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Overview

• Summed-area tables
– Useful for averaging pixels
– Efficient creation on GPU

• Rendering dynamic 
reflections with per-pixel 
glossiness using dual-
paraboloid maps and 
summed-area tables



Summed-Area Tables (SATs)

• Each element Smn of a summed-area table S 
contains the sum of all elements above and 
to the left of the original table/texture T  (for a 
left handed coordinate system) [Crow84]
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Using a Summed-Area Table

• Summed-area tables enable the averaging 
rectangular regions of pixel with a constant 
number of reads
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Efficient Summed-Area Table 
Creation

• Borrow technique from high performance 
computing - recursive doubling 

• Summed-area table construction can be 
decomposed into horizontal and vertical phase 
each with log2(texture size) passes

• Each pass adds two elements from previous 
pass.

Horizontal Phase:

Pi(x, y) = Pi−1(x, y) + Pi−1(x − 2passindex, y)
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Sampling off texture returns 0 and does not affect sum

Pass 1

Pass 2

Pass 3



Boundary Conditions

• To make sure sampling off the texture does 
not effect the results we need to set up the 
correct texture clamping behavior

• Two possibilities:
– Clamp to border color with a color of (0, 0, 0, 0)
– Render a black border around the texture to be 

converted into SAT and set Clamp to Edge mode



Saving unnecessary texture 
reads

• Reads off of the texture are wasteful
– Texel cache should catch these reads

• Optimization:
– Do not perform computation for finished texels
– Reduce the size of the rendered quad each pass to 

only cover texels have not finished computation



Saving Render Passes

• Two samples per pass requires 16 passes 
for a 256x256 texture → 2*log2(256)

• Reduce number of passes by adding more 
samples per pass
– passes = 2*log #samples (texture size)

• Only need 4 passes to convert a 256x256 
texture into a summed-area table if 16 
samples / pass used
– Trade extra work versus reducing context switches



Precision Requirements

• For proper reconstruction: 
table precision = log2(w)+log2(h) + b

• A 256x256 8-bit input texture requires 24-bits 
of precision per component

• Use 32-bit floats to compute and store 
summed-area tables

• Precision errors average out as you use 
larger box filter kernels



32-bit float

16-bit float

Effects of Precision Loss

Input texture

1x1 box filter 3x3 box filter



Effects of Precision Loss
24-bit floats

Input texture 1x1 box filter reconstruction



Improving Precision 
Requirements (1/2)

• Summed-area tables store a positively 
increasing monotonic function
– Construction requires the addition of a value that is 

at least zero

• Construct table using offsets 
instead of absolute values
– Function no longer monotonic
– Removes DC component of signal



Improving Precision 
Requirements (2/2)

• Bias input texture by -0.5 
before generating table

• Reconstruct samples from 
table by adding 0.5 to final 
result
– For best results, use actual 

image mean

• Particularly useful on 
hardware with limited pixel 
pipeline precision

Original summed-area table

With precision improvement



Offset Summed-Area Tables
input texture original summed-area table this work



Dynamic Glossy Reflections 
Outline

• Render dynamic cubemap
• Convert to dual-paraboloid map
• Convert dual-paraboloid map faces to 

summed-area tables
• Apply summed-area table Dual-paraboloid 

map to glossy object
• Sounds like a lot of work, but is actually quite 

fast on modern hardware
– Real-time demo later



Dual-Paraboloid Maps

• A set of two textures that store an environment 
as reflected by a pair of  parabolic mirrors

Alpha
channel

Color
channels

Front map Back map



Cubemap to DP Map 
Conversion
• Convert uv position on DP map face to 3D 

vector using: (from [Blythe99])

• Do the math on the fly or precompute lookup 
textures:

Front 
face:

Back 
face:

Front lookup texture Back lookup texture
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Why Bother With DP 
Mapping?

• Summed-area table concept does not map 
well to cubemaps
– Filtering across face boundaries is problematic
– Potentially forced to read from all six of the 

cubemaps faces for large kernels

• Filtering in image space with a dual-
paraboloid map incurs less error then 
cubemaps and spherical maps (ref 
[Kautz00])



Putting it All Together

1. Render cubemap

2. Render dual-
    paraboloid map

3. Generate summed-
    area tables

4. Render scene with
    per- pixel glossy 
    reflections



Direct DP Face Rendering

• Alternative to rendering cubemap, then 
converting to DP map:
– Transform environment using parabolic projection 

function and render directly into DP faces

• Unfortunately parabolic projection is non-
linear and maps lines to curves
– Might be acceptable if your geometry is tesselated 

highly enough

• See [Coombe04] for details



Other Possibilities

• Average several box-
filtered environment map 
samples to approximate 
smoother blur filter kernels

• Approximate a Phong 
BRDF by combining 
samples from the normal 
direction and the reflection 
direction



Real-time Demo



Disadvantages of technique

• Precision requirements for summed-area 
tables

• Automatic bilinear filtering not supported for 
float32 textures
– Not so much of an issue for larger filter kernels
– Can perform bilinear filtering manually



Conclusion

• Summed-area tables for constant time 
filtering of textures

• Efficient summed-area table generation 
scheme using the GPU
– Does not require reading from and writing to the 

same texture

• Use summed-area tables and dual-
paraboloid mapping together to achieve 
dynamic glossy environment reflections



Additional Information

• Upcoming Eurographics’05 paper
– Covers additional applications for fast summed-area 

table generation

• In depth implementation information in 
upcoming ShaderX4
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