
Interactive Summed-Area Table
Generation for Glossy Environmental

Reflections

Justin Hensley✵
Thorsten Scheuermann✝

Montek Singh✵
Anselmo Lastra✵

✵University of North Carolina at Chapel Hill
✝ATI Research

Overview

• Summed-area tables
– Useful for averaging pixels
– Efficient creation on GPU

• Rendering dynamic
reflections with per-pixel
glossiness using dual-
paraboloid maps and
summed-area tables

Summed-Area Tables (SATs)

• Each element Smn of a summed-area table S
contains the sum of all elements above and
to the left of the original table/texture T (for a
left handed coordinate system) [Crow84]

1 2 3 4
4 0 7 2 4

3 1 4 1 2

2 6 1 2 0

1 0 3 5 2

Summed-Area Tables (SATs)

• Each element Smn of a summed-area table S
contains the sum of all elements above and
to the left of the original table/texture T (for a
left handed coordinate system) [Crow84]

input texture summed-area table

1 2 3 4
4 0 7 9 13

3 1 12 15 21

2 7 19 24 30

1 7 22 32 40

Summed-Area Tables (SATs)

• Each element Smn of a summed-area table S
contains the sum of all elements above and
to the left of the original table/texture T (for a
left handed coordinate system) [Crow84]

input texture summed-area table

1 2 3 4
4 0 7 2 4

3 1 4 1 2

2 6 1 2 0

1 0 3 5 2

1 2 3 4
4 0 7 9 13

3 1 12 15 21

2 7 19 24 30

1 7 22 32 40

1 2 3 4
4 0 7 2 4

3 1 4 1 2

2 6 1 2 0

1 0 3 5 2

Summed-Area Tables (SATs)

• Each element Smn of a summed-area table S
contains the sum of all elements above and
to the left of the original table/texture T (for a
left handed coordinate system) [Crow84]

input texture summed-area table

1 2 3 4
4 0 7 9 13

3 1 12 15 21

2 7 19 24 30

1 7 22 32 40

Using a Summed-Area Table

• Summed-area tables enable the averaging
rectangular regions of pixel with a constant
number of reads

average =

+
LR

LR

-
LL

- LL-
UR

- UR

width*height

+ UL+
UL

width

he
ig

ht

Efficient Summed-Area Table
Creation

• Borrow technique from high performance
computing - recursive doubling

• Summed-area table construction can be
decomposed into horizontal and vertical phase
each with log2(texture size) passes

• Each pass adds two elements from previous
pass.

Horizontal Phase:

Pi(x, y) = Pi−1(x, y) + Pi−1(x − 2passindex, y)

0 1 2 3 4 5 6 7 8

Horizontal Phase

0 0 1 1..2 2..3 3..4 4..5 5..6 6..7 7..8

0 0 0 1 1..2 1..3 1..4 2..5 3..6 4..7 5..8

1 1..2 1..3 1..4 1..5 1..6 1..7 1..8

Sampling off texture returns 0 and does not affect sum

Pass 1

Pass 2

Pass 3

Boundary Conditions

• To make sure sampling off the texture does
not effect the results we need to set up the
correct texture clamping behavior

• Two possibilities:
– Clamp to border color with a color of (0, 0, 0, 0)
– Render a black border around the texture to be

converted into SAT and set Clamp to Edge mode

Saving unnecessary texture
reads

• Reads off of the texture are wasteful
– Texel cache should catch these reads

• Optimization:
– Do not perform computation for finished texels
– Reduce the size of the rendered quad each pass to

only cover texels have not finished computation

Saving Render Passes

• Two samples per pass requires 16 passes
for a 256x256 texture → 2*log2(256)

• Reduce number of passes by adding more
samples per pass
– passes = 2*log #samples (texture size)

• Only need 4 passes to convert a 256x256
texture into a summed-area table if 16
samples / pass used
– Trade extra work versus reducing context switches

Precision Requirements

• For proper reconstruction:
table precision = log2(w)+log2(h) + b

• A 256x256 8-bit input texture requires 24-bits
of precision per component

• Use 32-bit floats to compute and store
summed-area tables

• Precision errors average out as you use
larger box filter kernels

32-bit float

16-bit float

Effects of Precision Loss

Input texture

1x1 box filter 3x3 box filter

Effects of Precision Loss
24-bit floats

Input texture 1x1 box filter reconstruction

Improving Precision
Requirements (1/2)

• Summed-area tables store a positively
increasing monotonic function
– Construction requires the addition of a value that is

at least zero

• Construct table using offsets
instead of absolute values
– Function no longer monotonic
– Removes DC component of signal

Improving Precision
Requirements (2/2)

• Bias input texture by -0.5
before generating table

• Reconstruct samples from
table by adding 0.5 to final
result
– For best results, use actual

image mean

• Particularly useful on
hardware with limited pixel
pipeline precision

Original summed-area table

With precision improvement

Offset Summed-Area Tables
input texture original summed-area table this work

Dynamic Glossy Reflections
Outline

• Render dynamic cubemap
• Convert to dual-paraboloid map
• Convert dual-paraboloid map faces to

summed-area tables
• Apply summed-area table Dual-paraboloid

map to glossy object
• Sounds like a lot of work, but is actually quite

fast on modern hardware
– Real-time demo later

Dual-Paraboloid Maps

• A set of two textures that store an environment
as reflected by a pair of parabolic mirrors

Alpha
channel

Color
channels

Front map Back map

Cubemap to DP Map
Conversion
• Convert uv position on DP map face to 3D

vector using: (from [Blythe99])

• Do the math on the fly or precompute lookup
textures:

Front
face:

Back
face:

Front lookup texture Back lookup texture

R =

2u

u
2+v

2+1
2v

u
2+v

2+1
−1+u

2+v
2

u
2+v

2+1

R =

−2u

u
2+v

2+1
−2v

u
2+v

2+1
1−u

2
−v

2

u
2+v

2+1

Why Bother With DP
Mapping?

• Summed-area table concept does not map
well to cubemaps
– Filtering across face boundaries is problematic
– Potentially forced to read from all six of the

cubemaps faces for large kernels

• Filtering in image space with a dual-
paraboloid map incurs less error then
cubemaps and spherical maps (ref
[Kautz00])

Putting it All Together

1. Render cubemap

2. Render dual-
 paraboloid map

3. Generate summed-
 area tables

4. Render scene with
 per- pixel glossy
 reflections

Direct DP Face Rendering

• Alternative to rendering cubemap, then
converting to DP map:
– Transform environment using parabolic projection

function and render directly into DP faces

• Unfortunately parabolic projection is non-
linear and maps lines to curves
– Might be acceptable if your geometry is tesselated

highly enough

• See [Coombe04] for details

Other Possibilities

• Average several box-
filtered environment map
samples to approximate
smoother blur filter kernels

• Approximate a Phong
BRDF by combining
samples from the normal
direction and the reflection
direction

Real-time Demo

Disadvantages of technique

• Precision requirements for summed-area
tables

• Automatic bilinear filtering not supported for
float32 textures
– Not so much of an issue for larger filter kernels
– Can perform bilinear filtering manually

Conclusion

• Summed-area tables for constant time
filtering of textures

• Efficient summed-area table generation
scheme using the GPU
– Does not require reading from and writing to the

same texture

• Use summed-area tables and dual-
paraboloid mapping together to achieve
dynamic glossy environment reflections

Additional Information

• Upcoming Eurographics’05 paper
– Covers additional applications for fast summed-area

table generation

• In depth implementation information in
upcoming ShaderX4

Acknowledgments

• ATI Research
• National Science Foundation

– CCF-0306478 , CCF-0205425, CNS-0303590

• Eli Turner for the demo artwork

Questions?

