `, k, `) ≤ 1 for (k, `) ∈ S, so S is a set with exactly w′

elements. Since (k, `) ∈ S only if e(δ− 1
2
)k+ 1

2
` ≤ 1, we know ` ≤ (1 − 2δ)k. Since we

have taken t = (1− 2δ)m, we know every every pair (k, `) satisfies ` ≤ (1− 2δ)k ≤ t,

so ` ≤ (1− 2δ)k if and only if (k, `) ∈ S. Thus

w′ =
m∑

k=0

b(1− 2δ)kc ≥
m∑

k=0

[(1− 2δ)k − 1] = (
1

2
− δ)m2 + o(m2),

implying

w = w′ + (m + 1)(m + 2)/2 = (1− δ)m2 + o(m2).

Now we bound det(L′
y). Since this lattice is defined by the rows (k, `) ∈ S of My,

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 74

by Theorem 6.3.1 we have

det(L′
y) ≤ CL ·

∏
(k,`)∈S

My(k, `, k, `)

≤ CL ·
m∏

k=0

b(1−2δ)kc∏
`=0

e(δ− 1
2
)k+ 1

2
`

≤ CL · e(− 1
12

+ δ
3
− δ2

3
)m3+o(m3),

where CL := [(m + 1)(1− 2δ)m]w
′/2 (1 + m2m)(w′)2 .

Finally, recall from Section 6.2 that

det(Λ) = x = e−m(m+1)(m+2)/6 ·Xm(m+1)(m+2)/3 · Y m(m+1)(m+2)/6 = e(δ
3
− 1

12
)m3+o(m3).

So to satisfy bound (6.3) we require

det(L1) = det(Λ)det(L′
y) ≤ CL · e(δ

3
− 1

12
)m3+(− 1

12
+ δ

3
− δ2

3
)m3+o(m3) < e−m/γ′, (6.4)

where γ′ = 2(w2−1)/4w(w−1)/2. Note that CL · γ′ is a function of only δ (but not of e),

so we may make the approximation loge(CL · γ′) ≈ 0. So bound (6.4) leads to(
−1

6
+

2δ

3
− δ2

3

)
m3 + o(m3) < 0,

implying 2δ2 − 4δ + 1 ≥ 0. Hence, we need

δ < 1−
√

2

2
≈ 0.292.

Thus, when δ < 0.292, for sufficiently large m we have det(L1) ≤ e−m/(γ′ · CL), im-

plying that the first and second vectors of the LLL-reduced L1 (denoted H1(xX, yY)

and H2(xX, yY), respectively) have norm less than 1/
√

w. By Fact 2.4.1 these

polynomials satisfy H1(x0, y0) = H2(x0, y0) = 0. As before, if these polynomials

turn out to be algebraically independent, we may compute the resultant H(y) :=

Resx(H1(x, y), H2(x, y)) and solve for the roots of H(y) to expose y0 = −(p + q),

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 75

revealing the factorization of N .

6.4 Cryptanalysis of Arbitrary Public Exponents

In his paper, Wiener suggests using large values of e when the exponent d is small.

This can be done by adding multiples of φ(N) to e before making it known as the

public key. When e > N1.5, Wiener’s attack will fail even when d is small. We show

that our attack applies even when e > N1.5 is used.

As described in Section 6.1, we solve the small inverse problem:

k(A + s) ≡ 1 (mod e) where |k| < e1+ δ−1
α and |s| < 3e1/(2α),

for arbitrary values of α. We build the exact same lattice used in Section 6.2. Working

through the calculations one sees that the determinant of the lattice in question is

detx(L) = e
m3

6α
(α+2δ− 3

2
)+o(m3),

dety(L) = e
tm2

2α
(δ− 1

2
)+mt2

2
1
2α

+o(tm2).

The dimension is as before. Therefore, to apply Fact 2.3.1 we must have

m3

6α
(α + 2δ − 3

2
) +

tm2

2α
(δ − 1

2
) +

mt2

2

1

2α
< 0,

which leads to

m2(2α + 4δ − 3)− 3tm(1− 2δ) + 3t2 < 0.

As before, the left hand side is minimized at min t = 1
2
m(1− 2δ), which leads to

m2[2α + 7δ − 15

4
− 3δ2] < 0,

and hence

δ <
7

6
− 1

3
(1 + 6α)1/2.

Indeed, for α = 1, we obtain the results of Section 6.2. The expression shows that

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 76

when α < 1 our attack becomes even stronger. For instance, if e ≈ N2/3 then RSA

is insecure whenever d < N δ for δ < 7
6
−

√
5

3
≈ 0.422. Note that if e ≈ N2/3 then d

must satisfy d > N1/3.

When α = 15
8

the bound implies that δ = 0. Consequently, the attack becomes

totally ineffective whenever e > N1.875. This is an improvement over Wiener’s attack,

which becomes ineffective as soon as e > N1.5.

6.5 Experiments

We ran several dozen experiments to test our results when d > N0.25. Our experiments

were carried out using the LLL implementation available in Victor Shoup’s NTL

package [72]. In all our experiments LLL produced two independent relations H1(x, y)

and H2(x, y). In every case, the resultant H(y) := Resx(H1(x, y), H2(x, y)) with

respect to x was a polynomial of the form H(y) = (y + p + q)H0(y), with H0(y)

irreducible over Z (similarly for x). Hence, the unique solution (x0, y0) was correctly

determined in every trial executed. We show the parameters of some attacks executed

in Figure 6.2. In each of these tests, d was chosen uniformly at random in the range

Advantage over
N d δ m t lattice dim. running time Wiener’s attack

1024 bits 283 bits 0.277 7 3 45 2.5 hours 27 bits
2048 bits 550 bits 0.275 7 3 45 16 hours 50 bits
4096 bits 1060 bits 0.265 5 2 25 3 hours 60 bits
10000 bits 2550 bits 0.255 3 1 11 19 minutes 50 bits

Experiments performed on a 1GHz Intel Pentium III running Linux.

Figure 6.2: Running times for short secret exponent attack

[
3
4
N δ, N δ

]
(thus guaranteeing the condition d > N0.25). The second to last row of

the table is especially interesting as it is an example in which our attack breaks RSA

with a private key that is 60 bits larger than Wiener’s bound.

CHAPTER 6. ATTACKS ON SHORT SECRET EXPONENT RSA 77

6.6 Conclusions

Our results show that Wiener’s bound on low private exponent RSA is not tight. In

particular, we were able to improve the bound first from d < N0.25 to d < N0.284.

Using an improved analysis of the determinant, we obtained d < N0.292. Our results

also improve Wiener’s attack when large values of e are used. We showed that our

attack becomes ineffective only once e > N1.875. In contrast, Wiener’s attack became

ineffective as soon as e > N1.5.

Unfortunately, we cannot state this attack as a theorem since we cannot prove

that it always succeeds. However, experiments that we carried out demonstrate its

effectiveness. We were not able to find a single example where the attack fails. This is

similar to the situation with many factoring algorithms, where one cannot prove that

they work; instead one gives strong heuristic arguments that explain their running

time. In our case, the heuristic “assumption” we make is that the two shortest

vectors in an LLL reduced basis give rise to algebraically independent polynomials.

Our experiments confirm this assumption. We note that a similar assumption is used

in the work of Bleichenbacher [3] and Jutla [44].

To conclude, we note that Wiener suggested a defense against the low private

exponent attack based on the Chinese Remainder Theorem. When N = pq the idea is

to use a secret exponent d such that both dp = d mod (p− 1) and dq = d mod (q− 1)

are small. Such d speed up RSA signature generation since RSA signatures are

often generated modulo p and q separately and then combined using the CRT. Since

dp 6= dq the value of d is likely to be large, namely close to φ(N). Consequently,

our low exponent attack does not apply to such d. It is an open problem whether

there is an efficient attack on such private keys. The best known attack runs in time

min(
√

dp,
√

dq).

Chapter 7

Attacks on RSA Variants

At Asiacrypt ’99, Sun, Yang and Laih [76] noticed that the Wiener attack [80] (Sec-

tion 3.2.4) and the attack of the previous chapter require some natural assumptions

on the public modulus N . For instance, the Wiener’s bound N0.25 only holds if

p + q = O(
√

N) and e is not too large. Similar restrictions apply to the extension

to Wiener’s attack by Verheul and van Tilborg [79] and to the attack in Chapter 6.

This led Sun, Yang and Laih to propose in [76] simple variants of RSA using a short

secret exponent that, a priori, foiled all such attacks.

They proposed three RSA-like schemes in which the only the RSA key generation

is modified. In the first scheme, one chooses p and q of greatly different size, and a

small exponent d in such a way that the previous attacks cannot apply. In particular,

d can smaller than N0.25 if p and q are unbalanced enough and the scheme will still

resist previous attacks. The second scheme consists of a tricky construction that

selects slightly unbalanced p and q in such a way that both e and d are small, roughly

around
√

N . The third scheme is a mix of the first two schemes, which allows a trade-

off between the sizes of e and d. Sakai, Morii and Kasahara [70] earlier proposed a

different key generation scheme which achieves similar results to the third scheme,

but that scheme can easily been shown insecure [76].

In this chapter we show that the first and third Sun-Yang-Laih schemes are inse-

cure. We accomplish this by introducing a powerful generalization of the attack in

the previous chapter. Our attack can also break the second scheme, but only if the

78

CHAPTER 7. ATTACKS ON RSA VARIANTS 79

parameters are carelessly chosen.

Recall that the last chapter reduced the problem of recovering the factors p and

q to solving the Small Inverse Problem (equation (6.2)). However, when p and q are

unbalanced this equation is not enough, because it has no longer any “small” solu-

tion. Our attack extends method of the previous chapter by taking into account the

equation N = pq. We use a system of two modular equations with three unknowns;

interestingly, when p and q are unbalanced, this approach leads to an attack on sys-

tems with d even larger than the N0.292 bound of the previous chapter. The attack is

extremely efficient in practice: for typical instances of two of the schemes of [76], this

approach breaks the schemes within several minutes. Also, our “trivariate” version

of Coppersmith’s technique we use may be of independent interest.

7.1 The Sun-Yang-Laih Key Generation Schemes

Scheme (I)

The first scheme uses unbalanced RSA moduli [71], that is, N = pq for p � q. The

recommended parameters are chosen to defeat the Wiener attack and the attacks of

the previous chapter.

1. Fix desired bit-length n for N , bit-length `d for d, bit-length `p for p, and

security parameter γ > 64, subject to the following constraints:

• `d + `p > n/3, and

• `d > γ + `p/2.

Note that the smaller `p is, the smaller `d is allowed to be.

2. Select the prime p of bit length `p and the prime q of bit length n−`p uniformly

at random. Note that both n and `p must be large enough so that N = pq

cannot be factored efficiently by ECM or NFS.

3. Pick the secret exponent d uniformly at random from `d-bit integers.

CHAPTER 7. ATTACKS ON RSA VARIANTS 80

4. If the public exponent e defined by ed ≡ 1 mod φ(N) is not larger than φ(N)/2,

go to Step 3.

A choice of parameters suggested by the authors is: p is a 256-bit prime, q is a 768-bit

prime, d is a 192-bit number. Note that 192 is far below the Wiener bound of 256

bits, and the bound of 299 bits achieved in the previous chapter, yet the choice of

parameters foils both attacks.

Scheme (II)

The second scheme selects one of the primes in such a way that allows e and d to be

simultaneously small.

1. Fix the bit-length n of N , and set `p = (n/2)− 112 and `d = (n/2) + 56.

2. Select a random prime p of `p and a random k of 112 bits.

3. Select a random d of `d bits such that gcd(d, k(p− 1)) = 1.

4. Compute u and v such that du − k(p − 1)v = 1 with 0 < u < k(p − 1) and

0 < v < d.

5. If gcd(v + 1, d) 6= 1 then return to Step 3.

6. Select a random h of 56 bits until q = v + hd + 1 is prime.

7. Set e := u + hk(p− 1) and N = pq.

Notice that e and d satisfy the equation ed = 1+kφ(N). They both have approximate

bit-length (n/2) + 56. The primes p and q have approximate bit-length (n/2) − 112

and (n/2) + 112 respectively.

A possible choice of parameters for Scheme (II) might be: p a 400-bit prime, q a

624-bit prime, and e and d are each 568-bit integers.

CHAPTER 7. ATTACKS ON RSA VARIANTS 81

Scheme (III)

The third scheme is a mix of the first two schemes, allowing a trade-off between the

lengths of e and d. More precisely, the scheme is a parametrized version of scheme

(II), where p, k, d and h have bit-lengths `p, `k, `d, and n − `p − `d, respectively.

These parameters may be chosen freely, but to resist various attacks, the following is

required:

• `p > n/2;

• `k � `p − `d + 1;

• 4α(2β + α − 1) � 3(1 − β − α)2, where α = (n − `p)(n + `k − `d) and β =

`k/(n + `k − `d);

• `k + `p > n/3; and

• k must withstand an exhaustive search, i.e., `k > 64.

A choice of parameters suggested by the authors is: p is a 256-bit prime, q is a 768-bit

prime, e is an 880-bit number, and d is a 256-bit number.

7.2 The Attack Algorithm

In this section we demonstrate how to launch an attack on Schemes (I) and (III).

The approach used here closely follows the low private exponent attacks described in

the previous chapter, but differs in several crucial ways to allow it to work for these

variants of RSA. Interestingly, our attack gets better (works for larger and larger d)

the more unbalanced the factors of the modulus become.

Recall the defining equation for RSA:

ed + k(N + 1− (p + q)) = ed + kφ(N) = 1. (3.1)

We note that the approach in the last chapter treats this as an equation with two

“small” unknowns, k and s = −(p + q). This approach no longer works if p and q are

CHAPTER 7. ATTACKS ON RSA VARIANTS 82

unbalanced, since a good bound on s can no longer be established. For this reason,

the authors of the schemes from Section 7.1 hoped that these schemes would resist

attack. However, we will see that a more careful analysis of the RSA equation, namely

one that does not treat p + q as a single unknown quantity but instead leaves p and

q separately as unknowns, leads to a successful attack against two of these schemes.

Writing A = N + 1, the RSA equation implies

1 + k(A− p− q) ≡ 0 (mod e).

The critical improvement of our attack is to view this as a modular equation with

three unknowns, k, p, q, with the special property that the product pq of two of them

is the known quantity N . We may view this problem as follows: given a polynomial

f(x, y, z) = (x(A + y + z)− 1)/e, find (x0, y0, z0) satisfying:

f(x0, y0, z0) ∈ Z,

where

|x0| < X, |y0| < Y, |z0| < Z, and y0z0 = N.

Note that the bounds X ≈ ed/N , Y ≈ p, and Z ≈ q can be estimated to within a

power of 2 based on the security parameters chosen for the scheme.

Following Coppersmith’s method, our approach is to pick r equations of the form

xu1yu2zu3 · f v(x, y, z) and to search for integer linear combinations of these polynomials

with low weighted norm. However, the method for choosing these polynomials is not

as straightforward as in previous chapters, and will take special consideration.

The basic idea is to start with a handful of equations of the form ya+jfm(x, y, z)

for j = 0, . . . , t for some integers a and t with t ≥ 0. Knowing N = pq allows us to

replace all occurrences of the monomial yz with the constant N , reducing the number

of variables in each of these equations to approximately m2 instead of the expected
1
3
m3. We will refer to these as the primary polynomials.

Since there are only t+1 of these equations, this will result in a lattice that is less

than full rank; we therefore include some additional equations to bring the lattice to

CHAPTER 7. ATTACKS ON RSA VARIANTS 83

full rank in order to compute its determinant. We refer to these as the helper poly-

nomials. We have a great deal of choice in picking the helper polynomials; naturally,

some choices are better than others, and it is generally a tedious optimization prob-

lem to choose the primary and helper polynomials that are optimal. The equations

we work with are the following. Fix an integer m, and let a and t > 0 be integers

which we will optimize later. We define

• gk,i,b(x, y, z) := xiyazbfk(x, y, z), for k = 0, . . . ,m − 1; i = 1, . . . ,m − k;

b = 0, 1; and,

• hk,j(x, y, z) := ya+jfk(x, y, z), for k = 0, . . . ,m, and j = 0, . . . , t.

The primary polynomials are hm,j(x, y, z) for j = 0, . . . , t, and the rest are the

helper polynomials. Following the method technique, we form a lattice L from

gk,i,b(xX, yY, zZ) and hk,j(xX, yY, zZ) and use LLL to find low-norm integer linear

combinations h1(xX, yY, zZ) and h2(xX, yY, zZ). The polynomials h1(x, y, z) and

h2(x, y, z) have (k, p, q) as a root; to remove z as an unknown, we use the equality

z = N/y, obtaining H1(x, y) and H2(x, y) which have (k, p) as a solution. As long

as H1(x, y) and H2(x, y) are algebraically independent, we can compute the resul-

tant Resx(H1(x, y), H2(x, y)) yields a polynomial H(y) which has p as a root. Using

standard root-finding techniques allows us to recover the factor p of N efficiently,

completing the attack.

The running time of this algorithm is dominated by the time to run LLL on

the lattice L, which has dimension (m + 1)(m + t + 1). So it would be ideal to

keep the parameters m and t as low as possible, limiting to a reasonable number

the polynomials used to construct L. Surprisingly, the attack is successful even if

only a handful of polynomials are used. The example given by the original authors

for schemes (I) succumbs easily to this attack with m = 3 and t = 1; with these

parameters, our attack generates 20 polynomials. Scheme (III) can be cryptanalyzed

with parameters m = 2 and t = 2, yielding 15 polynomials. This gives lattices of

dimension 20 (see Figure 7.1) and 15, respectively, which can be reduced via the

LLL algorithm within a matter of seconds on a desktop computer. We discuss our

implementation and the results of our experiments more in Section 7.3.

CHAPTER 7. ATTACKS ON RSA VARIANTS 84

Analysis of the Attack

In order to be sure that LLL returns vectors that are short enough to use Fact 2.4.1,

we must derive sufficiently small bounds on the determinant of the lattice L formed

from the polynomials gk,i,b(xX, yY, zZ) and hk,j(xX, yY, zZ). Fortunately, this choice

of polynomials makes the computation of the determinant of L fairly straightforward,

if somewhat tedious. We provide the details in appendix E.

Representing the Lattice as a Triangular Matrix. In order to compute

the volume of the lattice L, we would like to list the polynomials gk,i,b(xX, yY, zZ)

and hk,j(xX, yY, zZ) in a way that yields a triangular matrix. There is an or-

dering on these polynomials that leads to such a representation: we first list the

gk,i,b(xX, yY, zZ) indexed outermost by k = 0, . . . ,m− 1, then i = 0, . . . , k − 1, then

innermost by b = 0, 1. After all of these we list hk,j(xX, yY, zZ) indexed outermost

by k = 0, . . . ,m then j = 0, . . . , t. (See Figure 7.1 for the case of m = 2, t = 1,

a = 1.) Each new polynomial introduces exactly one new monomial xu1yu2 or xu1zu3 .

Note that no monomial involving the product yz appears since we have applied the

substitution yz = N , and powers of N can be easily eliminated from the diagonal

(See Remark 1 below).

The determinant of this matrix is simply the product of the entries on the diagonal,

which for m = 3, t = 1, a = 1 is

det(L) = e−20X40Y 34Z4. (7.2)

We expect the LLL algorithm to return vectors short enough to use Lemma 2.4.1

when det(L) � 1. The example given by the original authors for Scheme (I) is to use

p of 256 bits, q of 768 bits, d of 192 bits, and e of 1024 bits. This gives bounds

X ≈ ed/N ≈ e3/16, Y ≈ e1/4, and Z ≈ e3/4;

we may then confirm

det(L) = e−20X40Y 34Z4 ≈ e−1 � 1,

CHAPTER 7. ATTACKS ON RSA VARIANTS 85

xy x x2y x2 x3y x3 x2y2 x2z x3y2 x3z x3y3 x3z2 y y2 xy2 xy3 x2y3 x2y4 x3y4 x3y5

xy XY

xyz X

x2y X2Y

x2yz X2

x3y X3Y

x3yz X3

xyf – – – e−1X2Y2

xyzf – – – e−1X2Z

x2yf – – – e−1X3Y2

x2yzf – – – e−1X3Z

xyf2 – – – – – – – – e−2X3Y3

xyzf2 – – – – – – – – e−2X3Z2

y Y

y2 Y2

yf – – – e−1XY2

y2f – – – e−1XY3

f2 – – – – – – – – e−2X2Y3

y2f2 – – – – – – – – e−2X2Y4

yf3 – – – – – – – – – – – – – – – e−3X3Y4

y2f3 – – – – – – – – – – – – – – – e−3X3Y5

Example of the lattice formed by the vectors gk,i,b(xX, yY, zZ) and hk,j(xX, yY, zZ)
when m = 2, t = 1, and a = 1. Entries marked with “–” indicate off-diagonal
quantities whose values do not affect the determinant calculation.

Figure 7.1: Example lattice used in attacks on the Sun-Yang-Laih schemes

so Lemma 2.4.1 applies.1 Therefore, when we run the LLL algorithm on this lattice,

we will get two short vectors corresponding to polynomials h1(x, y, z), h2(x, y, z); by

the bound on the determinant, we know that these polynomials will have norm that

is low enough to use Lemma 2.4.1. Therefore these polynomials will have (k, p, q)

as a solution over the integers. To turn these into bivariate equations, we use the

equality z = N/y to get H1(x, y) and H2(x, y) which have (k, p) as a solution over the

integers. We then take the resultant Resx(H1(x, y), H2(x, y)) to obtain a univariate

polynomial H(y) that has p as a root.

1The reader may have noticed that we have suppressed the error term associated with the ex-
ecution of the LLL algorithm. But even if the LLL “fudge factor” is taken into account, the
resulting error term is almost completely insignificant. In this example, since w = 20 we have
2w2/4ww/2 < 2241 � 21023 < e.

Slightly larger parameters m and t are required to rigorously obtain the bound for norm of the
second basis vector, although in practice the LLL algorithm works well enough so that the parameters
chosen here are sufficient.

CHAPTER 7. ATTACKS ON RSA VARIANTS 86

More generally, if we pick optimal values for t and a take m sufficiently large, our

attack will be successful for even larger bounds on d. The highest possible bound on

d for which our attack can work depends on the parameters chosen for the scheme.

Suppose the parameter d ≈ N δ is used. The table below summarizes the largest

possible δ for which our attack can succeed. We point out the choices of parameters

that give rise to the schemes of Section 7.1.

logN (e)
1.0 0.9 0.86 0.8 0.7 0.6 0.55

0.5 0.284 0.323 0.339 0.363 0.406 0.451 0.475
0.4 0.296 0.334 0.350 0.374 0.415 0.460 0.483II

logN (p) 0.3 0.334 0.369 0.384 0.406 0.446 0.487 0.510
0.25 0.364I 0.398 0.412III 0.433 0.471 0.511 0.532
0.2 0.406 0.437 0.450 0.470 0.505 0.542 0.562
0.1 0.539 0.563 0.573 0.588 0.615 0.644 0.659

Largest δ (where d < N δ) for which our attack can succeed, as a function of the
system parameters.

Figure 7.2: Success region of attacks on Sun-Yang-Laih schemes

For example, with the example for Scheme (I), where e ≈ N and p ≈ N0.25, our

attack will be successful not only for the δ = 0.188 suggested, but all the way up to

δ < 0.364 (assuming a large enough m is used.) Similarly, our attack works in Scheme

(III) up to d < N0.412. Notice that our attack comes close to, but cannot quite reach,

the d < N0.55 required to break Scheme (II).

Remark 1. Care must be taken when performing the substitution yz 7→ N

to ensure that the coefficient of the polynomial appearing on the diagonal is not

multiplied by powers of N . For example, suppose we are working with the polynomial

g(x, y, z) = xu1yu2zu3fk(x, y, z) with u2 > u3. We see that

g(x, y, z) = e−kNu4xu5yu6 + v(x, y, z),

where u4 = u2 − u3, u5 = k + u1, u6 = k + u4, and v(x, y, z) is some polynomial in

which the term xu5yu6 does not appear. Since N and e are relatively prime, we may

CHAPTER 7. ATTACKS ON RSA VARIANTS 87

compute integers A and B such that ANu4 + Bek = 1. Instead of using g(x, y, z) in

the lattice we use instead

g∗(x, y, z) := e−kxu5yu6 + A · v(x, y, z).

We know that g(x0, y0, z0) ∈ Z, so A · g(x0, y0, z0) ∈ Z. But

g∗(x0, y0, z0)− A · g(x0, y0, z0) = (1− ANu)e−kxu5
0 yu6

0 = Bxu5
0 yu6

0 ∈ Z,

so g∗(x0, y0, z0) ∈ Z. Hence g∗(x, y, z) is a valid substitution for g(x, y, z) when

building the lattice.

7.2.1 Comparison with the Bivariate Approach

Alternatively, one can consider the system of two modular equations with three un-

knowns as a single bivariate equation by incorporating the equation N = pq into

the main trivariate equation. This was independently noticed by Willi Meier [58],

who also addressed the problem of breaking Schemes (I) and (III), using a bivariate

approach rather than our trivariate approach. One then obtains an equation of the

form f(x, y) = (x2y +Axy +Bx+Cy)/e, where the unknowns are k and the smallest

prime among p and q.

However, it turns out that the application of Coppersmith’s technique to this

particular bivariate equation yields worse bounds than with the trivariate approach

previously described. For example, the bivariate approach allows one to break scheme

(I) as long as d < N0.135 (and perhaps slightly higher, if sublattices are considered as

in the previous chapter), but fails for larger d. One can view the bivariate approach a

special case of our trivariate approach, in which one degree of freedom for optimization

has been removed. One then sees that the bivariate approach constrains the choice

of primary and helper polynomials in a suboptimal way, resulting in worse bounds on

d.

CHAPTER 7. ATTACKS ON RSA VARIANTS 88

7.3 Experiments

We implemented this attack using Victor Shoup’s Number Theory Library [72] and the

Maple Analytical Computation System [56]. The attack runs very efficiently, and in

all instances of Schemes (I) and (III) we tested, it produced algebraically independent

polynomials H1(x, y) and H2(x, y). These yielded a resultant H(y) = (y − p)H0(y),

where H0(y) is irreducible, exposing the factor p of N in every instance. This strongly

suggests that this “heuristic” assumption needed to complete the multivariate mod-

ular version of Coppersmith’s technique is extremely reliable, and we conjecture that

it always holds for suitably bounded lattices of this form. The running times of our

attacks are given in Figure 7.3.

Scheme size of n size of p size of e size of d m t a lattice rank running time
I 1024 256 1024 192 3 1 1 20 40 seconds

III 1024 256 880 256 2 2 0 15 9 seconds

Experiments performed on a 500MHz Intel Pentium III running Solaris.

Figure 7.3: Running times of attacks on Sun-Yang-Laih schemes.

7.4 Conclusions

We showed that unbalanced RSA [71] actually improves the attacks on short secret

exponent by allowing larger exponent. This enabled us to break most of the RSA

schemes [76] with short secret exponent from Asiacrypt ’99. The attack extends the

attack of the previous chapter by using a “trivariate” version of Coppersmith’s lattice-

based technique for finding small roots of low-degree modular polynomial equations.

This attack is provable up to the step where the bivariate heuristic assumption is

required.

These results illustrate once again the fact that one should be very cautious when

using RSA with short secret exponent. Again, the best method to enjoy the com-

putational advantage of short secret exponent is the countermeasure proposed by

Wiener [80] to use a secret exponent d such that both d mod (p − 1) and d mod

CHAPTER 7. ATTACKS ON RSA VARIANTS 89

(q − 1) are small. Such a d speeds up RSA signature generation when the signature

is generated modulo p and q separately and combined using the Chinese Remainder

Theorem. Classical attacks do not work since d is likely to be close to φ(N). It is an

open problem whether there is an efficient attack on such secret exponents. The best

known attack runs in time min(
√

dp,
√

dq).

Bibliography

[1] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In proceedings

Eurocrypt ’94, Lecture Notes in Computer Science, vol. 950, Springer-Verlag,

pp. 92–111, 1994.

[2] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on

the RSA encryption standard PKCS #1. In proceedings Crypto ’98, Lecture

Notes in Computer Science, vol. 1462, Springer-Verlag, pp. 1–12, 1998.

[3] D. Bleichenbacher. On the security of the KMOV public key cryptosystem.

In proceedings Crypto ’97, Lecture Notes in Computer Science, vol. 1294,

Springer-Verlag, pp. 235-248, 1997.

[4] D. Boneh. Finding smooth integers using CRT decoding. In proceedings

STOC 2000, pp. 265–272, Portland, Oregon, 2000.

[5] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In proceedings

Crypto 2001, Lecture Notes in Computer Science, vol. 2139, Springer-Verlag,

pp. 275–291, 2001.

[6] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of

the AMS, 46(2):203–213, 1999.

[7] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryp-

tographic protocols for faults. In proceedings Eurocrypt ’97, Lecture Notes

in Computer Science, vol. 1233, Springer-Verlag, pp. 37–51, 1997.

90

BIBLIOGRAPHY 91

[8] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than

N0.292. In proceedings Eurocrypt ’99, Lecture Notes in Computer Science,

vol. 1592, Springer-Verlag, pp. 1–11, 1999.

[9] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than

N0.292. IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1339–

1349, July 2000.

[10] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small

fraction of the private key bits. In proceedings Asiacrypt ’98, Lecture Notes

in Computer Science, vol. 1514, Springer-Verlag, pp. 25–34, 1998.

[11] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring N = prq for large

r. In proceedings Crypto ’99, Lecture Notes in Computer Science, vol. 1666,

Springer-Verlag, pp. 326–337, 1999.

[12] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to

factoring. In proceedings Eurocrypt ’98, Lecture Notes in Computer Science,

vol. 1403, Springer-Verlag, pp. 59–71, 1998.

[13] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, A. Sahai. Exposure-Resilient

Functions and All-or-Nothing Transforms. In proceedings Eurocrypt 2000,

Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, pp. 453–469,

2000.

[14] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Mur-

phy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marc-

hand, F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann.

Factorization of 512-bit RSA key using the number field sieve. In proceedings

Eurocrypt 2000, Lecture Notes in Computer Science, vol. 1807, Springer-

Verlag, 2000. Factorization announced in August, 1999.

[15] B. Chor, J. Friedman, O. Goldreich, J. Høastad, S. Rudich, R. Smolensky.

The bit extraction problem or t-resilient functions. In proceedings 26th

BIBLIOGRAPHY 92

Annual Symposium on Foundations of Computer Science (FOCS), pp. 396–

407, 1985.

[16] D. Coppersmith. Modifications to the number field sieve. Journal of Cryp-

tology, vol. 6, pp. 169–180, 1993.

[17] D. Coppersmith. Small solutions to polynomial equations, and low exponent

RSA vulnerabilities. Journal of Cryptology, vol. 10, pp. 233–260, 1997.

[18] D. Coppersmith. Finding small solutions to small degree polynomials. In

proceedings Cryptography and Lattice Conference, Lecture Notes in Com-

puter Science, vol. 2146, Springer-Verlag, 2001.

[19] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low exponent

RSA with related messages. In proceedings Eurocrypt ’96, Lecture Notes in

Computer Science, vol. 1070, Springer-Verlag, pp. 1–9, 1996.

[20] D. Coppersmith, S. Halevi, and C. S. Jutla. ISO 9796 and the New Forgery

Strategy. Presented at Rump Session of Crypto ’99, 1999.

[21] S. Coron, D. Naccache, and J. P. Stern. On the Security of RSA Padding.

In proceedings Crypto ’99, Lecture Notes in Computer Science, vol. 1666,

Springer-Verlag, pp. 1–18, 1999.

[22] C. Coupé, P. Nguyen, and J. Stern. The effectiveness of lattice attacks

against low-exponent RSA. In proceedings Public Key Cryptography ’99,

Lecture Notes in Computer Science, vol. 1751, Springer-Verlag, 1999.

[23] R. Cramer and V. Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. Journal version, to appear.

[24] J-F. Dhem, F. Koeune, P. Leroux, P. Mestré, J-J. Quisquater, and J-

L. Willems. A practical implementation of the timing attack. In proceedings

CARDIS ’98 – Third smart card research and advanced application confer-

ence, UCL, Louvain-la-Neuve, Belgium, Sep. 14-16, 1998.

BIBLIOGRAPHY 93

[25] Y. Dodis. Exposure-Resilient Cryptography. Ph.D. Thesis, MIT, 2000.

[26] Y. Dodis, A. Sahai, A. Smith. On perfect and adaptive security in exposure-

resilient cryptography. In proceedings Eurocrypt 2001, Lecture Notes in

Computer Science, vol. 2045, Springer-Verlag, pp. 301–324, 2001.

[27] G. Durfee and P. Nguyen. Cryptanalysis of the RSA schemes with short

secret exponent from Asiacrypt ’99. In proceedings Asiacrypt 2000, Lecture

Notes in Computer Science, vol. 1976, Springer-Verlag, pp. 14–29, 2000.

[28] T. ElGamal. A public key cryptosystem and a signature scheme based on

the discrete logarithm. IEEE Transactions on Information Theory, vol. 31,

no. 4, pp. 469–472, 1985.

[29] Y. Frankel. A practical protocol for large group oriented networks. In

proceedings Eurocrypt ’89, Lecture Notes in Computer Science, vol. 434,

Springer-Verlag, pp. 56–61.

[30] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol, Version 3.0. Internet

Draft. See:

http://home.netscape.com/eng/ssl3/ssl-toc.html.

[31] A. Fujioke, T. Okamoto, and S. Miyaguchi. ESIGN: an efficient digital sig-

nature implementation for smartcards In proceedings Eurocrypt ’91, Lecture

Notes in Computer Science, vol. 547, Springer-Verlag, pp. 446–457, 1991.

[32] M. Gardner. Mathematical games: A new kind of cipher that would take

millions of years to break. Scientific American, 237(2):120–124, August 1997.

[33] C. F. Gauss. Disquisitiones Arithmeticæ. Leipzig, 1801.

[34] O. Goldreich. Foundations of Cryptography – Fragments of a Book.

[35] D. Gordon. Discrete Logarithms in GF (p) using the Number Field Sieve,

SIAM J. Discrete Math., Vol. 6, pp. 124–138, 1993.

BIBLIOGRAPHY 94

[36] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Fourth

Edition. Oxford Clarendon Press, 1975.

[37] J. H̊astad. Solving simultaneous modular equations of low degree. SIAM

Journal on Computing, vol. 17, no. 2, pp. 336–341, 1988.

[38] C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents

objets de la théorie des nombres, deuxième lettre. J. Reine Agnew., Math.,

40:279-290, 1850.

[39] N. Howgrave-Graham. Computational mathematics inspired by RSA.

Ph.D. Thesis, University of Bath, 1999.

[40] N. Howgrave-Graham. Extending LLL to Gaussian integers. Unpublished

Manuscript, March 1998.

http://www.bath.ac.uk/~mapnahg/pub/gauss.ps

[41] N. Howgrave-Graham. Finding small roots of univariate modular equations

revisited. In proceedings Cryptography and Coding, Lecture Notes in Com-

puter Science, vol. 1355, Springer-Verlag, pp. 131–142, 1997.

[42] N. Howgrave-Graham. Private communications, 2001.

[43] A. Joux and J. Stern. Lattice reductions: a toolbox for the cryptanalyst.

Journal of Cryptology, vol. 11, no. 3, pp. 161–185, 1998.

[44] C. Jutla. On finding small solutions of modular multivariate polynomial

equations. In proceedings Eurocrypt ’98, Lecture Notes in Computer Science,

vol. 1403, Springer-Verlag, pp. 158–170, 1998.

[45] D. Kahn. The Codebreakers. Scribner, New York, 1996.

[46] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,

vol. IX, Jan.–Feb. 1883.

BIBLIOGRAPHY 95

[47] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In proceedings Crypto ’96, Lecture Notes in Computer

Science, vol. 1109, Springer-Verlag, pp. 104–113.

[48] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann,

6:336-389, 1873.

[49] L. Lagrange. Recherches d’arithmétique. Mouv. Mém. Acad., 1773.

[50] A. Lenstra and H. W. Lenstra Jr. Algorithms in Number Theory. In Hand-

book of Theoretical Computer Science (Volume A: Algorithms and Complex-

ity), ch. 12, pp. 673–715, 1990.

[51] A. Lenstra and H. W. Lenstra Jr. The development of the number field

sieve. Lecture Notes in Mathematics, vol. 1554, Springer-Verlag, 1994.

[52] A. Lenstra, H.W. Lenstra Jr, and L. Lovász. Factoring polynomials with

rational coefficients. Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[53] H. W. Lenstra Jr. Divisors in Residue Classes. Mathematics of Computation,

vol. 42, no. 165, pp. 331-340, 1984.

[54] H. W. Lenstra Jr. Factoring integers with elliptic curves. Annuals of Math-

ematics, vol. 126, pp. 649–673, 1987.

[55] L. Lovász. An algorithmic theory of numbers, graphs, and convexity. SIAM

CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 50,

1986.

[56] Waterloo Maple. The Maple computational algebra system for algebra, num-

ber theory and geometry. Information available at:

http://www.maplesoft.com/products/Maple6/maple6info.html.

[57] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1996.

[58] W. Meier. Private communication. June, 2000.

BIBLIOGRAPHY 96

[59] H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, Leipzig, 1896.

[60] P. Nguyen. Private communications.

[61] P. Nguyen and J. Stern. Lattice reduction in cryptology: an update. In

Algorithmic Number Theory – Proceedings of ANTS IV, Lecture Notes in

Computer Science, vol. 1838, Springer-Verlag, 2000.

[62] P. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In pro-

ceedings Cryptography and Lattices Conference, Lecture Notes in Computer

Science, vol. 2146, Springer-Verlag, 2001.

[63] I. Niven, H. Zuckerman, and H. Montgomery. An Introduction to the Theory

of Numbers. Jon Wiley & Sons, Fifth Edition, pp. 87–88, 1991.

[64] T. Okamoto and S. Uchiyama. A new public key cryptosystem as secure as

factoring. In proceedings Eurocrypt ’98, Lecture Notes in Computer Science,

vol. 1403, Springer-Verlag, pp. 310–318, 1998.

[65] R. Prealta and T. Okamoto. Faster factoring of integers of special form.

IEICE Transactions Fundamentals, vol. E79-A, no. 4, pp. 489–493, 1996.

[66] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes

in C: The Art of Scientific Computing. Second Edition. Cambridge Univer-

sity Press, pp. 347–393, 1997.

[67] J.J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA

public-key cryptosystem. Electronic Letters, vol. 18, no. 21, pp. 905–907,

1982.

[68] D. Redmond. Number Theory: An Introduction. Monographs and Textbooks

in Pure and Applied Mathematics, no. 201, Marcel Dekker, 1996.

[69] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

BIBLIOGRAPHY 97

[70] R. Sakai, M. Morii, and M. Kasahara. New key generation algorithm for

RSA cryptosystem. IEICE Trans. Fundamentals, E77-A(1):89–97, 1994.

[71] A. Shamir. RSA for Paranoids. RSA Laboratories CryptoBytes, vol. 1, no. 3,

pp. 1–4, 1995.

[72] V. Shoup. Number Theory Library (NTL), http://www.shoup.net/ntl/.

[73] R. Steinfeld and Y. Zheng. An advantage of low-exponent RSA with mod-

ulus primes sharing least significant bits. In Proceedings RSA Conference

2001, Cryptographer’s Track, Lecture Notes in Computer Science, vol. 2020,

Springer-Verlag, pp. 52–62, 2001.

[74] R. Silverman and S. Wagstaff. A Practical analysis of the elliptic curve

factoring algorithm. Mathematics of Computation, vol. 61, 1993.

[75] D. Stinson. Cryptography: Theory and Practice. CRC Press, 1994.

[76] H. Sun, W. Yang, and C. Laih. On the design of RSA with short secret

exponent. In proceedings Asiacrypt ’99, Lecture Notes in Computer Science,

vol. 1716, Springer-Verlag, pp. 150–164, 1999.

[77] T. Takagi. Fast RSA-type cryptosystem modulo pkq. In proceedings Crypto

’98, Lecture Notes in Computer Science, vol. 1462, Springer-Verlag, pp. 318–

326, 1998.

[78] B. Vallée, M. Girault, and P. Toffin. How to guess `th roots modulo n by

reducing lattice bases. In proceedings AAEEC-6, Lecture Notes in Computer

Science, vol. 357, Springer-Verlag, pp. 427–442, 1988.

[79] E. Verheul and H. van Tilborg. Cryptanalysis of less short RSA secret expo-

nents. Applicable Algebra in Engineering, Communication, and Computing,

vol. 8, pp. 425–435, 1997.

[80] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions

on Information Theory, vol. 36, no. 3, pp. 553–558, 1990.

BIBLIOGRAPHY 98

[81] P. Zimmerman. Private communications.

[82] See http://csrc.nist.gov/pki/.

[83] See http://www.cesg.gov.uk/.

[84] See http://www.setco.org/.

Appendix A

Solutions to Modular Quadratic

Equations

This appendix considers the problem of finding solutions for y in equations of the

form

y2 ≡ c (mod 2u), (A.1)

where u ≥ 3 and c ≡ 1 mod 8.

We begin with an algorithm to find a solution to this equation presented in the

following lemma. The proof appears in [68, p. 184]. For convenience we first define

the following polynomial (with coefficients in Q):

Pν(z) :=
ν∑

i=0

(−1)(i−1) 1

4i(2i− 1)

(
2i

i

)
zi.

Lemma A.1.1 Suppose u ≥ 3 and c ≡ 1 mod 8. Then y0 := Pu−3(c−1) is an integer

which satisfies (y0)
2 ≡ c mod 2u.

This provides one solution to equation (A.1). The following shows how to convert

any solution to equation (A.1) into any other solution. We provide a proof different

from what appears in [68].

Lemma A.1.2 Assume y0, y1 are in the range {0, . . . , 2u − 1}, and suppose y0 is a

99

APPENDIX A. SOLUTIONS TO MODULAR QUADRATIC EQUATIONS 100

solution for y in equation (A.1). Then y1 is a solution to (A.1) if and only if

y1 ≡ σy0 + τ2u−1 (mod 2u)

for some σ ∈ {−1, 1} and τ ∈ {0, 1}.

Proof Let σ ∈ {−1, 1} and τ ∈ {0, 1} be arbitrary, and let y0 be any solution to

equation (A.1). If we define y1 := σy0 + τ2u−1 then we see

(y1)
2 ≡ σ2(y0)

2 + στ2uy0 + τ 222u−2 (mod 2u).

Since u ≥ 3, we have 2u− 2 ≥ u, so reducing modulo 2u yields

(y1)
2 ≡ σ2(y0)

2 + στ2uy0 + τ 222u−2. ≡ σ2(y0)
2 ≡ (y0)

2 ≡ c (mod 2u),

so y1 is a solution for y in equation (A.1).

Now suppose that y0 and y1 are arbitrary solutions to equation (A.1). Since c ≡ 1

mod 8, it follows that y2
0 ≡ y2

1 ≡ 1 mod 4. So y1 ≡ σy0 mod 4, where σ ∈ {−1, 1}.
Thus there exists some integer v such that y1 = σy0 + 4v. From equation (A.1) we

see

y2
1 ≡ (σy0 + 4v)2 ≡ y2

0 + 8σy0v + 16v2 ≡ c (mod 2u),

implying 8σy0v + 16v2 ≡ 0 mod 2u. So 2u divides 8σy0v + 16v2 = 8v(σy0 + 2v2).

Now, 2v2 is even and y0 is odd (recall y2
0 ≡ 1 mod 8), so it must be the case that 2u−3

divides v. Hence, y1 = σy0 + 4v = σy0 + 2u−1τ . Since we are interested in solutions

modulo 2u, all choices of τ are equivalent to either τ = 0 or τ = 1.

We are now ready to prove the main result of the Appendix.

Lemma A.1.3 There are exactly four solutions for y in equation (A.1), and these

solutions can be computed in time O(u3).

The proof of the first clause is an immediate consequence of Lemmas A.1.1 and

A.1.2. The running time analysis follows from the description of Lemma A.1.1. Note

that it is especially efficient to evaluate Pu−3(c− 1) when only its result modulo 2u is

desired.

Appendix B

Approximate Square Roots

This appendix considers the problem of bounding the error of the square roots of ap-

proximated values. The main tool is the following lemma, needed for Theorem 5.2.4.

Lemma B.1.1 With the notation as in Section 5.1.1, suppose |p− q| ≥ 2(n/2)−2 and

e ≤ 2(n/4)−3. Furthermore suppose the quantities d1, s1, p1 satisfy |d1 − d| < 2n/4,

|s1 − s| ≤ 2(n/4)+log2 e, p1 =
1

2
(s1 +

√
s2
1 − 4N).

Then

|p1 − p| ≤ 2(n/4)+5+log2 e.

The proof of this lemma follows a suggestion made by P. Nguyen [60].

Proof Without loss of generality, assume s1 ≥ s, so that p1 ≥ p. Observe

p1 − p =
1

2
(s1 − s) +

1

2
(
√

s2
1 − 4N −

√
s2 − 4N)

=
1

2
(s1 − s) +

(s1 + s)(s1 − s)

2(
√

s2
1 − 4N +

√
s2 − 4N)

.

Since s1 ≥ s we have s2
1 − 4N ≥ s2 − 4N = (p− q)2, and we know (p− q) ≥ 2(n/4)−2.

The bound on e tells us s1 ≤ 2s, so that

s1 ≤ 2s = 2(p + q) ≤ 4p ≤ 23+(n/2).

101

APPENDIX B. APPROXIMATE SQUARE ROOTS 102

Using these facts we may derive the following bound:

p1 − p ≤ 1

2
(s1 − s) +

(s1 + s)(s1 − s)

4(p− q)

≤ 2(n/4)−1+log2 e +
(6p)(2(n/4)+log2 e)

2n/2

≤ 2(n/4)−1+log2 e + 2(n/4)+4+log2 e

≤ 2(n/4)+5+log2 e

as desired.

Appendix C

Determinants for Short Secret

Exponent

We give the exact expressions evaluating to the determinant of the lattice described

in Section 6.2. We know

detx = em(m+1)(m+2)(4δ−1)/12

dety = etm(m+1)(δ−1)/2+t(m+1)(m+t+1)/4

The determinant of the entire lattice is detx · dety and its dimension is w = (m +

1)(m + 2)/2 + t(m + 1).

To satisfy det(L) = detx · dety � 1 we must have

m(m + 1)(m + 2)
4δ − 1

12
+ tm(m + 1)

δ − 1

2
+

t(m + 1)(m + t + 1)

4
< 0,

which leads to

m(m + 2)(−1 + 4δ) + 3tm(−1 + 2δ) + 3t(t + 1) < 0

For every m the left hand side is minimized at t = m(1−2δ)−1
2

. Plugging this value in

leads to:

−(3 + 2m + 7m2) + δ(28m2 + 20m)− 12m2δ2 < 0

103

APPENDIX C. DETERMINANTS FOR SHORT SECRET EXPONENT 104

implying

δ <
7

6
− 1

3

√
7 +

16

m
+

4

m2
+

5

6m

As was shown in Section 6.2, when m goes to infinity this values converges to

δ <
7

6
−
√

7

3
≈ 0.2847

For a particular value of δ < 0.2847 we must take m to be at least

m >
−1 + 10δ + 2(−5 + 16δ + 16δ2)1/2

7− 28δ + 12δ2

For example, when δ = 0.27 we must take m ≥ 10 leading to a lattice of dimension

86.

Appendix D

Proof of Theorem 6.3.1

We use the following approach. First we introduce the notion of diagonally dominant

matrices, and show that there is an easy bound on the determinant of any lattice

formed from a subset of the rows of a diagonally dominant matrix M . We then show

that for certain submatrices of geometrically progressive matrices there is a unitary

transformation over R that puts the submatrix into a diagonally dominant form,

giving the desired determinant bounds. We then verify that these bounds yield the

conclusion of Theorem 6.3.1.

Let M be an n × n triangular matrix with rows u1, . . . , un. We say that M is

diagonally dominant to within a factor C when |ui,j| ≤ C ·|ui,i| for all i, j = {1, . . . , n}.
When the factor C is understood, we say simply that M is diagonally dominant.

Let S be a subset of the row indices. We define MS to be the |S|×n matrix whose

rows are ui, i ∈ S. We say that an arbitrary w× n matrix M̃ is diagonally dominant

when there is a S ⊆ {1, . . . , n} and diagonally dominant matrix M such that M̃ = MS

and |S| = w. We say that a lattice L is diagonally dominant when there is a basis

u1, . . . , uw for L such that the matrix with rows u1, . . . , uw is diagonally dominant.

Diagonally dominant lattices have determinants that are easy to bound, as shown in

the following fact.

Fact D.1.1 Let w ≤ n be given and take S ⊆ {1, . . . , n} with |S| = w. If L is a

105

APPENDIX D. PROOF OF THEOREM 6.3.1 106

lattice spanned by the rows ui for i ∈ S of a diagonally dominant matrix M , then

det(L) ≤ nw/2Cw
∏
i∈S

|ui,i|.

Proof Observe that since ‖u∗
i ‖ ≤ ‖ui‖ we have:

det(L) =
∏
i∈S

‖u∗
i ‖ ≤

∏
i∈S

‖ui‖ ≤
∏
i∈S

√
nC|ui,i| = nw/2Cw

∏
i∈S

|ui,i|.

Now let M be an (a + 1)b× (a + 1)b geometrically progressive matrix. We have a

bound of C ·Dc1i+c2j+c3k+c4` for the entry at row (k, `) and column (i, j); if we knew

this was always less than C times the bound Dc1k+c2`+c3k+c4` of that row’s entry on

the diagonal, then by conditions (i) and (ii) on geometrically progressive matrices

we would have that M is diagonally dominant to within a factor C.

Unfortunately, this is not always the case. We call a column index (i, j) bad when

the following condition holds:

Dc1i+c2j+c3k+c4` > Dc1k+c2`+c3k+c4`,

or equivalently, c1(k − i) + c2(` − j) < 0. It should be noted that the “badness”

of a column is a statement about the bound on the entry in the column, which is a

function of the parameters of the geometrically progressive matrix, not of the entry

itself. Indeed, the actual entry M(i, j, k, `) of a bad column (i, j) could be zero,

leading us to the following observation.

Remark D1. Let M be a geometrically progressive matrix and S a subset of the

rows. If M(i, j, k, `) = 0 for every bad column (i, j) of every row (k, `) ∈ S, then MS

is diagonally dominant to within a factor C. This is because for each (i, j) that is not

bad in the row (k, `), we have

M(i, j, k, `) ≤ C ·Dc1i+c2j+c3k+c4` ≤ C ·Dc1k+c2`+c3k+c4` = C ·M(k, `, k, `).

APPENDIX D. PROOF OF THEOREM 6.3.1 107

Remark B1 suggests that we should be looking for a submatrix MS whose entries

are zero in bad columns. Although this is unlikely for any submatrix MS of the matrix

M developed in Section 6.2, what we shall see is that there is a unitary transformation

over R that eliminates entries at bad columns in rows of MS. Once the diagonal

dominance of this transformed submatrix has been established, Fact D.1.1 can then

be employed to bound the determinant of the corresponding lattice.

Our goal now is to show that special submatrices of geometrically progressive

matrices can be put into a diagonally dominant form. Consider the following situation:

suppose we take a subset S of the rows of a geometrically progressive matrix M and

wish to bound the determinant of the lattice described by MS. We wish to guarantee

that there are “enough” rows included in S so that we may eliminate all nonzero

entries at bad columns in rows of MS. We prove this for certain natural subsets S in

Lemma D.1.2. We then use this guarantee to show that such an elimination procedure

will be successful; namely, we show that there is a unitary transformation U over R
such that U · MS is diagonally dominant. This is shown in Lemma D.1.3, leading

directly to a proof of Theorem 6.3.1.

Lemma D.1.2 Let M be an (a+1)b× (a+1)b geometrically progressive matrix with

parameters (C, D, c1, c2, c3, c4, β), let B ∈ R be a constant. Define

SB := {(k, `) ∈ {0, . . . , a} × {1, . . . , b} | M(k, `, k, `) ≤ B} .

For all (k, `) ∈ SB and i ≤ k, j ≤ `, if column (i, j) is bad in row (k, `) then (i, j) ∈ SB.

Proof We begin by assuming that (i, j) is bad, so Dc1(k−i)+c2(`−j) < 1 and thus

D(β−1)c1(k−i)+(β−1)c2(`−j) =
(
Dc1(k−i)+c2(`−j)

)(β−1) ≤ 1. (D.1)

Seeking contradiction, we now assume (i, j) 6∈ SB, that is, M(i, j, i, j) > B. It follows

that

D(c1+c3)i+(c2+c4)j = M(i, j, i, j) > B ≥ M(k, `, k, `) = D(c1+c3)k+(c2+c4)`.

APPENDIX D. PROOF OF THEOREM 6.3.1 108

Hence

D(c1+c3)(k−i)+(c2+c4)(`−j) < 1. (D.2)

Combining equations (D.1) and (D.2) yields

D(βc1+c3)(k−i)+(βc2+c4)(`−j) < 1. (D.3)

Note that i ≤ k and j ≤ ` by the hypotheses of the theorem, and we are guaranteed

βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0 since M is geometrically progressive. So (βc1 + c3)(k−
i) + (βc2 + c4)(`− j) ≥ 0. Furthermore, D ≥ 1, so

D(βc1+c3)(k−i)+(βc2+c4)(`−j) ≥ D0 = 1,

contradicting equation (D.3). Hence, (i, j) ∈ SB as desired.

Lemma D.1.3 Let M be an (a+1)b× (a+1)b geometrically progressive matrix with

parameters (C, D, c1, c2, c3, c4, β), let B ∈ R be a constant, define

SB := {(k, `) ∈ {0, . . . , a} × {1, . . . , b} | M(k, `, k, `) ≤ B} ,

and set w := |SB|. There is a w × w unitary matrix U over R such that U ·MSB
is

diagonally dominant to within a factor (1 + C)w.

Proof We proceed by induction. There are w rows in the matrix MSB
, and we

build matrices Ur such that the last r rows of Ur ·MSB
are diagonally dominant1 to

within a factor (1 + C)w, and the first w − r rows identical to those in MSB
. The U

we seek is Uw.

Clearly, U0 = I trivially satisfies this condition. Now suppose we have a unitary

matrix Ur−1 over R such that the last r−1 rows of Ur−1 ·MSB
are diagonally dominant

to within a factor (1+C)w and the first w− r rows are identical to those of MSB
. We

would like to find Ur that satisfies this condition for the last r rows, and we do this

by finding a unitary matrix V over R such that Ur := V ·Ur−1 satisfies this condition.

1To say that the last r rows of a w × n matrix M̃ are diagonally dominant means simply that
M̃{(w−r+1),...,w} is diagonally dominant.

APPENDIX D. PROOF OF THEOREM 6.3.1 109

Roughly speaking, the purpose of V is to “clean up” row (w− r + 1) of MSB
; that is,

it guarantees that (1 + C)w times the last column of row (w − r + 1) dominates all

other columns of row (w − r + 1) in V · Ur−1 ·MSB
.

Since MSB
is formed from rows of M , we may choose a pair (k, `) such that row

(w− r + 1) of MSB
is the (k, `)th row of M . By Lemma D.1.2, for every bad column

(i, j) satisfying i ≤ k and j ≤ `, the corresponding row (i, j) is in SB. So there are at

most w − 1 bad columns with nonzero entries in the row (clearly, (k, `) is not bad.)

We build V in stages by constructing elementary row operations V1, . . . , Vw−1 and

letting V := Vw−1 · Vw−2 · · ·V1. Each Vs sets another bad column (is, js) in the row

to 0, so that the (w − r + 1)th row of Vs · · ·V1 · Ur−1 ·MSB
has nonzero entries in at

most w − s − 1 bad columns. We show that each Vs increases every column of the

row by at most a factor of (1 + C).

Define

v(s) := (Vs · · ·V1 · Ur−1 ·MSB
){w−r+1},

that is, v(s) is the (w + r − 1)th row of Vs · · ·V1 · Ur−1 ·MSB
. We denote the entry in

the (i, j)th column of v(s) as v(s)(i, j). We maintain the following three invariants for

s = 1, . . . , w − 1:

(i)
∣∣v(s)(i, j)

∣∣ ≤ (1 + C)sC ·Dc1i+c2j+c3k+c4` for all columns (i, j);

(ii) i > k or j > ` implies v(s)(i, j) = 0; and,

(iii) the number of bad columns with nonzero entries in v(s) is at most w − s− 1.

These conditions are satisfied trivially for s = 0, since v(0) is identical to row (k, `)

of the geometrically progressive matrix M . Now suppose that every column (i, j) of

v(s−1) satisfies these three conditions. If there are no nonzero entries of v(s−1) at bad

columns, we are done, and may take Vs, . . . , Vw−1 := I. Otherwise, let (is, js) be the

rightmost bad column such that v(s−1)(is, js) 6= 0. Since v(s−1)(is, js) 6= 0, we know

by the inductive hypothesis that is ≤ k and js ≤ `. Since (is, js) is also bad, we know

that (is, js) ∈ SB. So we may pick a t such that row (is, js) of M is row t of MSB
.

Define Vs to be the elementary row operation that subtracts v(s−1)(is,js)
M(is,js,is,js)

times row t

APPENDIX D. PROOF OF THEOREM 6.3.1 110

from row (w − r + 1). Observe for every column (i, j),

∣∣v(s)(i, j)
∣∣ ≤

∣∣v(s−1)(i, j)
∣∣+ ∣∣∣∣ v(s−1)(is, js)

M(is, js, is, js)
·M(i, j, is, js)

∣∣∣∣
≤ (1 + C)s−1C ·Dc1i+c2j+c3k+c4`

+
(1 + C)s−1C ·Dc1is+c2js+c3k+c4`

Dc1is+c2js+c3is+c4js
· C ·Dc1i+c2j+c3is+c4js`

= (1 + C)sC ·Dc1i+c2j+c3k+c4`.

So condition (i) is met.

Now let (i, j) be given with either i > k or j > `. Since v(s−1)(is, js) 6= 0, we

know by condition (ii) of the inductive hypothesis that is ≤ k and js ≤ `. So either

i > k ≥ is or j > ` ≥ js, implying M(i, j, is, js) = 0. Thus

v(s)(i, j) = v(s−1)i, j − v(s−1)(is, js)

M(is, js, is, js)
·M(i, j, is, js) = 0− 0 = 0,

satisfying condition (ii).

We now claim that the number of bad columns with nonzero entries in v(s) is

at most w − s − 1. Clearly, v(s)(is, js) = 0, and columns to the right of (is, js) are

unchanged from v(s−1). Since (is, js) was chosen to be the rightmost nonzero bad

column of v(s−1), this implies that no nonzero column in v(s) to the right of (is, js) is

bad. But since this is the sth elimination step, there are at least s− 1 bad columns

(i, j) to the right of (is, js) satisfying i ≤ k and j ≤ `. Thus, the number of bad

columns with nonzero entries in v(s) is at most w − s− 1, satisfying condition (iii).

Thus, v(w−1) has a zero in every bad column, so

v(w−1)(i, j) ≤ (1 + C)w−1C ·Dc1i+c2j+c3k+c4` ≤ (1 + C)w ·M(k, `, k, `)

for all columns (i, j). Setting V := Vw−1 · · ·V1 and Ur := V · Ur−1, we have that the

last r rows of Ur ·MSB
are diagonally dominant to within a factor (1 + C)w. Finally,

taking U := Uw completes the result.

We are now ready to complete the proof of Theorem 6.3.1.

Proof of Theorem 6.3.1 By Lemma D.1.3 we have a w × w unitary matrix U

APPENDIX D. PROOF OF THEOREM 6.3.1 111

over R such that U ·MSB
is diagonally dominant to within a factor (1 + C)w. Since

U is unitary over R, the lattice L′ induced by the rows of U · MSB
has the same

determinant as the lattice L induced by the rows of MSB
, so by Fact D.1.1 yielding

the desired bound

det(L) = det(L′) ≤ ((a + 1)b)w/2(1 + C)w2
∏

(k,`)∈SB

M(k, `, k, `),

where w = |SB|.

Appendix E

Determinants for the

Sun-Yang-Laih Schemes

The general formula for the determinant of the lattice we build in Section 7.2 is

det(L) = eCeXCxY CyZCz ,

where

Ce = −1

6
m(m + 1)(2m + 3t + 1),

Cx =
1

6
m(m + 1)(4m + 3t + 5),

Cy =


1
6
(m3 + 3(a + t + 1)m2 + (3t2 + 6at + 3a2 + 6a + 6t + 2)m

+(3t2 + 6at + 3a2 + 4a + 3t− a3)) if a ≥ 0,
1
6
(m3 + 3(a + t + 1)m2 + (3t2 + 6at + 3a2 + 6a + 6t + 2)m

+(3t2 + 6at + 3a2 + 3a + 3t)) if a < 0,

Cz =


1
6
(m3 − 3(a− 1)m2 + (3a2 − 6a + 2)m + (3a2 − 2a− a3)) if a ≥ 0,

1
6
(m3 − 3(a− 1)m2 + (3a2 − 6a + 2)m + (3a2 − 3a)) if a < 0.

112

APPENDIX E. DETERMINANTS FOR THE SUN-YANG-LAIH SCHEMES 113

We need det(L) � 1. In order to optimize the choice of t and a, we write t = τm

and a = αm, and observe

Ce = −1

6
(3τ + 2)m3 + o(m3),

Cx =
1

6
(3τ + 4)m3 + o(m3),

Cy =


1
6
(3τ 2 + 6ατ + 3α2 + 3α + 3τ + 1− α3)m3 + o(m3) if α ≥ 0,

1
6
(3τ 2 + 6ατ + 3α2 + 3α + 3τ + 1)m3 + o(m3) if α < 0,

Cz =


1
6
(3α2 − 3α + 1− α3)m3 + o(m3) if α ≥ 0,

1
6
(3α2 − 3α + 1)m3 + o(m3) if α < 0.

Suppose we write e = N ε, d = N δ, and Y = Nβ, so Z = N1−β. Then X = N ε+δ−1.

So the requirement on det(L) now becomes

εCe + (ε + δ − 1)Cx + βCy + (1− β)Cz < 0. (E.1)

The left-hand-side of this expression achieves its minimum at

τ0 = (2α0β − β − δ + 1)/(2β),

α0 =

{
1− β − (1− β − δ + β2)(1/2) if β < δ,

(β − δ)/(2β − 2) if β ≥ δ.

Using τ = τ0 and α = α0 will give us the minimum value on the left-hand-side of

inequality E.1, affording us the largest possible X to give an attack on the largest

possible d < N δ. The entries in Figure 7.2 were generated by plugging in τ0 and α0

and solving for equality in Equation E.1.

It is interesting to note that formulation of the root-finding problem for RSA

as a trivariate equation is strictly more powerful than its formulation as the small

inverse problem. This is because the small inverse problem is not expected to have

a unique solution once δ > 0.5, while this attack works in many cases with δ > 0.5.

We note that when ε = 1 and β = 0.5 – as in standard RSA – this attack gives

APPENDIX E. DETERMINANTS FOR THE SUN-YANG-LAIH SCHEMES 114

the same results as the simpler short secret exponent attack outlined in Section 6.2

(d < N0.284). The additional optimizations that come from using lattices of less than

full rank (Section 6.3) should also work with this approach, but the improvement

would likely be minimal.

