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Abstract

We provide a general framework for getting linear time constant factor approxima-
tions (and in many cases FPTAS’s) to a copious amount of well known and well studied
problems in Computational Geometry, such as k-center clustering and furthest nearest
neighbor. The new approach is robust to variations in the input problem, and yet
it is simple, elegant and practical. In particular, many of these well studied problems
which fit easily into our framework, either previously had no linear time approximation
algorithm, or required rather involved algorithms and analysis. A short list of the prob-
lems we consider include furthest nearest neighbor, k-center clustering, smallest disk
enclosing k points, kth largest distance, kth smallest m-nearest neighbor distance, kth
heaviest edge in the MST and other spanning forest type problems, problems involving
upward closed set systems, and more.

1 Introduction

In many optimization problems, one is given a (say, geometric) input, and one is interested in
computing the minimum of a function over this input. Such a function can be, for example,
the minimum cost clustering of the input, the price of a minimum spanning tree, the radius
of the smallest enclosing disk, the closest pair distance, and many other functions. Often
for such optimization problems it is possible to construct a decision procedure, which given
a query value can decide whether the query is smaller or larger than the minimum of the
function. Naturally, one would like to use this decider to preform a binary search to compute
the minimum. However, often this is inherently not possible as the set of possible solutions
is a real interval. Instead one must identify a set of critical values at which the function
changes. However, searching over these values directly can be costly as often the number of
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such critical values is much larger than the desired running time. Instead one attempts to
preform an implicit search over them.

One of the most powerful techniques to solve optimization problems efficiently in Com-
putational Geometry, using such an implicit search, is the parametric search technique
of Megiddo [Meg83]. It is relatively complicated, as it involves implicitly extracting values
from a simulation of a parallel decision procedure (often a parallel sorting algorithm). For
this reason it is inherently not possible for parametric search to lead to algorithms which
run faster than O(n log n) time. Nevertheless, it is widely used in designing efficient geo-
metric optimization algorithms, see [AST94, Sal97]. Luckily, in many cases one can replace
parametric search by simpler techniques (see prune-and-search below for example) and in
particular, it can be replaced by randomization, see the work by van Oostrum and Veltkamp
[vOV04]. Another example of replacing parametric search by randomization is the new sim-
plified algorithm for the Fréchet distance [HR11]. Surprisingly, sometimes these alternative
techniques can actually lead to linear time algorithms.

Linear time algorithms. There seems to be three main ways to get linear time algorithms
for geometric optimization problems (exact or approximate):

(A) Coreset/sketch. One can quickly extract a compact sketch of the input that contains
the desired quantity (either exactly or approximately). As an easy example, consider
the problem of computing the axis parallel bounding box of a set of points - an easy
linear scan suffices. There is by now a robust theory of what quantities one can extract
a coreset of small size for, such that one can do the (approximate) calculation on the
coreset, where usually the coreset size depends only on the desired approximation
quality. This leads to many linear time algorithms, from shape fitting [AHV04], to
(1 + ε)-approximate k-center/median/mean clustering [Har01, Har04a, HM04, HK05]
in constant dimension, and many other problems [AHV05]. The running times of
the resulting algorithms are usually O(n+ func(sketch size)). The limitation of this
technique is that there are problems for which there is no small sketch, from clustering
when the number of clusters is large, to problems where there is no sketch at all
[Har04b] – for example, for finding the closest pair of points one needs all the given
input and no sketching is possible.

(B) Prune and search. Here one prunes away a constant fraction of the input, and
continues the search recursively on the remaining input. The paramount example of
such an algorithm is the linear time median finding algorithm, but there are many
other examples of such algorithms in Computational Geometry. For example, lin-
ear programming in constant dimension in linear time [Meg84], and its extension to
LP-type problems [SW92, MSW96]. Intuitively, LP-type problems include low dimen-
sional convex programming (a standard example is the smallest enclosing ball of a
point set in constant dimension). However, surprisingly, such problems also include
problems that are not convex in nature – for example, deciding if a set of (axis paral-
lel) rectangles can be pierced by three points is an LP-type problem. Other examples
of prune-and-search algorithms that work in linear time include (i) computing an ear
in a triangulation of a polygon [EET93], (ii) searching in sorted matrices [FJ84], and
(iii) ham-sandwich cuts in two dimensions [LMS94]. Of course, there are many other
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examples of using prune and search with running time that is super-linear.
(C) Grids. Rabin [Rab76] used randomization, the floor function, and hashing to com-

pute the closest pair of a set of points in the plane, in expected linear time. Golin
et al. [GRSS95] presented a simplified version of this algorithm, and Smid provides a
survey of algorithms on closest pair problems [Smi00]. Of course, the usage of grids
and hashing to perform approximate point-location is quite common in practice. By
itself, this is already sufficient to break lower bounds in the comparison model, for
example for k-center clustering [Har04a]. The only direct extension of Rabin’s al-
gorithm the authors are aware of is the work by Har-Peled and Mazumdar [HM05]
showing a linear time 2-approximation to the smallest ball containing k points (out
of n given points).

There is some skepticism of algorithms using the floor function, since Schönhage
[Sch79] showed how to solve a PSPACE complete problem, in polynomial time, using
the floor function in the real RAM model – the trick being packing many numbers
into a single word (which can be arbitrarily long in the RAM model, and still each
operation on it takes only constant time). Note, that as Rabin’s algorithm does
not do any such packing of numbers (i.e., its computation model is considerably more
restricted), this criticism does not seem to be relevant in the case of Rabin’s algorithm
and its relatives.

In this paper, we present a new technique that combines together all of the above tech-
niques to yield linear time approximation algorithms.

Nets. Given a point set P, an r-net N of P is a subset of P that represents well the
structure of P in resolution r. Formally, we require that for any point in P there is a net
point in distance at most r from it, and no two net points are closer than r to each other,
see Section 2.1 for a formal definition. Thus, nets provide a sketch of the point-set as far as
distances that are r or larger. Nets are a useful tool in presenting point-sets hierarchically. In
particular, computing nets of different resolutions and linking between different levels, leads
to a tree like data-structure that can be used to facilitate many tasks, see for example the
net-tree [KL04, HM06] for such a data-structure for doubling metrics. Nets can be defined
in any metric space, but in Euclidean space a grid can sometimes provide an equivalent
representation. In particular, net-trees can be interpreted as an extension of (compressed)
quadtrees to more abstract settings.

Computing nets is closely related to k-center clustering. Specifically, Gonzalez [Gon85]
shows how to compute an approximate net that has k points in O(nk) time, which is also a
2-approximation to the k-center clustering. This was later improved to O(n) time, for low
dimensional Euclidean space [Har04a], if k is sufficiently small (using grids and hashing).
Har-Peled and Mendel showed how to preprocess a point set in a metric space with constant
doubling dimension, in O(n log n) time, such that an (approximate) r-net can be extracted
in (roughly) linear time in the size of the net.
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Our contribution.

In this paper, we consider problems of the following form: Given a set P of weighted points
in IRd, one wishes to solve an optimization problem whose solution is one of the pairwise
distances of P (or “close” to one of these values). Problems of this kind include computing
the optimal k-center clustering, or the length of the kth edge in the MST of P, and many
others. Specifically, we are interested in problems for which there is a fast approximate
decider. That is, given a value r > 0 we can in linear time decide if the desired value is
(approximately) smaller than r or larger than r. The goal is then to use this linear time
decider to approximate the optimum solution in linear time. As a first step towards a linear
time approximation algorithm for such problems, we point out that one can compute nets
in linear time in IRd, see Section 2.1.

However, even if we could implicitly search over the super linear number of critical values
(which we cannot) then we still would require a logarithmic number of calls to the decider
which would yield a running time of O(n log n). So instead we use the return values of the
decision procedure as we search to thin out the data so that future calls to the decision
procedure become successively cheaper. However, we still cannot search over the critical
values (since there are too many of them) and so we also introduce random sampling in
order to overcome this.

Outline of the new technique. The new algorithm works by randomly sampling a point
and computing the distance to its nearest neighbor. Let this distance be r. Next, we use the
decision procedure to decide if we are in one of the following two cases.

(A) Net. If r is too small then we zoom out to a resolution of r by computing an r-net
and continuing the computation on the net instead of on the original point-set. That
is, we net the point-set into a smaller point-set, such that one can solve the original
problem (approximately) on this smaller sketch of the input.

(B) Prune. If r is too large then we remove all points whose nearest neighbor is further
than r away (of course, this implies we should only consider problems for which such
pruning does not affect the solution). That is, we isolate the optimal solution by
pruning away irrelevant data – this is similar in nature to what is being done by
prune-and-search algorithms.

We then continue recursively on the remaining data. In either case, the number of points
being handled (in expectation) goes down by a constant factor and thus the overall expected
running time is linear.

Significance of results. Our basic framework is presented in a general enough manner to
cover, and in many cases greatly simplify, many problems for which linear time algorithms
had already been discovered. At the same time the framework provides new linear time
algorithms for a large collection of problems, for which previously no linear time algorithm
was known. The framework should also lead to algorithms for many other problems which
are not mentioned.

At a conceptual level the basic algorithm is simple enough (with its basic building blocks
already having efficient implementations) to be highly practical from an implementation
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standpoint. Perhaps more importantly, with increasing shifts toward large data sets algo-
rithms with super linear running time can be impractical. Additionally, our framework seems
amenable to distributed implementation in frameworks like MapReduce. Indeed, every iter-
ation of our algorithm breaks the data into grid cells, a step that is similar to the map phase.
In addition, the aggressive thinning of the data by the algorithm guarantees that after the
first few iterations the algorithm is resigned to working on only a tiny fraction of the data.

Framework and results. We provide a framework that classifies which optimization prob-
lems can be solved using the new algorithm. We get the following new algorithms (all of
them have an expected linear running time, for any fixed ε):

(A) k-center clustering (Section 4.1). We provide an algorithm that 2-approximates
the optimal k-center clustering of a point set in IRd. Unlike the previous algorithm
[Har04a] that was restricted to k = O(n1/6), the new algorithm works for any value
of k. This new algorithm is also simpler.

(B) kth smallest distance (Section 4.2). In the distance selection problem, given a set
of points in IRd, one would like to compute the kth smallest distance defined by a pair
of points of P. It is believed that such exact distance selection requires Ω

(
n4/3

)
time in

the worst case [Eri95], even in the plane (in higher dimensions the bound deteriorates).
We present an O(n/εd) time algorithm that (1 + ε)-approximates the kth smallest
distance. Previously, Bespamyatnikh and Segal [BS02] presented O(n log n + n/εd)
time algorithm using a well-separated pairs decomposition (see also [DHW12]).
Given two sets of points P,W with a total of n points, using the same approach, we
can (1 + ε)-approximate the kth smallest distance in a bichromatic set of distances

X =
{
d(p, q)

∣∣∣ p ∈ P, q ∈ W
}

, and in particular, we can compute exactly the closest

bichromatic pair between P and Q.
Intuitively, the mechanism behind distance selection underlines many optimization
problems, as it (essentially) performs a binary search over the distances induced by
a set of points. As such, being able to do approximate distance selection in linear
time should lead to faster approximation algorithms that perform a similar search
over such distances.

(C) The kth smallest m-nearest neighbor distance (Section 4.3). For a set P =
{p1, . . . , pn} ⊆ IRd of n points, and a point p ∈ P, its mth nearest neighbor in P
is the mth closest point to p in P. In particular, let dm(p,P) denote this distance.
Here, consider the set of these distances defined for each point of P; that is, X =
{dm(p1,P) , . . . , dm(pn,P)}. We can approximate the kth smallest number in this set
in linear time.

(D) Furthest nearest neighbor (Section 4.3.1). As an application of the above, one
can compute in linear time, exactly, the furthest nearest neighbor distance; that is,
the nearest neighbor distance of the point whose nearest neighbor is furthest away.
This measure can be useful, for example, in meshing applications where such a point
is a candidate for a region where the local feature size is large and further refinement
is needed.
We are unaware of any previous work directly on this problem, although one can
compute this quantity by solving the all-nearest-neighbor problem, which can be
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done in O(n log n) time [Cla83]. This is to some extent the “antithesis” to Rabin’s
algorithm for the closest pair problem, and it is somewhat surprising that it can also
be solved in linear time.

(E) The kth longest MST edge (Section 4.4). Given a set P of n points in IRd, we can
(1 + ε)-approximate, in O(n/εd) time, the kth longest edge in the MST of P.

(F) Smallest ball with a monotone property (Section 4.5.2). Consider a property
defined over a set of points, P, that is monotone; that is, if W ⊆ Q ⊆ P has this
property then Q must also have this property. Consider such a property that can be
easily be checked, for example, whether the set contains k points, or if the points are
colored, that all colors are present in the given point set. Given a point set P, one can
(1 + ε)-approximate, in O(n/εd) time, the smallest radius ball b, such that b ∩ P has
the desired property. For example, we get a linear time algorithm to approximate the
smallest ball enclosing k points of P. The previous algorithm for this problem [HM05]
was significantly more complicated. Furthermore, we can approximate the smallest
ball such that all colors appear in it (if the points are colored), or the smallest ball
such that at least t different colors appear in it, etc.
More generally, the kind of monotone properties supported are sketchable; that is,
properties for which there is a small summary of a point-set that enables one to decide
if the property holds, and furthermore, given summaries of two disjoint point sets,
the summary of the union point-set can be computed in constant time. We believe
that formalizing this notion of sketchability is a useful abstraction. See Section 4.5.1
for details.

(G) Smallest connected component with a monotone property (Section 4.5.3).
Consider the connected components of the graph where two points are connected if
they are distance at most r from each other. Using our techniques, one can approxi-
mate, in linear time, the smallest r such that there is a connected component of this
graph for which a required sketchable property holds for the points in this connected
component.
As an application, consider ad hoc wireless networks. Here, we have a set P of n
nodes and their locations (say in the plane), and each node can broadcast in a certain
radius r (the larger the r the higher the energy required, so naturally we would like to
minimize it). Assume there are two special nodes. It is natural to ask for the minimum
r, such that there is a connected component of the above graph that contains both
nodes. That is, these two special nodes node can send message to each other, by
message hopping (with distance at most r at each hop). We can approximate this
connectivity radius in linear time.

(H) Clustering for a monotone property (Section 4.6). Imagine that we want to
break the given point-set into clusters, such that the maximum diameter of a clus-
ter is minimized (as in k-center clustering), and furthermore, the points assigned to
each cluster comply with some sketchable monotone property. We present a (4 + ε)-
approximation algorithm for these types of problems, that runs in O(n/εd) time.
This includes lower bounded clustering (i.e., every cluster must contain at least α
points), for which the authors recently presented an O(n log n) approximation algo-
rithm [ERH12]. One can get a 2-approximation using network flow, but the running
is significantly worse [APF+10]. See Section 4.6.1 for examples of clustering problems
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that can be approximated using this algorithm.
(I) Connectivity clustering for a monotone property (Section 4.6.3). Consider the

problem of computing the minimum r, such that each connected component (of the
graph where points in distance at most r from each other are adjacent) has some
sketchable monotone property. We approximate the minimum r for which this holds
in linear time.
An application of this for ad hoc networks is the following – we have a set P of n
wireless clients, and some of them are base stations; that is, they are connected to
the outside world. We would like to find the minimum r, such that each connected
component of this graph contains a base station.

(J) Closest pair and smallest non-zero distance. (Section 4.7). Given a set of points
in IRd, consider the problem of finding the smallest non-zero distance defined by these
points. This problem is an extension of the closest pair distance, as there might be
many identical points in the given point set. We provide a linear time algorithm for
computing this distance exactly, which follows easily from our framework.

Paper organization. We describe how to compute nets in Section 2, and how to remove
faraway points efficiently in Section 2.2. We define the abstract framework, and describe
and analyze the new approximation algorithm, in Section 3. We describe the applications in
Section 4. We conclude in Section 5.

2 Preliminaries

2.1 Computing nets quickly for a point set in IRd

Definition 2.1. For a point set P in a metric space with a metric d, and a parameter
r > 0, an r-net of P is a subset C ⊆ P, such that (i) for every p, q ∈ C, p 6= q, we have that
d(p, q) ≥ r, and (ii) for all p ∈ P, we have that minq∈C d(p, q) < r.

Intuitively, an r-net represents P in resolution r. There is a simple algorithm for com-
puting r-nets. Namely, let all the points in P be initially unmarked. While there remains
an unmarked point, p, add p to C, and mark it and all other points in distance < r from p
(i.e. we are scooping away balls of radius r). By using grids and hashing one can modify
this algorithm to run in linear time.

The following is implicit in previous work [Har04a], and we include it here for the sake
of completeness.¬

Lemma 2.2. Given a point set P ⊆ IRd of size n and a parameter r > 0, one can compute
an r-net for P in O(n) time.

Proof : Let G denote the grid in IRd with side length ∆ = r/
(

2
√
d
)

. First compute for

every point p ∈ P the grid cell in G that contains p; that is, the cell containing p is uniquely

¬Specifically, the algorithm of Har-Peled [Har04a] is considerably more complicated than Lemma 2.2,
and does not work in this settings, as the number of clusters it can handle is limited to O

(
n1/6

)
. Lemma 2.2

has no such restriction.
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identified by the tuple of integers id(p) =
(
bp1/∆c , . . . , bpd/∆c

)
, where p = (p1, . . . , pd) ∈

IRd. Let G denote the set of non-empty grid cells of G. Similarly, for every non-empty cell
g ∈ G we compute the set of points of P which it contains. This task can be performed in
linear time using hashing and bucketing assuming the floor function can be performed in
constant time, as using hashing we can store a grid cell id(·) in a hash table and in constant
time hash each point into its appropriate bin. For a point p ∈ P let N≤r(p) denote the
set of grid cells in distance ≤ r from p, which is the neighborhood of p. Observe that

|N≤r(p)| = O
(

(2r/(r/2
√
d) + 1)d

)
= O

(
(4
√
d+ 1)d

)
= O(1).

Scan the points of P one at a time, and let p be the current point. If p is marked then
move on to the next point. Otherwise, add p to the set of net points, C, and mark it and
each point q ∈ P such that d(p, q) < r. Since the cells of N≤r(p) contain all such points, we
only need to check the lists of points stored in these grid cells. At the end of this procedure
every point is marked. Since a point can only be marked if it is in distance < r from some
net point, and a net point is only created if it is unmarked when visited, this implies that C
is an r-net.

For the running time, observe that a grid cell, c, has its list scanned only if c is in the
neighborhood of some created net point. From the discussion above we know that there are
O(1) cells which could contain a net point p such that c ∈ N≤r(p). Also, we create at most
one net point per cell since the diameter of a grid cell is strictly smaller than r. Therefore
c had its list scanned O(1) times. Since the only real work done is in scanning the cell lists
and since the cell lists are disjoint, this implies an O(n) running time overall.

Observe, that the closest net point, for a point p ∈ P, must be in one of its neighborhood
grid cells. Since every grid cell can contain only a single net point, it follows that in constant
time per point of P, one can compute its nearest net point. We thus have the following.

Corollary 2.3. In O(n) time one can not only compute an r-net, but also compute for each
net point the set of points of P for which it is the nearest net point.

This implies that for a weighted point set one can compute the following quantity in
linear time.

Algorithm 2.4. Given a weighted point set P, let Net(r,P) denote an r-net of P, where
the weight of each net point p is the total sum of the weights of the points assigned to it. The
running time of this algorithm is O(|P|).

2.2 Notation and point removal

In the following, a weighted point is a point that is assigned a positive integer weight. For
any subset S of a weighted point set P, let |S| denote the number of points in S and let
ω(S) =

∑
p∈S ω(p) denote the total weight of S.

For a given point p ∈ P let d(p,P) denote the distance of p to its nearest neighbor in
P \ {p}, which can be computed naively in linear time by scanning the points. For a set of
points P, and a parameter r, let P≥r denote the set of r-far points; that is, it is the set of
all points in p ∈ P, such that their nearest-neighbor in P is more than distance r away (i.e.,
d(p,P) ≥ r). Similarly, P<r is the set of r-close points; that is, all points p ∈ P, such that
d(p,P) < r.
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Lemma 2.5 (algDelFar(`,P)). Given a weighted set P ⊆ IRd of n points, and a distance
` > 0, in O(n) time, one can compute the sets P<r and P≥r.

Proof : Build a grid where every cell has diameter `/c, for some constant c > 1. Clearly any
point p ∈ P such that d(p,P) ≥ ` (i.e., a far point) must be in a grid cell by itself. Therefore
to determine all such “far” points only grid cells with singleton points in them need to be
considered. For such a point q, to determine if d(q,P) ≥ `, one checks the points stored in
all grid cells in distance ≤ ` from it. If q has no such close neighbor, we mark q for inclusion
in P≥r. By the same arguments as in Lemma 2.2 the number of such cells is O(c2) = O(1).
Again by the arguments of Lemma 2.2 every non-empty grid cell gets scanned O(1) times
overall, and so the running time is O(n). Finally, we copy all the marked (resp. unmarked)
points to P≥r (resp. P<r).

3 Approximating nice distance problems

3.1 Problem definition and an example

Definition 3.1. Let P and Q be two sets of weighted points in IRd (of the same weight).
The set Q is a ∆-translation of P, if Q can be built by moving each point of P by distance
at most ∆. Formally, the earth mover distance between P and Q is at most ∆.

Note that for a (potentially weighted) point set W, Net(∆,W) is a ∆-translation of W.

Definition 3.2. Given a function f : X → IR, we call a procedure, decider, a t-decider
for f , if for any x ∈ X and 0 < r ∈ IR, decider(r, x) returns one of the following: (i) f(x) ∈
[α, tα], where α is some real number, (ii) f(x) < r, or (iii) f(x) > r.

Definition 3.3 (NDP). A pair (W,Γ) is an instance of a t-NiceDistanceProblem, where
W ⊆ IRd is a set of n distinct weighted points­, and Γ is the context of the given instance
(of size O(n)) and consists of the relevant parameters for the problem. The task is evaluating
a function f(W,Γ)→ IR+, associated with this pair, that has the following properties:

(P1) There exists an O(n) time t-decider for f, for some constant t (see Definition 3.2).
(P2) (Lipschitz.) Let Q be a ∆-translation of W. Then |f(W,Γ)− f(Q,Γ)| ≤ 2∆.
(P3) If f(W,Γ) < r then f(W,Γ) = f(W<r,Γ′), where W<r is the set of r-close points,

and Γ′ is an updated context which can be computed in O(n) time.

3.1.1 An example – k center clustering

As a concrete example of an NDP, lets consider the problem of k-center clustering. Formally,
we have the following.

Problem 3.4 (kCenter). Let W be a set of points in IRd, and let k > 0 be an integer
parameter. Find a set of centers C ⊆ W such that the maximum distance of a point of W
to its nearest center in C is minimized, and |C| = k.

­The case when W is a multiset can also be handled. See Remark 3.8.
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Namely, the function of interest, fcen(W, k) is the radius of the optimal k-center clustering
of W. We now show that kCenter satisfies the properties of an NDP.

Lemma 3.5. The following relations between |Net(r,W)| and fcen(W, k) hold: (A) If we
have |Net(r,W)| ≤ k then fcen(W, k) < r. (B) If |Net(r,W)| > k then r < 2fcen(W, k).

Proof : (A) Observe that if |Net(r,W)| ≤ k, then, by definition, the set of net points of
Net(r,W) are a set of ≤ k points such that all the points of W are in distance at most r
from these centers.

(B) If |Net(r,W)| > k then W must contain a set of k+1 points whose pairwise distances
are all at least r. In particular any solution to kCenter with radius < r/2 would not be a
able to cover all these k + 1 points with only k centers.

Lemma 3.6. An instance (W, k) of kCenter satisfies the properties of Definition 3.3, that is
kCenter is an NDP.

Proof : (P1)p9: We need to describe a decision procedure for kCenter clustering. To this
end, given a distance r, the decider first calls Net(r,W). If we have |Net(r,W)| ≤ k, then
by Lemma 3.5 the answer “fcen(W, k) < r” can be returned. Otherwise, call Net(2r,W).
If |Net(2r,W)|≤ k, then, by Lemma 3.5, we have r/2 < fcen(W, k) < 2r and the interval
[r/2, 2r] can be returned by the decider. Otherwise |Net(2r,W)| > k, and Lemma 3.5 implies
that the answer “r < fcen(W, k)” can be returned by the decider.

(P2): Observe that if Q is a ∆-translation of W then each point, and its respective center,
each move by distance at most ∆ in the transition from W to Q. As such, the distance between
a point and its center changes by at most 2∆ by this process. This argument also works in
the other direction, implying that the k-center clustering radius of W and Q are the same,
up to an additive error of 2∆.

(P3): It suffices to show that if fcen(W, k) < r then fcen(W, k) = fcen
(
W<r, k −

∣∣W≥r∣∣).
Now, if fcen(W, k) < r then any point of W whose neighbors are all ≥ r away must be
a center by itself in the optimal k-center solution, as otherwise it would be assigned to
a center ≥ r > fcen(W, k) away. Similarly, any point assigned to it would be assigned
to a point ≥ r > fcen(W, k) away. Therefore, for any point p ∈ W with no neighbor
in distance < r, fcen(W, k) = fcen(W \ {p} , k − 1), repeating this observation implies the
desired result. The context update (and computing W<r and W≥r) can by done in linear
time using algDelFar.

3.2 A linear time approximation algorithm

We now describe the general algorithm which given an NDP, (W,Γ), and an associated
target function f , computes, in linear time, a bounded spread interval containing f(W,Γ).
In the following, let decider denote the given t-decider, and contextUpdate denote the
context updater associated with the given NDP problem, see Definition 3.3. Both decider
and contextUpdate run in linear time. The algorithm for bounding the optimum value of
an NDP is shown in Figure 3.1.

10



ndpAlg(W,Γ)

1: Let W0 = W, Γ0 = Γ and i = 1.
// α is a constant, see Corollary 3.14 for its value.

2: while TRUE do
3: Randomly pick a point p from Wi−1.
4: `i ← d(p,Wi−1).

// Use decider to estimate the value of fi−1 = f(Wi−1,Γi−1)
5: res> = decider(`i,Wi−1,Γi−1)
6: res< = decider(α`i,Wi−1,Γi−1)
7: if res> = “fi−1 ∈ [x, y]” then return “f(W,Γ) ∈ [x/2, 2y]”.
8: if res< = “fi−1 ∈ [x, y]” then return “f(W,Γ) ∈ [x/2, 2y]”.
9: if res> = “`i<fi−1” and res< = “fi−1<α`i” then

10: return [`i/2, 2α`i]

// Is the guess (i.e., `i) larger than opt?

11: if res> = “`i > fi−1” then
12: Wi ← W<`i

i−1 // computed by calling algDelFar(`i,Wi−1)
13: Γi = contextUpdate(Wi−1,Γi−1,Wi)

// Is the guess (i.e., `i) smaller than opt?

14: if res< = “α`i < fi−1” then
15: Wi = Net(3`i,Wi−1)
16: Γi = contextUpdate(Wi−1,Γi−1,Wi)
17: i = i+ 1

Figure 3.1: The approximation algorithm. We have an implicit target value f = f(W,Γ)
that we are trying to approximate, where f is an NDP. Our only access to the function f is
via the decider procedure.

Remark 3.7. For simplicity of exposition we assume that f(W,Γ) 6= 0. The case when
f(W,Γ) = 0 can be handled with an additional check of the context in the algorithm.
However, since all our applications have f(W,Γ) 6= 0 we choose to make this simplifying
assumption. Also note that if f(W,Γ) 6= 0 then for each iteration i of while loop in ndpAlg,
f(Wi−1,Γi−1) 6= 0.

Remark 3.8. Note that the algorithm of Figure 3.1 can be modified to handle inputs where
W is a multiset (namely, two points can occupy the same location). Specifically, it must be
ensured that the distance computed in Line 4 is not zero, as this is required for the call to
decider. This can be remedied (in linear time) by first grouping all the duplicates of the
point sampled in Line 3 into a single weighted point (with the sum of the weights) before
calling Line 4.

3.2.1 Analysis

A net iteration of the algorithm is an iteration where Net gets called. A prune iteration
is one where algDelFar gets called. Note that the only other type of iteration is the one

11



where the algorithm returns.

Lemma 3.9. Let P be a point set. A (2 + ε)`-net of P, for any ε > 0, can contain at most
half the points of P≤`.

Proof : Consider any point p in P≤` which became one of the net points. Since p ∈ P≤`, a
disk of radius ` centered at p must contain another point q from P≤` (indeed, p ∈ P≤` only
if its distance from its nearest neighbor in P is at most `). Moreover, q cannot become a net
point since it is too close to p. Now if we place a ball of radius ` centered at each point of
P≤` which became a net point, then these balls will be disjoint because the pairwise distance
between net points is ≥ (2 + ε)`. Therefore each point of P≤` which became a net point can
point to at least one point of P≤` which did not make it into the net, such that no point gets
pointed at twice.

Lemma 3.10. Given an instance (W,Γ) of an NDP, the algorithm ndpAlg(W,Γ) runs in
expected O(n) time.

Proof : In each iteration of the while loop the only non-trivial work done is in computing `i,
the two calls to decider, and the one call to either Net or algDelFar. It has already been
shown that all of these can be computed in O(|Wi−1|) time. Hence the total running time

for the algorithm is O
(∑i=k−1

i=0 |Wi|
)

, where k denotes the last (incomplete) iteration of the

while loop.
So consider the beginning of iteration i < k of the while loop. Let the points in Wi−1

be labeled p1, p2, . . . , pm in increasing order of their nearest neighbor distance in Wi−1. Let
j be the index of the point chosen in Line 3 and let (Wi−1)

≥j and (Wi−1)
≤j be the subset

of the points with index ≥ j and index ≤ j, respectively. Now since a point is randomly
picked in Line 3, with probability ≥ 1/2, j ∈ [m/4, 3m/4]. Lets call this event a successful
iteration . We have min

(∣∣(Wi−1)
≥j
∣∣ , ∣∣(Wi−1)

≤j
∣∣) ≥ |Wi−1| /4 for a successful iteration.

Since i < k is not the last iteration of the while loop, either algDelFar or Net must get
called. If algDelFar(`i,Wi−1) gets called (i.e. Line 12) then by Lemma 2.5, all of (Wi−1)

≥j

gets removed. So suppose Net gets called (i.e. Line 15). In this case Lemma 3.9 implies
that the call to Net removes at least

∣∣(Wi−1)
≤j
∣∣ /2 points.

Therefore, for any iteration i < k, at least νi = min(
∣∣(Wi−1)

≥j
∣∣ ,∣∣(Wi−1)

≤j
∣∣ /2) points get

removed. If an iteration is successful then νi ≥ |Wi−1| /8. In particular, E
[
νi

∣∣∣ |Wi−1|
]
≥

|Wi−1| /16. Now, |Wi| ≤ |Wi−1| − νi and as such E
[
|Wi|

∣∣∣ |Wi−1|
]
≤ (15/16) |Wi−1|.

Therefore, for 0 < i < k,

E
[
|Wi|

]
= E

[
E
[
|Wi|

∣∣∣Wi−1

]]
≤ E

[
15

16
|Wi−1|

]
=

15

16
E
[
|Wi−1|

]
.

Hence by induction on i, E[|Wi|] ≤ (15/16)i |W0| and so, in expectation, the running time is
bounded by

O

(
E

[
i=k−1∑
i=0

|Wi|

])
= O

(
i=k−1∑
i=0

E
[
|Wi|

])
= O

(
i=k−1∑
i=0

(15/16)i |W0|

)
= O(|W0|).
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Correctness The formal proof of correctness is somewhat tedious, but here is the basic
idea: At every iteration, either far points are being thrown away (and this does not effect
the optimal value), or we net the points. However, the net radius being used is significantly
smaller than the optimal value, and throughout the algorithm execution the radii of the nets
being used grow exponentially. As such, the accumulated error in the end is only a fraction
of the target value, and it is thus being approximated correctly.

Before proving that ndpAlg returns a bounded spread interval containing f(W0,Γ0),
several helper lemmas will be needed. For notational ease, in the rest of this section, we use
f(Wi) as shorthand for f(Wi,Γi).

Lemma 3.11. Suppose that Net is called (i.e. Line 15) in iteration i of the while loop.
Then for any iteration j > i we have, `j ≥ 3`i.

Proof : Consider the beginning of iteration j of the while loop. The current set of points,
Wj−1, are a subset of the net points of a 3`i-net (it is a subset since Line 12 and Line 15
might have been executed in between rounds i and j). Therefore, being a net, the distance
between any two points of Wj−1 is ≥ 3`i, see Definition 2.1. In particular, this means that
for any point p of Wj−1, we have d(p,Wj−1) ≥ 3`i.

Lemma 3.12. For i = 1, . . . , k, we have |f(Wi)− f(W0)| ≤ 9`i.

Proof : Consider an iteration i of the while loop. If algDelFar (Line 12) gets called then
by (P3) of Definition 3.3p9 we have that f(Wi) = f(Wi−1). One can apply (P3) here since
algDelFar only gets called if f(Wi−1) < `i and moreover algDelFar(`i,Wi−1) preserves all
points such that d(p,Wi−1) < `i. As such, the claim holds by induction.

So now suppose that Net (i.e Line 15) is called in iteration i, and let I be the set of indices
of the net iterations up to (and including) the ith iteration. Then Wi is a 3`i-translation of
Wi−1 and so by (P2), |f(Wi)− f(Wi−1)| ≤ 6`i. Therefore, |f(Wi)− f(W0)| ≤

∑
j∈I 6`j ≤

9`i, as this summation behaves like a geometric series by Lemma 3.11.

The following lemma testifies that the radii of the nets computed by the algorithm are
always significantly smaller than the value we are trying to approximate.

Lemma 3.13. For any iteration i of the while loop such that Net gets called we have `i ≤
f(W0)/η, where 0 < η = α− 9.

Proof : The proof will be by induction. Let m1, . . .mt be the indices of the iterations of the
while loop in which Net gets called. For the base case, observe that in order for Net to get
called η`m1 < α`m1 < f(Wm1−1). However, since this is the first iteration in which Net is
called it must be that f(W0) = f(Wm1−1) (since for all previous iterations algDelFar must
have been called).

So now suppose that `mj
≤ f(W0)/η for all mj < mi. If a call to Net is made in iteration

mi then again α`mi
< f(W(mi)−1) = f(Wm(i−1)

). Thus, by Lemma 3.12 and induction, we
have

`mi
<
f
(
Wm(i−1)

)
α

≤
f(W0) + 9`m(i−1)

α
≤ f(W0) + 9f(W0)/η

α
=

1 + 9/η

α
f(W0) =

f(W0)

η
,

if η =
α

1 + 9/η
. This in turn is equivalent to η + 9 = α, which is true by definition.
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Setting α = 37, results in η = 28, and by Lemma 3.13, for all i that correspond to a net
iteration, `i ≤ f(W0)/28. By Lemma 3.12, for any net iteration i, we have |f(Wi)− f(W0)| ≤
9`i ≤ f(W0)/3. In particular, we conclude that
|f(Wi)− f(W0)| ≤ f(W0)/3 for any iteration i. We thus get the following.

Corollary 3.14. For α ≥ 37, and any i, we have (2/3)f(W0) ≤ f(Wi) ≤ (4/3)f(W0).
In particular, if f(Wi) ∈ [x, y] then f(W0) ∈ [(3/4)x, (3/2)y] ⊆ [x/2, 2y].

Lemma 3.15. For α ≥ 37, given an instance (W,Γ) of an NDP, ndpAlg(W,Γ) returns a
bounded spread interval containing f(W,Γ).

Proof : Consider the iteration of the while loop at which ndpAlg terminates. If Line 7 or
Line 8 get executed at this iteration, then the correct interval is returned, by Corollary 3.14,
and it is a bounded interval. The same argumentation holds if Line 10 gets executed.

3.3 The result

Theorem 3.16. For a constant t > 1, given an instance of a t-NDP defined by a set of n

points in IRd, one can get a max
(

(1 + ε), t
)

-approximation to its optimal value, in expected

O(n log(1/ε)) time.

Proof : Let (W,Γ) be the given t-NDP instance, and let decider be the corresponding t-
decider. By Lemma 3.10 and Lemma 3.15, in expected O(n) time, one can get a bounded
spread interval [γ, cγ], for some c = O(t) = O(1), such that f = f(W,Γ) ∈ [γ, cγ]. Now
preform a binary search over this interval.

Specifically, for i = 0, 1, . . . ,m = b(c− 1)/εc, let γi = (1 + iε)γ and let γm+1 = cγ. Now
perform a binary search over the γi’s using decider. When a specific γi is queried, if decider
returns an interval [x, tx] then f ≤ tx ≤ tf and so tx can be returned as a t-approximation.
Otherwise, if f < γi or f > γi the binary search moves left or right, respectively. In the
end we get an interval (γi, γi+1) = ((1 + iε)γ, (1 + iε)γ + εγ) which contains f . Specifically,
f ≤ (1 + iε)γ + εγ ≤ f + εγ ≤ (1 + ε)f and so (1 + iε)γ + εγ is a (1 + ε)-approximation.

Theorem 3.17. Given an instance of a (1 + ε)-NDP defined by a set of n points in IRd,
such that for any ε > 0 we have a (1 + ε)-decider with running time O(n/εc), then one can
(1 + ε)-approximate the optimal value for this NDP, in expected O(n/εc) time.

Proof : Theorem 3.16 directly implies that one can get a (1 + ε)-approximation in expected
O(n log(1/ε)/εc) time. By using the same procedure as in the proof of Theorem 3.16 but
with exponentially decreasing values for ε in the binary search, a factor of log(1/ε) can be
avoided. This is a standard idea and was also used by Aronov and Har-Peled [AH08].

Let deciderε be our (1+ε)-decider. If ε is set to any constant (say 1), then by Lemma 3.10
and Lemma 3.15 in expected O(n) time one can get a bounded spread interval [γ, cγ], for
some c = O(t), such that f = f(W,Γ) ∈ I0 = [γ, cγ].

Set ε0 = c and i = 1. The algorithm now proceeds in rounds:
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(A) Assume that in the beginning of the ith iteration, we know that

f ∈ Ii−1 =
[
xi−1, yi−1

]
, where yi = (1 + εi−1)xi−1.

If εi−1 ≤ ε, then we found the desired approximation, and the algorithm stops.
Otherwise, round i performs the following steps.

(B) Set εi =
√

1 + εi−1 − 1 and mi =(1 + εi)xi−1.
(C) Ri ← deciderεi(mi,W,Γ), see Definition 3.2p9.
(D) There are three possibilities:

(i) If Ri = “f < mi”, then set Ii ← [xi−1,mi].
(ii) If Ri = “f > mi”, then set Ii ← [mi, yi].
(iii) If Ri = “f ∈ I = [x, (1 + εi)x]”, then set Ii ← I.

(E) i← i+ 1.

In each round, the algorithm computes an interval of spread yi/xi = 1 + εi that contains f ,
and

εi =
√

1 + εi−1 − 1 =
1 + εi−1 − 1√
1 + εi−1 + 1

≤ εi−1
2
.

Since the main bottleneck in each iteration is calling deciderεi , which runs in O(n/εci)
time, the total running time is bounded by,∑

i=1

O(n/εci) = O(n/εc),

since the sum behaves like a geometric series and the last term is O(n/εc).

4 Applications – let me count the ways

We now show that Theorem 3.16 and Theorem 3.17 can be applied to a wide array of
problems. In each case in order to apply the theorems it must first be shown that the given
problem meets the requirements of an NDP, as was done for kCenter in Section 3.1.1.

4.1 k-center clustering

Since computing a k-center clustering is an NDP problem (Lemma 3.6), plugging this into
Theorem 3.16, immediately yields a constant factor approximation to k-center in linear time.
It is easy to convert such an approximation to a 2-approximation using a grid, see Har-Peled
[Har04a]. Thus we get the following.

Theorem 4.1. Given a set P of n points in IRd, and a parameter k, 1 ≤ k ≤ n, one can
compute a 2-approximation to the optimal k-center clustering of P in (expected) linear time.

A result similar to Theorem 4.1 was already known for the case k = O
(
n1/3/ log n

)
[Har04a], and the above removes this restriction. In addition, the new algorithm is both
simpler and its analysis is simpler than the algorithm of Har-Peled [Har04a].
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4.2 The kth smallest distance

Lemma 4.2. Let P be a weighted point set in IRd, and let k > 0 be an integer parameter. Let(
P
2

)
denote the multi-set of pairwise distances determined by P.® Given an instance (P, k)

the kthDistance problem asks you to output the kth smallest distance in
(
P
2

)
. Given such an

instance, one can (1 + ε)-approximate the kth smallest distance in O(n/εd) time.

Proof : Let f(P, k) be the function that returns the kth smallest distance. We prove that
this function is an NDP (see Definition 3.3). For the decision procedure, given r, build a
grid where every cell has diameter ∆ = εr/8, and store the points of P in this grid. Now,
for any non-empty grid cell c, let ω(c) be the total weight of points in c ∩ P, and register
this weight with all the grid cells in distance at most r from it (i.e., N≤r(c)). Let ωN(�)
denote the total weight registered with a cell � (which includes its own weight). Any point
in � determines ωN(�)− 1 distances to other points in N≤r(�). Therefore the total number

of distances between points in � and points in N≤r(�) is ω(�)
(
ωN(�)− 1

)
. Summing this

over all cells (and dividing by 2 to avoid double counting) gives the quantity

W =
∑

�,ω(�) 6=0

ω(�)

2

(
ωN(�)− 1

)
.

Note that W counts all distances which are ≤ r and only distances which are ≤ r + 2∆. So
let the desired kth distance be denoted by `k. Then if k ≤ W then `k ≤ r+ 2∆ = (1 + ε/4)r.
Similarly, if k > W then `k > r. Therefore, to build a (1 + ε)-decider for distance r, we run
the above counting procedure on r1 = r/(1 + ε/3) and r2 = r. If the r1 distance call returns
that `k ≤ (1 + ε/4)r/(1 + ε/3) < r, then we return this result. Otherwise, if the r2 call
returns that `k ≤ (1 + ε/4)r2 = (1 + ε/4)r, then `k ∈ [r/(1 + ε/3), (1 + ε/4)r], and we are
done as this interval has spread (1 + ε/4)(1 + ε/3) < 1 + ε. The only remaining possibility
is that `k > r2, in which case we return that `k > r.

Since the distance between any pair of points changes by at most 2∆ in a ∆-translation,
the Lipschitz condition (i.e. (P2)p9) holds by Claim 4.3.

As for (P3)p9, by assumption, the kth smallest distance is determined by two distinct
weighted points p and q. Clearly these points are not in W≥r since d(p, q) = f(W, k) < r. So
consider any point s ∈ W≥r. Since removing s by does not remove the distance d(p, q) from
set of remaining distances, all is needed is to show up to update k. Clearly, s contributes
ω(s) × ω(P \ {s}) distances ≥ r to

(
W
2

)
, and

(
ω(s)
2

)
pairwise distances of value zero. Thus,

after removing s from W, the new context is k −
(
ω(s)
2

)
.

Claim 4.3. Let S and S ′ be subsets of IR of size n, such that S ′ is obtained by taking each
value in S and incrementing or decrementing it by less than ∆. Let v and v′ be the kth
smallest values in S and S ′, respectively. Then |v − v′| ≤ ∆.

Proof : Suppose for contradiction that |v − v′| > ∆. If v′ − v > ∆ then S ′ has at least
n − k + 1 values strictly larger than v + ∆ which implies S has at least n − k + 1 values

®In particular a point of weight m is viewed as m unit weight points when determining the values of
(
P
2

)
.

For simplicity we assume that the kth distance in P is not zero (i.e. it is determined by two distinct points).
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strictly larger than v. Similarly if v − v′ > ∆ then S ′ has at least k values strictly smaller
than v −∆ which implies S has at least k values strictly smaller than v.

The algorithm of Lemma 4.2 also works (with minor modifications) if we are interested
in the kth distance between two sets of points (i.e., the bipartite version).

Corollary 4.4. Given two sets P and Q of points in IRd, of total size n, and parameters k
and ε > 0, one can (1 + ε)-approximate, in O(n/εd) time, the following:

(A) The kth smallest distance in the bichromatic multiset of distances X =
{
d(p, q)

∣∣∣ p ∈ P, q ∈ W
}

.

(B) The closest bichromatic pair between P and Q.

4.3 The kth smallest m-nearest neighbor distance

For a set P = {p1, . . . , pn} ⊆ IRd of n points, and a point p ∈ P, its mth nearest
neighbor in P is the mth closest point to p in P. In particular, let dm(p,P) denote this
distance. Here, consider the set of these distances defined for each point of P; that is,
X = {dm(p1,P) , . . . , dm(pn,P)}. For m = 2, the minimum number in X is the closet pair
distance in P, which we already showed can be computed (exactly) in linear time using our
framework. Interestingly, we can approximate the kth smallest number in this set in linear
time.

As usual in order to use ndpAlg we must generalize the problem to handle positive
integer weighted point sets. Namely, a point p of weight ω(p) will be treated as ω(p) distinct
points at the same location. In particular the set X from the above is actually a multiset
containing ω(p) copies of the value dm(p,P).

Theorem 4.5. Let W be a set of n weighted points in IRd, and m, k, ε parameters. Then
one can (1 + ε)-approximate, in O(n/εd) time, the kth smallest m-nearest neighbor distance
in W. Formally, the algorithm (1 + ε)-approximates the kth smallest number in the multiset
X = {dm(p1,W) , . . . , dm(pn,W)}

Proof : Let f(W, k,m) denote the desired quantity. We first need a (1 + ε)-decider for this
problem. To this end, given r, k,m, ε and W as input, create a grid with cells of diameter εr/4,
and mark for each point of W all the grid cells in distance at most r from it. Each non-empty
grid cell has a count of the total weight of the points in distance at most r from it. Thus, each
point of W can compute the total weight of all points which are approximately in distance
at most r from it. Now, a point p ∈ W, can decide in constant time if (approximately)
dm(p,W) ≤ r. If the number of points which declare dm(p,W) ≤ r (where a point p is
counted ω(p) times) is greater than k then the distance r is too large, and if it is smaller
than k than r is too small. Being slightly more careful about the details (as was done in
the proof of Lemma 4.2) one can verify this leads to a (1 + ε)-decider for this problem, thus
establishing (P1) of Definition 3.3p9.

Clearly the Lipschitz property (P2) holds in this case, and so we only need to show (P3)
holds. Namely, it must be shown that k can be updated properly for a weighted point p
whose nearest neighbor is further away than f(W, k,m). If ω(p) ≥ m then we are throwing
away ω(p) points, all with dm(p,W) = 0, and so k should be update to k − ω(p) when p is
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removed. Similarly, if ω(p) < m then all the points p corresponds to have dm(p,W) larger
than the threshold, and k does not have to be updated. This establish (P3).

Plugging this into Theorem 3.17 implies the desired result.

Remark 4.6. Theorem 4.5 can be easily extended to work in the bichromatic case. That
is, there are two point sets P and Q, and we are interested in the mth nearest neighbor of
a point p ∈ P in the set Q. It is easy to verify that the same time bounds of Theorem 4.5
hold in this case.

In particular, setting k = |P| and m = 1 in the bichromatic case, the computed distance
will be the minimum radius of the balls needed to be placed around the points of P to cover
all the points of Q (or vice versa).

4.3.1 Furthest nearest neighbor

Using Theorem 4.5 with m = 2 and k = n and ε = 1, results in a 2-approximation, in O(n)
time, to the furthest nearest neighbor distance ; that is, the nearest neighbor distance
of the point whose nearest neighbor is furthest away.

So we have a quantity r that is larger than the furthest nearest neighbor distance, but
at most twice larger. We build a grid with every cell having diameter r/4. Clearly, the
point realizing the furthest nearest neighbor distance must be the only point in its grid cell.
For such a point, we compute its distance to all the points stored in its cell’s neighborhood
(say, all cells in distance at most r from this cell). This computes for these “lonely” points
their exact nearest neighbor distance, and the maximum such distance computed is the one
realizing the furthest nearest neighbor distance. Clearly, every cell’s list of points get scanned
a constant number of times, so overall the running time is linear. We summarize the result.

Theorem 4.7. Let P be a set of n points in IRd. In O(n) expected time, one can compute
exactly the furthest nearest neighbor distance in P.

4.4 The spanning forest partitions, and the kth longest MST edge

The net computation provides a natural way to partition the data into clusters, and leads to a
fast clustering algorithm. One alternative partition scheme is based on distance connectivity.

Definition 4.8. For a set of points P and a number r > 0, let C≤r(P) be the r-connected
components of P; that is, it is a partition of P into connected components of the MST
of P after all edges strictly longer than r are removed from it (alternatively, these are the
connected components of the intersection graph where we replace every point of P by a disk
of radius r/2 centered at that point).

Consider two partitions P ,Q of P. The partition P is a refinement of Q, denoted by
P v Q, if for any set X ∈ P, there exists a set Y ∈ Q such that X ⊆ Y .

Lemma 4.9. Given a set P ⊆ IRd, and parameters r and ε, one can compute, in O
(
n/εd

)
time, a partition P, such that C≤r(P) v P v C≤(1+ε)r(P).
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Proof : Build a grid with every cell having diameter εr/4. For every point in P mark all the
cells in distance r/2 from it. That takes O(n/εd) time. Next, for every marked cell create a
node v, and let V be the resulting set of nodes. Next, create a bipartite graph G = (V ∪P, E)
connecting every node of V , to all the points of P marking its corresponding grid cell. Now,
compute the connected components in G, and for each connected component extract the
points of P that belong to it. Clearly, the resulting partition P of P, is such that any two
points in distance ≤ r are in the same set (since for such points there must be a grid cell
in distance ≤ r/2 from both). Similarly, if the distance between two subsets X, Y ⊆ P is at
least (1 + ε)r, then they are in different connected components of P . In particular, in order
for X and Y to be in the same component, there must exists points x ∈ X and y ∈ Y which
marked the same grid cell. However, such a grid cell would need to be in distance at most
r/2 from both x and y, implying d(x, y) ≤ r/2 + r/2 + εr/4 < (1 + ε)r, a contradiction.
Thus, this is the desired partition. Clearly, this takes O(n/εd) time overall.

Theorem 4.10. Given a set of n points P in IRd, and parameters k and ε, one can output,
in O

(
n/εd

)
time, a (1 + ε)-approximation to the kth longest (or kth shortest) edge in the

MST of P.

Proof : Consider the cost function `MST (P, k) which returns the kth longest edge of the MST
of P. This function is an NDP with the decision procedure being Lemma 4.9. It is easy
to verify that `MST (P, k) is the minimum r such that C≤r(P) has k connected components.
Now, Lemma 4.9 provides a (1 + ε)-decision procedure for `MST (P, k) that works in linear
time. Furthermore, `MST (P, k) complies with (P2)p9, as can be readily verified. As for (P3),
consider a point p ∈ W≥r, where `MST (W, k) < r. Clearly, any edge in the MST of W that
involves p must be of length > r; that is, the point p is a singleton in C≤`MST(W,k)(P). As
such, it can indeed be thrown away, and k should be decreased by one, as removing p might
replace edges longer than r in the MST by edges that are even longer. This establish that
`MST (P, k) is a NDP, and by plugging this into Theorem 3.17, we get the result.

4.5 Computing the minimum cluster

4.5.1 Sketchable families

Definition 4.11 (Upward Closed Set System). Let P be a finite ground set of elements,
and let F be a family of subsets of P. Then (P,F) is an upward closed set system if for
any X ∈ F and any Y ⊆ P, such that X ⊆ Y , we have that Y ∈ F . Such a set system is
a sketchable family, if for any set S ⊆ P there exists a constant size sketch sk(S) such
that:

(A) For any S, T ⊆ P that are disjoint, sk(S ∪ T ) can be computed from sk(S) and sk(T )
in O(1) time.

(B) There is a membership oracle for the set system based on the sketch. That is, there
is a procedure O(·) such that given the sketch of a subset sk(S), O(sk(S)) returns
whether S ∈ F or not, in O(1) time.

An example for such a sketchable family, is the set system (P,F), where S ⊆ P is in
F if |S| ≥ 10. Here the sketch of the set is simply the number of elements in the set,
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and combining two sketches sk(S) and sk(T ) is adding the numbers to get sk(S ∪ T ) (for
S ∩ T = ∅).

We will be interested in two natural problems induced by such a family: (i) smallest clus-
ter – find the smallest set in the family with certain properties, and (ii) min-max clustering
– find disjoint sets in the family such that they cover the original set, and the maximum
price of these sets is minimized.

Remark 4.12. Note it is not necessary for the descriptions to have O(1) size or the oracle
to run in O(1) time, however, assuming otherwise will affect the running time of ndpAlg if
it is used to solve a problem involving a sketchable family.

Example 4.13. Consider associating a positive k-dimensional vector ψp with each point
p ∈ P (a vector is positive if it is non-zero, and all its coordinates are non-negative). A
positive linear inequality is an inequality of the form

∑
i αixi ≥ c, where the coefficients

α1, . . . , αk are all non-negative. For such a linear inequality, consider the set system (P,F),
where a set Q is in F if the linear inequality holds for the vector

∑
p∈Q ψp. Clearly, this

family is a sketchable family, the sketch being the sum of the vectors associated with the
points of the set (here k is assumed to be a constant).

It is easy to verify that sketchable families are closed under finite intersection. Specifically,
given a collection of m such positive inequalities, the family of sets such that their sketch
vector complies with all these inequalities is a sketchable family (of course, checking if a set,
given its sketch, is in the family naively would take O(mk) time).

As a concrete application, consider the scenario where every element in P has k = 4
attributes. One might be interested in subsets, where each set has at least a total sum of 1
unit for the first two attributes, and a total sum of 2 units for the last two attributes.

Of course, in general an membership oracle for the attributes space that has the property
that if ψ is valid then ψ + ψ′ is also valid, for any positive ψ′, would define a sketchable
family. As a concrete example, consider the non-linear condition that the sum of at least two
attributes is larger than 1. Clearly, this defines a sketchable family.

Clearly the above definition of sketchable family is very general and widely applicable.
Though many more example could be given, we now instead show how ndpAlg can be used
to approximate certain objectives over sketchable families.

4.5.2 Min cluster

We now consider the problem of minimizing the cluster size of a subset of a given point set
subject to inclusion in a sketchable family. Specifically, we consider the case when the cluster
is defined by a ball of radius r or when the cluster is defined by a connected component of
C≤r(P) for a radius r. Note that as a ball or component grows both the cluster size and
inclusion of the set of points (in the cluster) in the sketchable F are monotone properties.
This correspondence is what allows us to apply our general framework.

Theorem 4.14. For a set of n points P ⊆ IRd, and a sketchable family (P,F), one can
(1+ε)-approximate, in O

(
n/εd

)
time, the radius of the smallest ball, b, such that b∩P ∈ F .
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Proof : Let f(P) be the radius of the smallest ball b in IRd such that P ∩ b ∈ F . We claim
that f(·) is an NDP (Definition 3.3p9). Indeed (P2) and (P3) readily hold for f(·). As for
the decision procedure, given r and ε > 0, construct a grid with cells of diameter εr/4, and
register each point of P in all the grid cells in distance at most r from it. If there is a ball, b,
of radius r such that b∩P ∈ F then the set of points registered with the grid cell containing
the center of this ball will be a superset of b ∩ P and hence the set is in F , by the upward
closed property of sketchable families. Moreover, the set registered at this grid cell requires
a ball of radius at most r + 2εr/4 (centered at any point in this grid cell) to cover it. Thus,
the decision procedure simply checks the set of points associated with each grid cell to see
whether or not it is in F . The definition of sketchable families implies this can be done in
linear time in the sizes of the sets (namely computing the sketch takes linear time and the
oracle constant time). Furthermore, if there is no ball of radius (1 + ε)r whose point set is in
F then the decision procedure would fail to find such a cell. Thus, this is a (1 + ε)-decision
procedure, and its running time is O(n/εd). Thus fulfilling (P1). Plugging this into the
algorithm of Theorem 3.17 implies the result.

The following is a sample of what the above theorem implies.

Corollary 4.15. We can (1 + ε)-approximate, in O(n/εd) time, the following problems for
a set of n points in IRd:
(A) The smallest ball containing k points of P.
(B) The points of P are weighted and we are given a threshold α. Compute the smallest ball

containing points of weight at least α.
(C) If the points of P are colored by k colors, the smallest ball containing points of P, such

that they are colored by at least t different colors. (Thus, one can find the smallest
non-monochromatic ball [t = 2], and the smallest ball having all colors [t = k].) The
running time is O

(
nk/εd

)
, as the sketch here is a k-dimensional vector.

4.5.3 Min cluster in the spanning forest

Note that C≤r(P) is a monotone partition as r increases, and it is natural to ask what is
the minimum r, for which there is a connected component in C≤r(P) that is in a sketchable
family.

Theorem 4.16. For a set of n points P ⊆ IRd, and a sketchable family (P,F), one can (1 +
ε)-approximate, in O

(
n/εd

)
time, the minimum r, such that there is a connected component

in C≤r(P) that is in F .

Proof : The target function f(P) returns the smallest r such that C≤r(P) contains a set that is
in F . Since `MST (P, 1) complies with (P2)p9 (see Section 4.4) it is immediate to see that the
same holds for f(·). Also, throwing away far away isolated points is allowable, as can be easily
verified, thus implying that (P3) holds. As for the decision procedure, (1 + ε)-approximate
the connected components of C≤r(P), using Lemma 4.9, and for each approximate connected
component, use their sketch to decide if they are in F . If so, return that r is larger than
the optimal value, otherwise return that it is too small. Clearly, this is (1 + ε)-decider that
works in O(n/εd) time. Plugging this into Theorem 3.17 implies the result.
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One natural application for Theorem 4.16, is for ad hoc wireless networks. Here, we have
a set P of n nodes and their locations (say in the plane), and each node can broadcast in a
certain radius r (the larger the r the higher the energy required, so naturally we would like
to minimize it). It is natural now to ask for the minimum r such that one of the connected
components in the resulting ad hoc network has some desired property. For example, in
O(n/εd) time, we can (1 + ε)-approximate the smallest r such that:

(A) One of the connected components of C≤r(P) contains half the points of P, or more
generally if the points are weighted, that one of connected component contains
points of total weight at least α, for a prespecified α.

(B) If the points are colored, the desired connected component contains all the colors
(for example, each color represent some fraction of the data, and the cluster can
recover the data if all the pieces are available), or at least two colors, or more
generally a different requirement on each color.

4.6 Clustering for monotone properties

Definition 4.17 (Min-Max Clustering). We are given a sketchable family (P,F), and a
cost function g : 2P → IR+. We are interested in finding disjoint sets S1, . . . , Sm ∈ F , such
that (i)

⋃
i Si = P, and (ii) maxi g(Si) is minimized. We will refer to the partition realizing

the minimum as the optimal clustering of P.

Theorem 4.18. Let P be a set of points in IRd, and let (P,F) be a sketchable family. For a
set W ∈ F , let rmin(W) be the radius of the smallest ball centered at a point of and enclosing
W. One can (4 + ε)-approximate, in O(n/εd) time, the min-max clustering under rmin of P.

That is, one can cover P by a set of balls, and assign each point of P to one of these balls,
such that the set of points assigned to each ball is in F , and the maximum radius of any of
these balls is a (4 + ε)-approximation to the minimum radius used by any such cover.

Proof : Let Popt be the optimal partition with radius ropt, and consider an r-net N for
r ≥ 4ropt, computed using Corollary 2.3. Consider a point p ∈ N , and let PN [p] be the set
of points of P assigned to p by the nearest net-point assignment.

Next, consider the cluster W ∈ Popt that contains it. Clearly, diam(W) ≤ 2ropt, and the
distance of p from all other net points in N is at least 4ropt. It follows that W ⊆ PN [p], and
since W ∈ F , it follows that PN [p] ∈ F .

A 4-decider for this problem works by computing the 4r-net N , and for each p ∈ P,
checking the sketchable property for the set PN [p]. It is easy to verify that the properties
of Definition 3.3p9 hold in this case. In particular, throwing a far away isolated point corre-
sponds to a cluster that already fulfill the monotone property, and it is too far away to be
relevant. Namely, computing ropt is an NDP and so plugging this into Theorem 3.16 implies
the result.

4.6.1 Lower bounded center clustering

If the required sketchable property is that every cluster contains at least k points, then
Theorem 4.18 approximates the lower bounded center problem. That is, one has to cover
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the points by balls, such that every cluster (i.e., points assigned to a ball) contains at least k
points. The price of this clustering is the radius of the largest ball used. A 2-approximation
to this problem is known via the usage of flow [APF+10] but the running time is super
quadratic. Recently, the authors showed a similar result to Theorem 4.18 with running time
(roughly) O(n log n) [ERH12]. It is also proven that this problem cannot be approximated
to better than (roughly) 1.8 even for points in the plane. Thus, the following immediate
implication of Theorem 4.18 improves over this result.

Corollary 4.19. Let P be a set of points in IRd, and let k and ε > 0 be parameters. One
can (4 + ε)-approximate the lower bounded center clustering in O(n/εd) time.

4.6.2 Other clustering problems

One can plug-in any sketchable family into Theorem 4.18. For example, if the points have k
colors, we can ask for the min-max radius clustering, such that every cluster contains (i) all
colors, (ii) at least two different colors, or (iii) a different requirement on each color, etc.

As another concrete example, consider that we have n customers in the plane, and each
customer is interested in k different services (i.e., there is a k-dimensional vector associated
with each customer specifying his/her demand). There are t types of service centers that
can be established, but each such center type requires a minimum level of demand in each of
these k categories (i.e., each type is specified by a minimum demand k-dimensional vector,
and a set of customers can be the user base for such a service center if the sum of their
demands vector is larger than this specification). The problem is to partition the points into
clusters (of minimum maximum radius), such that for every cluster there is a valid service
center assigned to it. Clearly, this falls into the framework of Theorem 4.18, and can be
(4 + ε)-approximated in O(nkt/εd) time.

4.6.3 Clustering into spanning forests

One can get a similar result to Theorem 4.18 for the connectivity version of clustering of P.
Formally, a set of points W ⊆ P is r-valid if W is contained in some set of C≤r(P). Given a
sketchable family (P,F), a partition P of P is an r-connected clustering if all the sets in
P are in F , and are r-valid.

Theorem 4.20. Let P be a set of points in IRd, and let (P,F) be a sketchable family. One
can (1 + ε)-approximate ropt, where ropt is the minimum value such that there is a ropt-
connected clustering of P.

Proof : It is easy to verify that this target function is NDP (see Definition 3.3p9). Indeed, for
the decider, given r, we use Lemma 4.9 to compute a partition P of P such that C≤r(P) v
P ⊆ C≤(1+ε)r(P). If the sketchable property holds for each cluster we return that r is too
large, otherwise we return that it is too small. As for the quality of this decider, observe
that if the optimal partition has a cluster W that uses points from two different clusters of
P , than W is not r-valid, as otherwise these two points would be in the same cluster of P
(namely, ropt > r).

The Lipschitz (P2) condition readily follows. Similarly, if an isolated point exists, then it
can be thrown away because the cluster of original points it corresponds to, is a valid cluster
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that can be used in the final clustering, and it does not interact with any other clusters.
Thus (P3) also holds.

Plugging this into Theorem 3.17 now implies the result.

A nice application of Theorem 4.20 is for ad hoc networks. Again, we have a set P of
n wireless clients, and some of them are base stations; that is, they are connected to the
outside world. We would like to find the minimum r, such that each connected component
of C≤r(P) contains a base station.

4.7 Smallest non-zero distance

Closest pair. By setting k = 1 and ε = 1 one can use Lemma 4.2p16 to get a 2-
approximation to the closest pair distance in O(n) time. Let the returned distance be r.
It is not hard to see that one can then compute the closest pair exactly by throwing the
points into a grid where the diameter of a cell is < r/2. Indeed, compute for every point that
is the only point in a cell, its nearest neighbor in the neighboring cells in the grid. Clearly,
the closest pair distance would be encountered, and the overall work is linear.

Smallest non-zero distance. If P contains duplicates then a couple modifications to
ndpAlg must be made. First modify the algorithm so that for the selected point it finds
the closest distinct nearest neighbor. Secondly, we modify algDelFar (see Lemma 2.5p9) so
that if a net point corresponds to several copies of the same point then it is being treated as
a single point. With these two modifications, the above algorithm works verbatim, and we
get the following.

Lemma 4.21. Let P be a multiset of weighted points in IRd. Then one can solve the Smallest-
NonZeroDist problem exactly for P in linear time. In particular, if P contains no duplicates
then this corresponds to computing the closest pair distance.

Interestingly, the algorithm of Lemma 4.21 is a prune-and-search algorithm, as the net
stage never gets executed. Observe, that it is not hard to extend the algorithm of Golin
et al. [GRSS95] to solve this variant, and the result of Lemma 4.21 is included in the paper
only for the sake of completeness.

5 Conclusions

There is still a lot of further research to be done in investigating this technique. For exam-
ple, looking into the implementation of this new algorithm in both standard settings and
MapReduce. Additionally, since one can now do approximate distance selection in linear
time, maybe now one can get a speed up for other algorithms that do (not necessarily point
based) distance selection.

Our framework provides a new way of looking at distance based optimization problems,
in particular through the lens of nets. We know how to compute nets efficiently for doubling
metrics and it seems one can compute approximate nets in near linear time for planar graphs.
For example, it seems the new technique implies that approximate k-center clustering in

24



planar graphs can be done in near linear time. This provides fertile ground for future
research.
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