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Abstract 

A study of computer graphics antialiasing methods was done with the goal of determining which 
methods could be used in future computer graphics hardware accelerators to provide improved 
image quality at acceptable cost and with acceptable performance. The study focused on 
supersampling techniques, looking in detail at various sampling patterns and resampling filters. 

This report presents a detailed discussion of theoretical issues involved in aliasing in computer 
graphics images, and also presents the results of two sets of experiments designed to show the 
results of techniques that may be candidates for inclusion in future computer graphics hardware. 
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1. Introduction 

1.1 Graphics Hardware and Aliasing 

Graphics hardware accelerators have, almost without exception, used incremental raster 
conversion of lines and polygons as the primary method of rendering images. An undesirable 
side effect of this technique is the generation of �jaggies,� ragged stair-step patterns apparent on 
edges that are not oriented at exact multiples of 45 degrees. Aggregations of very small polygons 
also generate somewhat unpredictable results when the polygon size comes close to or below the 
size of one pixel. These effects are typically worsened in animation sequences, where false 
apparent motion of these artifacts proves very distracting to the viewer. 

These artifacts are two of the most common effects of aliasing. Aliasing is defined to occur when 
a continuous signal (in this case the image projection of the geometric model of a scene) is 
sampled (converted to discrete pixels) using sample locations (pixels) that are too widely spaced 
relative to the smallest details of the scene. Because mathematically defined lines and edges 
contain infinitely sharp edges (and thus infinitely small detail), it is not possible to exactly 
represent a computer graphics image using pixels. Antialiasing techniques attempt to generate 
approximations that more closely resemble the ideal scene by minimizing the effects of aliasing. 

1.2 Digital Images and Sampling 

A digital image is a collection of point samples that can be used to reconstruct a continuous* 
image to be viewed. Pixels are sometimes characterized as area samples, but since each pixel is 
represented by a single value (per color channel), the area sample characterization is not a very 
accurate formalization [1]. 

The typical placement of point samples for image sampling is on a square grid. If the sampling 
frequency in each direction is greater than twice the maximum frequency present in the 
continuous image that is sampled, then it is possible to exactly reconstruct that original 
continuous image from the samples. An image meeting this criterion relative to a particular 
sampling frequency is said to be band-limited relative to that sampling frequency. 

In practice, it is rare that the image to be sampled is, in fact, band-limited. In the most common 
case for graphics hardware, the image to be sampled is made up of lines and polygons projected 
on to the view plane. Any sharp edge, such as a line or polygon edge, contains non-zero 
amplitude at any arbitrarily high frequency. This implies that it is not possible to use samples to 

                                                 
*  An image is considered to be a two-dimensional function of image coordinates. A continuous image has a valid value at any coordinates within 

the image space, a digital image has a valid value only at integer coordinate (pixel) locations. For gray scale images, the function is single-
valued. For color images, we generally consider each color channel to be a separate image function. 
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exactly represent any image that has sharp edges. The best that we can do in this situation is to 
generate sample values that represent a reasonable approximation to the ideal image. 

In theory, the correct method for avoidance of aliasing when sampling a signal is to pass the 
signal through a low-pass filter before any sampling is done. The low-pass filter removes any 
frequencies greater than or equal to half the sampling frequency. The samples are then able to 
exactly represent the filtered signal without any aliasing. Correct sampling requires computation 
of the 2D projection of all 3D geometric primitives in a scene, determination of the visible parts 
of each primitive, and then formation of a band-limited representation of the collection of visible 
partial primitives. Then a low-pass filter must be applied to this representation before sampling. 
Even if a practical method were available to implement this procedure, it would undoubtedly be 
complex and time-consuming to generate an image using this approach. 

In practice, correct sampling is generally not feasible, so some approximation must be made. For 
most signals, an approximation method can take advantage of the fact that signal content 
generally declines as the frequency increases. The most common technique, supersampling, 
takes advantage of this by first sampling the signal at a frequency higher than the desired sample 
rate. This supersampled signal still has artifacts due to aliasing, but the artifacts are less 
prominent than if the signal was sampled at the target rate. A filter reconstructs a new continuous 
signal from the supersamples and attenuates the frequency content above a threshold so that the 
signal resampled at the target rate exhibits fewer aliasing artifacts. 

Note that supersampling [2] is paradoxically also referred to as subsampling [3]. These terms 
generally refer to the same process; we will use the term �supersampling� in this report. 

1.3 This Report 

This report describes two studies performed in support of the Bonanza graphics hardware design 
effort to determine the effectiveness of antialiasing techniques which have been described in the 
literature and appear feasible for hardware implementation. Section 2 describes a study of filters 
used in conjunction with supersampling, using supersample patterns on a regular grid (see Figure 
3). The cost and effectiveness of various filters are compared, and subjective image quality is 
examined. Section 3 describes a study of sampling patterns and sample counts, examining the 
effectiveness of irregular and jittered grids for supersampling, in conjunction with supersampling 
filters. 
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2. Antialiasing for Raster Graphics via Filtering 

Computer graphics on a raster display is the process of rendering a synthesized continuous-
domain image at pixels in a regular grid. A pixel is a point sample; a pixel is not a little 
square [1]. A polygon renderer samples polygons at points on scan lines: this operation validates 
this definition of a pixel. Sampling of a continuous-domain signal leads to aliasing [1,3,4,5,6,7]. 
In raster graphics, aliasing is most noticeable as jagged silhouette edges, particularly in 
animations when the staircase patterns crawl along these edges. Aliasing also appears as 
changing moiré patterns during animation of fine periodic textures or geometric structures. These 
artifacts are distracting to viewers. The process of reducing the aliasing artifacts is known as 
antialiasing. 

A full analysis of aliasing arising from sampling requires application of the Fourier transform, 
which yields a signal�s frequency spectrum. Sampling of a continuous-domain signal replicates 
the signal�s spectrum at multiples of the sampling frequency. Aliasing results when the sampling 
frequency is too low for the signal, resulting in overlap of the replicated and offset spectral lobes. 
An increase in the sampling frequency (or equivalently, a reduction in the sampling interval) can 
help to reduce aliasing by increasing the separation of spectral replicas in the frequency domain. 
However, many signals such as silhouette edges have significant high-frequency components so 
that a very high sampling frequency is needed to reduce aliasing. In raster graphics, the final 
resolution of a given screen has an upper bound so decreasing the sampling interval of the 
display is impractical. 

For a given sampling frequency, the most effective means of reducing aliasing is to apply a low-
pass filter to the signal. This operation reduces the high-frequency components, and when it 
precedes sampling, aliasing artifacts are less perceptible. The sampling theorem states that a 
function whose Fourier transform is zero for absolute frequencies f fc>  is completely 
specified by samples taken at a uniform interval not greater than 1 2 fcb g  except for any 
harmonic term with zeros at the sampling points [4]. A corollary of the sampling theorem is that 
the low-pass filter�s ideal cutoff frequency is half of the sampling frequency. In all discrete signal 
processing applications, a tradeoff exists between quality and computational expense when 
performing antialiasing. The characteristics of the filter are among the considerations in the 
design of an antialiasing solution. 

This section reviews three topics: the source of aliasing when sampling continuous-domain 
signals, filtering, and supersampling. Then it compares various filters: their shapes in the spatial 
and frequency domains, cost of implementation, and quality. 

2.1 Signals and the Fourier Transform 

Bracewell [4] gives a comprehensive presentation of the Fourier transform, both its theory and 
applications. This subsection adopts the function definitions and properties from that book. 
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In the context of signal processing, certain functions occur frequently in sampling and filtering 
applications. Some of these are defined in Table 1. The sampling function is an infinite train of 
uniformly spaced impulses, where the notation δ xb g  denotes the Dirac impulse. The impulse can 
sample a function with unit weight at a point with infinitesimal extent. The impulse satisfies the 

following properties: δ xb g = 0  for x ≠ 0  and δ x dxb g
−∞

∞z = 1 . 

Table 1: Function Definitions 

Function Name Definition 

Rectangle Π x
x
x
x

b g =
<
=
>

R
S|
T|

1 1 2
1 2 1 2
0 1 2

 

Triangle Λ x
x x

x
b g = − ≤

>
RST
1 1
0 1

 

Sinc sinc x
x

x
b g b g= sin π

π
 

Sampling III x x i
i

b g b g= −
=−∞

∞

�δ  

 

The Fourier transform yields the frequency spectrum of a signal. Some important Fourier 
transform pairs and properties are in Table 2. The convolution operation is denoted by the 
asterisk symbol *. Some properties of the Fourier transform can be described as follows. Under 
the convolution property, convolution in one domain becomes multiplication in the other domain. 
The similarity property expresses that compressing a signal�s domain expands the domain of the 
signal�s Fourier transform pair and attenuates the magnitude. A property of sampling a 
continuous-domain signal is that the operation replicates the frequency spectrum at multiples of 
the sampling frequency. 

Table 2: Fourier transform pairs. 

Spatial Domain Frequency Domain 
Π xb g  sinc fb g  
sinc xb g  Π fb g  
Λ xb g  sinc2 fb g  
exp −π xb g  exp −π fb g  
III xb g  III fb g  
g x h xb g b g*  G f H fb g b g  
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g x h xb g b g  G f H fb g b g*  
g axb g  a G f a−1 b g  
g x Nx

N
g i

N
x i

Ni
b g b gIII = F

HG
I
KJ −FHG

I
KJ=−∞

∞

�
1 δ  G f

N
f
N

G f Nk
k

b g b g* III1 F
HG
I
KJ = −

=−∞

∞
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The antialiasing methods for images apply to two-dimensional (2D) signals and filters. For 
simplicity, the systems analyzed in the next subsection are one-dimensional (1D): their extension 
to 2D is straightforward. In addition, the filters are separable, meaning that a 2D function is the 
product of two 1D functions: h x y a x b y,b g b g b g= . For 2D filters, the individual 1D functions 
usually are identical: h x y a x a y,b g b g b g= . 

2.2 Systems 

Analysis of aliasing in the rasterization pipeline requires a model in the form of a systems 
diagram as shown in Figure 1(a). The continuous-domain input signal g xb g  represents the scene. 
The renderer samples the scene at uniform one-pixel intervals to produce the sampled signal 
g x*b g , which is stored in the frame buffer. The reconstruction function r xb g  represents the video 
display circuitry and the physics of the display unit, which may be a cathode-ray tube, liquid-
crystal display, or some other device. This function should be a good low-pass filter, which 
interpolates the discrete samples, but often the actual hardware is only a modest approximation 
to the ideal. Upon convolving the sampled signal with the reconstruction function, the final 
output signal q xb g  represents the displayed image seen by viewers. 

The system in Figure 1(a) performs conventional point sampling. The sampled signal and its 
Fourier transform are as follows: 

g x g x x g i x i

G f G f f G f n

i

n

* III

III

b g b g b g b g b g

b g b g b g b g

= = −

= = −

=−∞

∞

=−∞

∞

�

�

δ

* *
 

The sampled signal�s spectrum G f*b g  is the sum of replicas of the original spectrum G fb g  at 
integral multiples of the sampling frequency of 1 cycle/pixel. If the original signal has spectral 
energy beyond 0.5 cycles/pixel, then the replicas overlap, resulting in aliasing. In computer 
graphics, this condition is true for silhouette edges so the jagged appearance is noticeable, 
particularly during animation.  

Since the sampling frequency is fixed at 1 cycle/pixel, reduction of aliasing requires a low-pass 
filter with a sharp cutoff at 0.5 cycles/pixel. The ideal antialiasing system in Figure 1(b)  
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Figure 1: Rasterization systems. (a) Conventional point sampling. (b) Ideal antialiasing with filtering. (c) 
Practical antialiasing with supersampling and filtering. 
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convolves the input signal g xb g  with the filter impulse-response h xb g  to yield a filtered signal 
p xb g . This stage precedes sampling, which produces the sampled signal p x*b g . If the filter is the 

ideal low-pass filter with transfer function H f fb g b g= Π , or equivalently, impulse response 
h x xb g b g= sinc , then this system eliminates the high frequency content that causes aliasing when 
sampling. In addition, if the reconstruction function is ideal, meaning that r x xb g b g= sinc , then 
the filtered signal p xb g  can be recovered exactly. However, implementation of the ideal 
antialiasing system is impractical because it requires convolution of two continuous-domain 
signals. 

In the practical antialiasing system of Figure 1(c), a supersampling stage precedes the filtering 
stage of the ideal antialiasing system. Supersampling at a rate of N cycles/pixel yields the 
supersampled signal g x#b g , which is the new input to the filter h xb g , which we now call the 
resampling filter because it resides between two sampling stages. This system is simpler to 
implement because the convolution of a discrete signal g x#b g  with the continuous resampling-
filter�s impulse response h xb g  is a sum rather than an integral.  

p x g x h x

N
g i

N
x i

N
h x

N
g i

N
h x i

N

i

i

b g b g b g
b g
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= F
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I
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I
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I
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I
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=−∞

∞

�

�

# *
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1

δ  

Even better, the filtered signal p xb g  is sampled (at the final rate of 1 cycle/pixel) so it is required 
only at discrete locations: 

p x p j x j
j

*b g b g b g= −
=−∞

∞

� δ  

p j p x
N

g i
N

h j i
Nx j

i
b g b g= = F

HG
I
KJ −FHG

I
KJ=

=−∞

∞

�
1 . 

The discrete signal p jb g  is the output of a discrete convolution and the implementation is 
straightforward. In a graphics system, this is the signal stored in the frame buffer. 

The practical antialiasing system is susceptible to aliasing. The supersample rate is N 
cycles/pixel so any signal energy above the frequency N/2 cycles/pixel results in aliasing. 
Fortunately, this threshold is N times higher than in the conventional point sampling system, and 
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aliasing artifacts are less noticeable in the antialiasing system because the envelope of the 
frequency response of most practical signals tends to decrease as the frequency increases. 

The objective in designing the antialiasing system is to minimize the implementation�s effort 
while maximizing the visual quality. The design parameters are the supersample rate N and the 
resampling filter h xb g .  

2.3 Practical Resampling Filters 

The resampling filter has a major role in an antialiasing system. The resampling filter is 
characterized by its shape and extent, which is finite in order to make the discrete convolution 
realizable and practical. The ideal resampling filter has the impulse response h x xb g b g= sinc  with 
Fourier transform H f fb g b g= Π , which has a flat pass-band, a sharp cutoff at ±1 2 , and total 
attenuation in the stop-band. It is impractical to implement because its spatial domain extends to 
infinity and its envelope decays slowly at O x1b g . Practical resampling filters seek to emulate the 
ideal filter. The two general categories are polynomial approximation or interpolation functions 
and windowed functions. The polynomial functions have a kernel consisting of a small sum of 
powers of the spatial coordinate. The windowed functions are the product of a function with 
infinite extent, typically sinc xb g , and a window function with finite extent. Some common 
window functions are the Hann/Hamming, Blackman, Kaiser, and Lanczos [6]. Table 3 lists 
some examples of polynomial and windowed functions. Wolberg [6] and Blinn [3] describe these 
functions in detail. 

Table 3: Some Practical Resampling Filters 

Filter Name Function 
Rectangle h x xb g b g= Π  
Triangle h x xb g b g= Λ  

Cubic h x
a x a x x

a x a x a x a x
x

b g
b g b g

=
+ − + + ≤ <

− + − ≤ <
≤

R
S|

T|

2 3 1 0 1
5 8 4 1 2

0 2

3 2

3 2  

Lanczos-M Sinc h x x
M

x
M

xb g b g= F
HG
I
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F
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KJsinc sincΠ

2
 

Blinn�s Nice Function [3] h x x x xb g = F
HG
I
KJ
F
HG
I
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F
HG
I
KJsinc sinc

4 8
3
4
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Lanczos-M Gaussian h x x
M

x
M

xb g = F
HG
I
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F
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F
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KJsinc Π

2 2

2

exp π  
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Figure 2: Resampling filter impulse responses and normalized transfer functions. 
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Figure 2 shows plots of the impulse responses and the Fourier transforms of some of these 
resampling filters. An impulse response with narrow extent has a low-cost implementation with 
discrete convolution, but it is a poor approximation to the ideal filter and the result is a poor 
transfer function. For example, the rectangle function has the narrowest extent −0 5 0 5. , . , and its 
transfer function sinc fb g  has a slow transition from pass-band to stop-band and large oscillations 
in the stop-band. Another example, the Lanczos3 Sinc filter, has a wide extent −3 3, . Its 
frequency response exhibits characteristics of a better low-pass filter: flatter pass-band, faster 
transition from pass-band to stop-band, and higher attenuation in the stop-band. Higher quality 
requires a resampling filter with a wide spatial extent. 

Some antialiasing methods in computer graphics employ subpixel masks including the A-buffer 
[8] and its derivatives or improvements [9, 10, 11]. These methods attempt to determine the 
overlap between an area primitive at a silhouette edge and the little square enclosing a pixel, 
which is a point sample. The little square centered on a pixel at i j,b g  has an edge length of 1 

pixel and covers the area x y i x i j y j, ,b g − ≤ < + − ≤ < +RST
UVW

1
2

1
2

1
2

1
2

 [1]. The filter for these 

methods is the rectangle function h x xb g b g= Π , which is the worst of the resampling filters in 
Figure 2. Better resampling filters extend outside of the little square. The extent for a resampling 
filter should be at least − × −1 1 1 1, ,  as this is the area covered by the primary lobe of the ideal 
2D resampling filter h x y x y,b g b g b g= sinc sinc . 

2.4 Application of Resampling Filters 

In the previous subsection, we have examined practical resampling filters independent of the 
sampling stages in the antialiasing system. Now consider the application of filters for sampling 
in a bounded region. Let the images generated in a computer graphics system span a space of 
W H×  pixels. The pixels are located at x y x W y H, , , , ; , , ,b gn s= − = −0 1 1 0 1 1� � . In the 

little square model, the image occupies the space x y x W y H, ,b g − ≤ < − − ≤ < −RST
UVW

1
2

1
2

1
2

1
2

. 

The supersample rate in both the x and y directions is N. The image spanned by the supersampled 
pixels needs to be identical to that for the final pixels. This constraint establishes the locations of 
the supersampled pixels:  

x i N
N

i NW

y j N
N

j NH

= + − = −

= + − = −

2 1
2

0 1 1

2 1
2

0 1 1

, , ,
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The supersample rate N does not need to be an integer. However, the implementation is 
simplified when N is a positive integer. The x and y offset of the nearest supersample relative to 
any final pixel is 1 2Nb g  when N is even or 0 when N is odd. Figure 3 shows examples of both 
cases. 

 

Figure 3: Supersample locations (blue crosses) relative to final sample locations (red filled diamonds). 
Supersample rate N = 2 in left diagram; N = 3 in right diagram. 

Table 4 lists the kernel sizes of some examples of practical resampling filters with finite extent. 
Let the filter consist of S S×  discrete values. The discrete convolution for application of a 2D 
filter with integer supersample rate N is as follows: 

( )
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where the normalized filter impulse response is 
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Table 4: Resampling filter kernel sizes. 

Filter N is even N is odd 
Rectangle N N×  N N×  
Triangle 2 2N N×  2 1 2 1N N− × −b g b g  
Cubic 4 4N N×  4 1 4 1N N− × −b g b g  
Lanczos-M Sinc or Gaussian 2 2MN MN×  2 1 2 1MN MN− × −b g b g  
Blinn�s Nice Filter [3] 8 8N N×  8 1 8 1N N− × −b g b g  

 

The reason for normalizing the impulse response is to make the gain of the filter unity in regions 
where the color does not vary. The normalized impulse response can be computed in advance 
when the supersample rate N is an integer because it is spatially invariant in convolution. Note 
that the 2D filters under consideration are separable: h x y h x h y,b g b g b g= . 

All the previous examples of practical resampling filters are even functions: h x h xb g b g= − . This 
symmetry can help reduce the workload of performing the convolution. Let the resampling filter 
be real and even with a total of S S×  discrete values. Then the maximum number of unique 

values is U S S= L
MM
O
PP

F
HG
I
KJ
L
MM
O
PP +

F
HG

I
KJ

1
2 2 2

1 . Table 5 shows some examples of various filter kernel sizes. 

The number of unique values is much less than the total number of values in a filter kernel. By 
grouping the supersamples with a common filter weight, an implementation can reduce the 
number of multiplications per pixel from S S×  to U. Figure 4 shows the configuration of 10 
unique weights in an even 8 8×  filter kernel. 

Table 5: Number of weights in 2D even resampling filters. 

Filter size S Maximum unique values U Total values S S×  
2 1 4 
3 3 9 
4 3 16 
5 6 25 
6 6 36 
7 10 49 
8 10 64 
9 15 81 
10 15 100 
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J F E D D E F J

K J H G G H J K  
Figure 4: Configuration of 10 unique weights in an 8××××8 even resampling filter. Each unique weight has a 

unique color and letter code. 

2.5 Results 

In a practical antialiasing system, the design parameters are the supersample rate and the 
resampling filter�s extent and shape. Increasing the rate or extent increases the subjective quality 
at the expense of higher workload. A common test for antialiasing systems is a checkerboard 
pattern viewed in perspective at an oblique angle. The foreground has abrupt signal transitions at 
longer polygon edges and the background has periodic high frequency content. A desirable 
property for the antialiasing feature of a computer graphics system is high quality in both cases, 
meaning reduction of jagged edges in the foreground and moiré patterns in the background. 

Raster images showing antialiasing examples should be viewed at 100% scale on a computer 
monitor. This is the standard configuration of a real-time computer graphics system, and it 
matches the practical antialiasing system in Figure 1(c). Any rescaling and resampling introduces 
additional stages to the system. Printing these images also introduces dithering artifacts. With 
these provisos in mind, Figure 5 shows a point-sampled checkerboard pattern in perspective 
rendered at 280×403 pixels. (When viewing the page after a 90º clockwise rotation, the 
foreground is at the bottom of the image.) The corresponding system is shown in Figure 1(a), and 
it lacks the supersampling and filtering stages. When viewed on a computer monitor at full size, 
the image exhibits jagged edges in the foreground and moiré patterns in the background. 
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Figure 5: Pointed-sampled checkerboard pattern. 

 

Figure 6 shows the same checkerboard pattern antialiased with various supersample rates and 
resampling filters. When viewing the page after a 90º clockwise rotation, the supersample rates 
from top to bottom are 2×2, 4×4, and 8×8, and the resampling-filter functions from left to right 
are rectangle, triangle, and cubic. Some general observations are apparent upon viewing the 
composite image on a computer monitor. All examples exhibit improved quality over the point-
sampled image in Figure 5. At 2×2 supersampling, the foreground edges still appear jagged for 
all filters, but less so than for the point-sampled case. Increasing the supersample rate to 4×4 
helps to eliminate most of the jagged appearance in the foreground edges, especially for the 
triangle and cubic filters. At 8×8 supersampling, the foreground edges have no jagged 
appearance for all filters. Moiré patterns in the background are visible in all cases. Increasing the 
supersample rate and/or filter extent tends to reduce this artifact. The cubic filter produces a 
sharper image for a given supersample rate because its negative secondary lobes make it a better 
approximation to the ideal filter. 
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Figure 6: Antialiased checkerboard pattern. When viewing the page after a 90º clockwise rotation, the 
supersample rates from top to bottom are 2××××2, 4××××4, and 8××××8, and the resampling-filter functions from left 

to right are rectangle, triangle, and cubic. 
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Figure 7 shows the subjective antialiasing quality (on a scale of 100) based on one author�s 
ratings. Increasing the supersample rate from 2×2 to 4×4 gives larger relative gain than 
increasing it from 4×4 to 8×8. Upgrading the filter from rectangle to triangle gives a slightly 
larger relative gain than upgrading from triangle to cubic. 

2x2
4x4

8x8

Rectangle

Triangle

Cubic

0

10

20

30

40

50

60

70

80

90

Quality

Supersample Rate

Filter

Subjective Antialiasing Quality

Rectangle
Triangle
Cubic

 

Figure 7: Subjective antialiasing quality for the supersample rates and filters in Figure 6. 
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3. Description of Supersampling Pattern Experiments 

The previous section described the effects of various types of resampling filters used in the 
supersampling process. This section describes a separate set of experiments performed to 
determine the effect of using sampling patterns other than a regular grid for supersampling. 

The final sample geometry of an image in a graphics system is constrained to a rectangular 
regular grid due to the construction of the video refresh system, which paints a regular series of 
scan lines on a video monitor or other display. It is possible, however, to use a different pattern 
for the supersamples, since resampling is necessary in any case to get the final pixel values.  

Three broad categories of supersampling patterns have been described in the signal processing 
and computer graphics and imaging literature: 

1. Regular Grid: the conventional method in which samples are taken on a 
rectangular grid at evenly spaced intervals. The example at right shows 4x 
supersampling on a regular grid (the actual sample points are located at the 
center of the circles). Regular hexagonal grids have also been described in 
the literature[12], but were not included in this study.  

2. Irregular Grid: a set of irregularly positioned supersamples is chosen. The 
same set of supersample positions is used for every pixel. Supersample 
positions may be selected  from anywhere within the pixel coverage area 
(top) or at positions on a higher resolution supersample grid (bottom). 

  

 

3. Jittered: supersample positions are randomly displaced from regular grid 
positions. A different random pattern is used for every pixel. A given pixel 
retains the same pattern over every frame of an animation. 

 

Some antialiasing implementations have used line and/or polygon edge related techniques to 
mask aliasing effects. For this study, we considered only full scene approaches to antialiasing.  

Fragment techniques which use a bit map or a quantized coverage map to represent coverage 
[8,9,10,11] are in effect a form of supersampling, and are subject to similar aliasing effects. The 
sampling results of this study would be applicable to such techniques with minor adjustments. 
For the most part, these techniques use a box filter as a resampling filter, which reduces image 
quality, although some software implementations have implemented better filtering [13,14]. 
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3.1 Software Implementation 

The goal of this study was to examine the results of three supersampling methods (regular grid, 
irregular grid, and jittered) in combination with three main resampling filters (box, tent, and 
Gaussian). The sample scene chosen was similar to that used in Section 2, an obliquely viewed 
checkerboard. However, in this case flat shading without lighting effects was used to eliminate 
any image variation caused by light sources, and an infinite extent checkerboard was used. 

In order to evaluate jittered sampling, it was necessary to build a renderer that allowed a different 
supersampling pattern for each pixel in the scene. Rather than build an all-new jittered 
incremental rasterizer, a much simpler ray-casting method was used in the rasterization software. 
This also allowed a simple data representation in which an infinite extent checkerboard could be 
easily represented as a single primitive. Since development time was more important than 
execution time, the renderer was built completely using the MathWorks MATLAB numerical 
computing system [15], version 5.2. MATLAB provides extensive vector computation and image 
processing capabilities that greatly aided development of the renderer. 

While allowing the use of irregular and jittered grids, the ray casting method used in the renderer 
can also reproduce the results calculated by an incremental renderer on a regular grid (except for 
approximations introduced by quantization errors). This allows comparison of images generated 
using the various grid types. 

3.2 Supersample patterns 

3.2.1 Regular Grid 
The regular grid supersample pattern was used as the base method for comparison. 

3.2.2 Irregular Grid 
An important consideration for generation of an irregular grid is the number of bits required for 
representation of the supersample positions. Use of a larger number of bits for the supersample 
positions requires additional data paths in hardware, and therefore increased expense. Two 
approaches were examined, one using a limited number of bits but with limited sample 
placement precision, and the other using many more bits to allow effectively unlimited sample 
placement precision. 

3.2.2.1 N-Queens Supersampling 
The N-Queens method uses a sparsely populated regular grid. For N samples, an N×N 
supersample grid is used within the pixel. Each supersample is placed such that no other 
supersample occupies the same row, column, or diagonal of the grid (this is an extension of the 
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N-Rooks sampling method [16]). The patterns that were used in this study are shown in Table 6 
(MATLAB code was developed to search for the patterns). 

Table 6: N-Queens Irregular Grid Sample Patterns 

N=4 N=5 N=8 N=9 N=16 
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

 

3.2.2.2 Edge-Optimized Irregular Grid 
It is possible to optimize the pattern of supersamples according to some specified criteria, in the 
hope that this will result in improvement in rendering of a wider class of images. Cross [17] has 
developed a genetic algorithm search process that tries to optimize sample distribution for 
improved rendering of edges. Patterns for several supersample densities are included in the 
article. This method has the disadvantage for hardware implementation that considerable 
precision may be required to represent the supersample positions, adding expense to the 
hardware. It appears that if the precision is reduced, the positions may converge to a pattern 

Table 7: Edge Optimized Irregular Grid Sample Locations 

foursamples  sixteensamples 
x y  x y 

0.274942 0.884325 0.755279 0.0497319
0.797099 0.207128 0.384479 0.688268
0.765063 0.715779 0.666094 0.868388
0.122774 0.282758 0.317172 0.0331764

0.729309 0.43103
0.0867931 0.368519
0.322668 1.0
0.442302 0.572752
0.889074 0.606985
0.0343768 0.191404
0.910321 0.872547
0.92479 0.345332
0.289126 0.389783
0.896551 0.141167
0.23357 0.678942
0.11281 0.526939
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similar to the N-Queens solution. As will be seen in the results, the subjective difference in 
image quality between the N-Queens and Edge-Optimized methods is slight. 

The code to generate these sampling patterns is not available at the Graphics Gems FTP site, and 
we were not successful in contacting the author, so full information on how to generate these 
patterns is not available. Since the quality of the results is similar to the N-Queens method, 
which is easier to implement, this is not a real problem. 

Sampling patterns used in this study can be found in Cross [17] on p. 362, and are also shown in 
Table 7. The first pattern shown in �foursamples� and the first pattern shown in 
�sixteensamples� were used for four and sixteen sample supersampling, respectively. In the 
coordinate system used, the pixel center is located at (x,y) location (0.5, 0.5) and the origin is at 
the lower left. 

3.2.3 Jittered Grid 
One of the most objectionable features of aliasing is the presence of spurious regular patterns 
which the human visual system is very good at recognizing. It is possible to add noise to the 
sampling process in such a way that aliasing results in noisy, irregular patterns which can be less 
objectionable to the visual system. As will be seen in the results, however, achieving good results 
requires more samples than is desirable. 

Noise can be added to the sampling process by randomly perturbing the locations of the 
supersample points. Cook [18] describes Poisson Disk sampling as a method to accomplish this. 
A minimum spacing distance λ between supersample locations is specified, and then 
supersample locations are randomly placed over the entire image area with the constraint that 
none are spaced more closely than λ. The frequency spectrum of a Poisson Disk sampling pattern 
shows a central area with a very small amount of noise, surrounded by higher frequencies 
dominated by noise. In theory, sampling with such a pattern will convert energy in these higher 
(aliased) frequencies to noise rather than to coherent lower frequency signals (see Figure 4 in 
[18]). 

In practice, it turns out that Poisson Disk sampling generates some noticeable artifacts not 
mentioned by Cook. Figure 3b in [18] shows an optical frequency transform of the photoreceptor 
distribution in a monkey�s eye, which according to Cook has a Poisson Disk distribution. A 
careful look at this figure shows faint alternating concentric light and dark bands around the 
center of the two-dimensional transform. 

In order to examine this banding phenomenon, code was written to generate one-dimensional 
Poisson Disk sampling patterns, and the Fourier transforms of the patterns. Figure 8(a) below 
shows one such transform. There is a very regular fluctuation in the frequencies outside the 
central area of the transform, similar to the alternating bands of the two-dimensional transform in 
[18]. This can result in noticeable artifacts in images generated using such a sampling pattern. 
Other authors [19,20] have taken issue with a number of other points made by Cook.  



 

 - 21 -  

(a) 

(b) 

Figure 8 � Frequency spectra for Poisson Disc and Uniform Jitter sample patterns 

Dippé and Wold [21] compare Poisson Disc (�minimum distance Poisson�) sampling to uniform 
jitter, and find similar peaks in the frequency distribution (see Figure 4 in [21]). They find that a 
uniform jitter produces better results than minimum distance Poisson (see Figures 5 and 6 in 
[21]). Figure 8(b) above shows the frequency spectrum of a set of uniform samples equal in 
number to the Poisson Disc samples used to generate (a). Notice that the noise in the outer part 
of the spectrum in (b) does not contain the objectionable low frequency elements seen in (a). 
This will result in fewer artifacts in a sampled image. 
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The jittered grid images for this study were generated by using this type of uniform random jitter 
relative to a regular grid. Designate the spacing between regular grid supersamples in the x and y 
directions as ε. Two random values were generated for each supersample of each pixel, 
uniformly distributed in the range (-ε/2,+ ε/2). One random value was added to the x coordinate of 
the supersample, the other to the y coordinate. A separate random value was used for every 
supersample of every pixel in the image. For an animation, the same supersample locations were 
used for every frame of the animation. 

3.3 Resampling filters 

Section 2 gave a thorough discussion of the importance of the resampling filter in reducing the 
effects of aliasing. Three different filters (described below) were used for this part of the 
sampling study: the conventional Box filter, the Tent filter, and the Gaussian ½ filter. 

Because this study looked at filtering samples which may be on an irregular grid, we will first 
define some new terminology to deal with this extension to conventional filtering. At a given 
pixel, the reconstructed gray scale value Gp of the pixel p is calculated as a normalized weighted 
average of Sp, the set of supersamples within the support of the resampling filter. For this study, 
three different resampling filters were used. Designate xip and yip as the distances of supersample 
i from the center of p along the x and y axes, respectively. Gi designates the gray-scale intensity 
of supersample i. The weight applied to each supersample is wip. The pixel gray scale value is 
computed by summing the weighted supersample gray values. It is then normalized by dividing 
this sum by the sum of all the weights: 
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The particular filter chosen determines the wip values and the members of Sp. 
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3.3.1 Box Filter 
The box filter is computed simply as the average of all supersamples in a unit square surrounding 
the pixel. Unlike the other filters described, the box filter has non-overlapping support (each 
supersample affects only a single pixel value), and so each pixel value can be computed 
independently. The box filter also has the smallest support and therefore uses the smallest 
number of supersamples to compute its value. 

 

 

[ ) [ ){ }1 1 1 1
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3.3.2 Tent Filter 
Supersamples are weighted as a product of the linear distance in x and y from the pixel. The 
support of the filter extends a distance of 1 in the x and the y directions from the pixel center. 
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3.3.3 Gaussian ½ Filter 
The weighting function used is a product of Gaussian functions in the x and y direction which 
have a height of ½ at a distance of ½ from the center [22]. This has an effective support radius of 
about 1.5, since the magnitude at this distance is 1

512 , which is half of the typical (eight bit) pixel 
gray scale quantization value. In practice the function is truncated at this distance in x and y. 
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3.4 Results 

The following results include images illustrating antialiasing results. Because these images will 
not be rendered faithfully on most printers, any critical examination of these images should be 
performed using the originals. Information about the images (and animations) described below 
can be obtained on the web at 

http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing 

No quantitative image comparisons are presented in this section for two reasons: 

1. For purposes of hardware rendering, subjective image quality (quality perceived by the 
viewer) is the object of antialiasing procedures. The goal of this study was to determine the 
most cost effective way to increase subjective image quality. 

2. No studies have been done to develop useful quantitative metrics for evaluation of subjective 
image (the signal-to-noise ratio often used in image processing is not strongly correlated with 
subjective image quality). 

Instead of quantitative studies, we instead present side-by-side comparisons of equivalent images 
generated by different techniques for subjective evaluation by the reader. 

3.4.1 Box Filter 
The first results shown were generated using a box filter (see 3.3.1 above). This is the least 
expensive method, since pixels have non-overlapping support. As will be seen in later results, the 

http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing
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higher performance resulting from this simple filter comes at the cost of noticeable reduction in 
image quality. 

3.4.1.1 Conventional Aliased Rendering 
For comparison purposes with later figures, Figure 9 (a) shows the checkerboard rendered with 
conventional point sampling. A single sample is taken in the center of each pixel. 

  
(a) 1 sample/pixel (conventional aliased rendering) (b) 4 samples/pixel 

  
(c) 9 samples/pixel (d) 16 samples/pixel 

Figure 9: Regular Grid, Box Filter 
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3.4.1.2 Regular Grid, Box Filter 
Figure 9 (b) through (d) shows the effects of what is currently the most common hardware 
antialiasing technique. These images were rendered with multiple supersamples per pixel on a 
regular grid. Rendering of the edges in the foreground and the areas near the horizon improve 
noticeably as the number of samples increases. However, moiré patterns in the middle distance 
are still very pronounced, even with 16 samples. 

3.4.1.3 N-Queens Irregular Grid, Box Filter 
Figure 10(a-c) shows the results of using N-Queens sampling (see 3.2.2.1 above) with the same 
number of samples per pixel as in Figure 9 (b-d). The irregular grid of the N-Queens pattern  
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(a) 4 samples/pixel 

  
(b) 9 samples/pixel (c) 16 samples/pixel 

Figure 10: N-Queens Irregular Grid, Box Filter 

greatly reduces the presence of moiré patterns in the middle distance when compared with the 
regular grid, giving noticeably better image quality. 

3.4.1.4 Edge-Optimized Irregular Grid, Box Filter 
Figure 11 shows the images resulting from use of  the edge-optimized irregular grid method (see 
3.2.2.2 above). Comparison with Figure 10 (a) and (c) above shows very slight improvement in 
image quality in comparison to the N-Queens method. The extra cost of the edge-optimized grid 
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relative to the N-Queens grid indicates that for hardware implementation the N-Queens is 
probably the more cost-effective option. 

  
(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 11: Edge-Optimized Irregular Grid, Box Filter 

3.4.1.5 Jittered Grid, Box Filter 
Figure 12 shows images generated using a jittered grid (see 3.2.3 above). As expected, the moiré 
patterns in the mid-distance and far distance are effectively converted to noise, even at 4 
samples/pixel. However, at fewer than 16 samples per pixel an unacceptable level of noise is 
generated along edges such as those of the squares in the foreground. Animations with fewer 
than 16 samples per pixel also show noticeable moving noise patterns on edges and in the 
distance. With 16 or more supersamples per pixel, the jittered grid generates significantly better 
image quality than the other methods at the same supersample rate, but at a greatly increased 
cost. As with edge-optimized sampling, the arbitrary placement of supersamples also involves 
increased hardware cost, especially since supersample locations differ for every pixel in the 
image. 
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(a) 4 samples/pixel 

  
(b) 9 samples/pixel (c) 16 samples/pixel 

Figure 12: Jittered Grid, Box Filter 

3.4.2 Tent Filter 
Although the box filter is the least expensive resampling filter to compute, substantial image 
quality benefits may be realized by using a better resampling filter. The cost of a filter is strongly 
related to the size of the filter support. To improve upon the results from the box filter, the 
support of the filter must be enlarged and will overlap with neighboring pixels. The tent filter 
(see 3.3.2 above) is a reasonable compromise between computation cost and image quality. At 4 
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samples/pixel, the support of the tent filter covers 16 supersamples, and at 16 samples/pixel, the 
support covers 64 supersamples. 

The results for the tent (and later the Gaussian ½) filter are shown for three sampling patterns 
(regular grid, N-Queens, and jittered) at two sampling densities (4 and 16 samples per pixel). The 
edge-optimized grid and 9 sample per pixel images may be viewed at the web site 

http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing 

  
(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 13: Regular Grid, Tent Filter 

  
(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 14: N-Queens Irregular Grid, Tent Filter 

http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing
http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing
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(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 15: Jittered Grid, Tent Filter 

3.4.3 Gaussian ½ Filter 
The Gaussian ½ Filter (see 3.3.3 above) has a larger support than the tent filter, and as the sample 
images show the resulting image quality is correspondingly better. At 4 samples/pixel, the 
support of the Gaussian ½ filter covers 36 supersamples, and at 16 samples/pixel, the support 
covers 144 supersamples. 

  
(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 16: Regular Grid, Gaussian ½ Filter 
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(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 17: N-Queens Irregular Grid, Gaussian ½ Filter 

 

  
(a) 4 samples/pixel (b) 16 samples/pixel 

Figure 18: Jittered Grid, Gaussian ½ Filter 
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3.4.4 Filter Comparisons 
The most likely candidate sampling patterns for implementation in hardware in the near term will 
be determined by hardware cost and speed limitations. Regular grid and N-Queens sampling are 
the lowest cost sampling methods. The box and tent  filters are the lowest cost filter methods. 
Figure 19 shows a side-by-side comparison of  images generated using 4 samples per pixel with 
all four combinations of  these sampling and filter methods. Figure 20 shows the same 
comparison for images generated using 16 samples per pixel. 

  
(a) Regular Grid, Box Filter (b) Regular Grid, Tent Filter 

  
(c) N-Queens, Box Filter (d) N-Queens, Tent Filter 

Figure 19: 4 sample per pixel filter comparison 
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(a) Regular Grid, Box Filter (b) Regular Grid, Tent Filter 

  
(c) N-Queens, Box Filter (d) N-Queens, Tent Filter 

Figure 20: 16 sample per pixel filter comparison 

 

3.4.5 Limits to Image Quality 
As noted above, jittered grid sampling gave best results with 16 samples or more per pixel, but at 
a cost that is probably impractical for hardware implementation in the near future. To give an 
example of the quality possible if cost is not a concern, Figure 21 shows images generated with 
256 samples per pixel using the jittered grid sampling method. Images were generated using each 
of the three filter techniques. The differences between the Tent Filter and the Gaussian ½ filter 
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are nearly imperceptible. However, the Box Filter image still shows some noticeable increase in 
moiré patterns in the middle distance in spite of the high sampling rate. This demonstrates that 
good filtering is necessary for high image quality, no matter how high the supersample rate. 

 
(a) Box Filter 

  
(b) Tent Filter (c) Gaussian ½ Filter 

Figure 21: 256 samples per pixel, Jittered Grid,  

3.4.6 Animation Results 
In addition to the still image results shown above, a number of animation sequences were 
generated using linear motion and spinning motion relative to the checkerboard. The results of 
these animations showed that the jittered grid method is not useful with less than 16 samples per 
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pixel, due to excessive noise patterns along moving edges. It was found that the N-Queens 
patterns minimized objectionable noise, and in fact gave improved results over the regular grid, 
consistent with the still image results. 

Several animations illustrating these results will be available at web site 
http://www.hpl.hp.com/research/cp/cmsl/research/3d/antialiasing 

The animations are in Microsoft AVI format. 

4. Conclusions 

This report has examined two important issues that will affect the design of antialiasing 
algorithms for graphics hardware in the near future: sampling and filtering. We have shown that 
the pattern used for supersamples has important effects on image quality, and use of an irregular 
grid pattern (such as N-Queens) may result in improvements in image quality with little increase 
in rendering time. We have also shown that filtering of the supersamples is critically important to 
image quality, and that better filtering, although requiring large support for the filter, can 
improve image quality in ways which cannot be achieved simply by increasing the number of 
supersamples per pixel. 
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