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On the Theory of Quantum Mechanics.

By P. A. M. D irac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received August 26, 1926.)

§ 1. Introduction and Summary.
The new mechanics of the atom introduced by Heisenberg* may be based 

on the assumption that the variables that describe a dynamical system do not 
obey the commutative law of multiplication, but satisfy instead certain quantum 
conditions. One can build up a theory without knowing anything about the 
dynamical variables except the algebraic lawrs that they are subject to, and 
can show that they may be represented by matrices whenever a set of uniform- 
ising variables for the dynamical system exists.f It may be shown, however 
(see § 3), that there is no set of uniformising variables for a system containing 
more than one electron, so that the theory cannot progress very far on these 
lines.

A new development of the theory has recently been given by Schrodinger.j 
Starting from the idea that an atomic system cannot be represented by a 
trajectory, i.e., by a point moving through the co-ordinate space, but must be 
represented by a wave in this space, Schrodinger obtains from a variation prin
ciple a differential equation which the wave function must satisfy. This 
differential equation turns out to be very closely connected with the Hamiltonian 
equation which specifies the system, namely, if

is the Hamiltonian equation of the system, where the qn pr are canonical 
variables, then the wave equation for is

where h is (27t)- 1 times the usual Planck’s constant. Each momentum pr in H 
is replaced by the operator ill 0/3jy, and is supposed to operate on all that exists 
on its right-hand side in the term in which it occurs. Schrodinger takes the 
values of the parameter W for which there exists a ^ satisfying (1) that is

* See various papers by Born, Heisenberg and Jordan, Zeits. f. Phys., vol. 33 onwards.
t  4 Roy. Soc. Proc.,’ A, vol. 110, p. 561 (1926).
x See various papers in the ‘ Ann. d. Phys.,’ beginning with vol. 79, p. 361 (1926).

H (j„ p9) - W  =  0

( 1 )
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662 P. A. M. Dirac.

continuous, single-valued and bounded throughout the whole of y-space to be 
the energy levels of the system, and shows that when the general solution of (1) 
is known, matrices to represent the pr and qr may easily be obtained, satisfying 
all the conditions that they have to satisfy according to Heisenberg’s matrix 
mechanics, and consistent with the energy levels previously found. The mathe
matical equivalence of the theories is thus established.

In the present paper, Schrodinger’s theory is considered in § 2 from a slightly 
more general point of view, in which the time t and its conjugate momentum 
—W are treated from the beginning on the same footing as the other variables. 
A more general method, requiring only elementary symbolic algebra, of obtaining 
matrix representations of the dynamical variables is given.

In § 3 the problem is considered of a system containing several similar par
ticles, such as an atom with several electrons. If the positions of two of the 
electrons are interchanged, the new state of the atom is physically indistinguish
able from the original one. In such a case one would expect only symmetrical 
functions of the co-ordinates of all the electrons to be capable of being repre
sented by matrices. It is found that this allows one to obtain two solutions of 
the problem satisfying all the necessary conditions, and the theory is incapable 
of deciding which is the correct one. One of the solutions leads to Pauli’s 
principle that not more than one electron can be in any given orbit, and the 
other, when applied to the analogous problem of the ideal gas, leads to the 
Einstein-Bose statistical mechanics.

The effect of an arbitrarily varying perturbation on an atomic system is 
worked out in § 5 with the help of a new assumption. The theory is applied 
to the absorption and stimulated emission of radiation by an atom. A generalisa
tion of the description of the phenomena by Einstein’s B coefficients is obtained, 
in which the phases play their proper parts. This method cannot be applied to 
spontaneous emission.

§ 2. General Theory.
According to the new point of view introduced by Schrodinger, we no longer 

leave unspecified the nature of the dynamical variables that describe an atomic 
system, but count the q’s and t as ordinary mathematical variables (this being 
permissible since they commute with one another) and take the p’s and W to be 
the differential operators

Whenever a pr or W occurs in a term of an equation, it must he considered as 
meaning the corresponding differential operator operating on all that occurs on its
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Theory o f Quantum Mechanics. 663

right-hand side in the term in question. Thus, by carrying out the operations, 
one can reduce any function of the p’s, q s, W and t to a function of the q's and t 
only.

The relations (2) require two obvious modifications to be made in the algebra 
governing the dynamical variables. Firstly, only rational integral functions of 
the p ’s and W have a meaning, and, secondly, one can multiply up an equation 
by a factor (integral in the p's and W) on the left-hand side, but one cannot, in 
general, multiply up by factor on the right-hand side. Thus, if one is given the 
equation a = b, one can infer from it that Xa =  Xb, where X is arbitrary, but 
one cannot in general infer that aX — bX.

There are, however, certain equations a =  b for which it is true that aX =  bX 
for any X, and these equations we call identities. The quantum conditions

qrPs — M r  =  MKs, PrP» — PsPr =  0,
with the similar relations involving —W and t, are identities, as it can easily 
be verified (and has been verified by Schrodinger) that the relations

(qrps —  psqr) X  =  ih8rsX>
etc., hold for any X. These relations form the main justification for the 
assumptions (2).

If a = bis an identity, we can deduce, since aX — bX and Xa =  Xb, that
aX — Xa =  bX — Xb,

or
[a, X] =  [6, X].

Thus we can equate the Poisson bracket of either side of an identity with an 
arbitrary quantity, and so our quantum identity is the analogue of an identity 
on the classical theory. We assume the general equation xy — ijx =  ih [x, y] 
and the equations of motion of a dynamical system to be identities.

A dynamical system is specified by a Hamiltonian equation between the 
variables

or more generally
H  (qr, Pr, t) — W  =  0, 

F (q„ pr, U W) =  0,

(3)

(4)
and the equations of motion are

dx/ds — [x, F],
where x is any function of the dynamical variables, and s is a variable which 
depends on the form in which (4) is written, and, in particular, is just t if (4) is 
written in the form (3). On the new theory we consider the equation

F^ =  0, (5)
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664 P. A. M. Dirac.

which, if we take ^ to be a function of the q1 s and t only, is an ordinary differen
tial equation for From the general solution of this differential equation the 
matrices that form the solution of the mechanical problem may be very easily 
obtained.

Since (5) is linear in its general solution is of the form

<!> =  (6) 
where the cn’s are arbitrary constants and the ^,/s are a set of independent 
solutions, which may be called eigenfunctions. Only solutions that are con
tinuous, single-valued and bounded throughout the whole domain of the q s 
and t are recognised by the theory. Instead of a discreet set of eigenfunctions 
yn there may be a continuous set (a), depending on a parameter a, and satis
fying the differential equation for all values of a in a certain range, in which

case the sum in (6) must be replaced by an integral jca^ (a) rfa,* or both a discreet

set and a continuous set may occur together. For definiteness, however, we 
shall write down explicitly only the discreet sum in the following work.

We shall now show that any constant of integration of the dynamical system 
(either a first integral or a second integral) can be represented by a matrix 
whose elements are constants, there being one rowT and column of the matrix 
corresponding to each eigenfunction ^w. Let a be a constant of integration 
of the system, i.e., a function of the dynamical variables such that [a, F] =  0 
identically. We have the relation

Fa =  aF,

which, being an identity, we can multiply by on the right-hand side. We 
thus obtain

Fa<j/n =  aF^n =  0,

since Fvpn =  0 (although not identically). Hence ayn is a solution of the 
differential equation (5), so that it can be expanded in the form (6), i.e.,

where the amn's are constants. We take the quantities amn to be the elements 
of the matrix that represents a. The matrix rule of multiplication evidently 
holds, since, if b is another constant of integration of the system, we have

Clb'^n rrfomn ^mk^k^knJ^mn?

* The general solution may contain quantities, such as \^a and cyl'a/d<*, which satisfy the 
differential equation (5), but which cannot strictly be put in the form j c a\jrada} although 
they may be regarded as the limits of series of quantities which are of this form.
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Theory o f Quantum Mechanics. 665

and also
aH n  =  (ab)kn,

so that
{pb)kn m̂Ulcnfimn*

As an example of a constant of integration of the dynamical system, we may 
take the value x(t0) that an arbitrary function x of the p ’s, q’s, W and t has at a 
specified time t =  to. The matrix that represents x(to) will consist of elements 
each of which is a function of t0. Writing t for t0, we see that an arbitrary 
function of the dynamical variables, x (t), or simply x, can be represented by a 
matrix whose elements are functions of t only.

The matrix representation we have obtained is not unique, since any set of 
independent eigenfunctions will do. To obtain the matrices of Heisenberg’s 
original quantum mechanics, we must choose the t|;n’s in a particular way. We 
can always, by a linear transformation, obtain a set of ^n’s which makes the 
matrix representing any given constant of integration of the dynamical system 
a diagonal matrix. Suppose now that the Hamiltonian F does not contain the 
time explicitly, so that W is a constant of the system, and is the energy, and 
we choose the ij;n’s so as to make the matrix representing W a diagonal matrix, 
i.e., so as to make

W ^  =  Wn^ ,  . (7)
where Wn is a numerical constant. Let x be any function of the dynamical 
variables that does not involve the time explicitly, and put

where the xmn’s are functions of the time only. We shall now show that the 
# ’s are of the form

xmn =  amne ^ - ^ « \ (8)
where the amn’s are constants, as on Heisenberg’s theory. We have

W X =  ^ W Xmntym
=  (Wxmn — -f- ^ mXmnW

=■ Ĵmihxmn̂ /m mtyrrr (0)
Also, since x does not contain t explicitly,

Wxtyn =  xWtyn =  xWntyn =  WnX<\>n
=  WnZmXmn'\>m- (10)

Equating the coefficients of in (9) and (10), we obtain
ihxmn =  xmn (Ww — Wm), 

which shows that xrnn is of the form (8).
vol. c x n . — A. 2 Y
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666 P. A. M. Dirac,

We have thus shown that with the tpn’s chosen in this way the matrices satisfy 
all the conditions of Heisenberg’s matrix mechanics, except the condition that 
the matrices that represent real quantities are Hermitic {i.e., have their mn and 
nmelements conjugate imaginaries). There does not seem to be any simple 

general proof that this is the case, as the proof would have to make use of the 
fact that the ^„’s are bounded. I t  is easy to prove the particular case that the 
matrix representing W is Hermitic, i.e., that the W„’s are real, since from (7) 

must be of the form
=  une~

where un is independent of t, and if Wn contains an imaginary part, ^n would not 
remain bounded as t becomes infinite. In general, the matrices representing 
real quantities could be Hermitic only if the arbitrary numerical constants by 
which the <J>n’s may be multiplied are chosen in a particular way.

We may regard an eigenfunction as being associated with definite numerical 
values for some of the constants of integration of the system. Thus, if we find 
constants of integration a, h, . . . such that

=  a«<K> Hn  • • • (11)
where an, hn, . . . are numerical constants, we can say that ipn represents a state 
of the system in which a, fe, . . . have the numerical values an, bn, . . . (Note 
that a, b, . . .  must commute for (11) to be possible.) In this way we can have 
eigenfunctions representing stationary states of an atomic system with definite 
values for the energy, angular momentum, and other constants of integration.

I t  should be noticed that the choice of the time t as the variable that occurs in 
the elements of the matrices representing variable quantities is quite arbitrary, 
and any function of t and the q’s that increases steadily would do. To deter
mine accurately the radiation emitted by the system in the direction of the 
#-axis, one would have to use (t — xjc) instead of t*  I t  is probable that the 
representation of a constant of integration of the system by a matrix of constant 
elements is more fundamental than the representation of a variable quantity 
by a matrix whose elements are functions of some variable such as t or (t — x/c). 
I t would appear to be possible to build up an electromagnetic theory in which 
the potentials of the field at a specified point x0, yo, Zo> to in space-time are 
represented by matrices of constant elements that are functions of x0y y0, z0y t0.

§ 3. Systems containing Several Similar Particles.
In Heisenberg’s matrix mechanics it is assumed that the elements of the 

matrices that represent the dynamical variables determine the frequencies and 
* ‘ Roy. Soc. Proc.,’ A, vol. I l l ,  p. 405 (1926).
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Theory o f Quantum Mechanics. 667

intensities of the components of radiation emitted. The theory thus enables 
one to calculate just those quantities that are of physical importance, and gives 
no information about quantities such as orbital frequencies that one can never 
hope to measure experimentally. We should expect this very satisfactory 
characteristic to persist in all future developments of the theory.

Consider now a system that contains two or more similar particles, say, for 
definiteness, an atom with two electrons. Denote by (mn) that state of the 
atom in which one electron is in an orbit labelled m, and the other in the orbit n. 
The question arises whether the two states (mn) and (nm), which are physically 
indistinguishable as they differ only by the interchange of the two electrons, 
are to be counted as two different states or as only one state, i.e., do they give 
rise to two rows and columns in the matrices or to only one ? If the first 
alternative is right, then the theory would enable one to calculate the intensities 
due to the two transitions (mn) -> (mV) and (mn) -> (n'm') separately, as the 
amplitude corresponding to either would be given by a definite element in the 
matrix representing the total polarisation. The two transitions are, however, 
physically indistinguishable, and only the sum of the intensities for the two 
together could be determined experimentally. Hence, in order to keep the 
essential characteristic of the theory that it shall enable one to calculate only 
observable quantities, one must adopt the second alternative that (mn) and (nm) 
count as only one state.

This alternative, though, also leads to difficulties. The symmetry between 
the two electrons requires that the amplitude associated with the transition 
(mn) -> (mV) of xv a co-ordinate of one of the electrons, shall equal the ampli
tude associated with the transition (nm) -> (n'm') of x2, the corresponding 
co-ordinate of the other electron, i.e.,

xx (mn ; mV) =  x2 (nm ; n'm'). (12)

If we now count (mn) and (nm) as both defining the same row and column ot 
the matrices, and similarly for (mV) and (n'm'), equation (12) shows that each 
element of the matrix xx equals the corresponding element of the matrix x2, so 
that we should have the matrix equation

xx =  x2.

This relation is obviously impossible, as, amongst other things, it is inconsistent 
< with the quantum conditions. We must infer that unsymmetrical functions

of the co-ordinates (and momenta) of the two electrons cannot be represented 
by matrices. Symmetrical functions, such as the total polarisation of the 
atom, can be considered to be represented by matrices without inconsistency,

; 2 y 2
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668 P. A. M. Dirac.

and these matrices are by themselves sufficient to determine all the physical 
properties of the system.

One consequence of these considerations is that the theory of uniformising 
variables introduced by the author can no longer apply. This is because, 
corresponding to any transition (mn) -> (mV), there would be a term elUw) in 
the Fourier expansions, and we should require there to be a unique state, (m"n"), 
say, such that the same term et(aW) corresponds to the transition (mV) -> (m/rn"), 
and e2l(aW) corresponds to (mn) -> (m"n"). If the m’s and n9s are quantum num
bers, and we take the case of one quantum number per electron for definiteness, 
we should have to have

m" — m' =  m! — m, n" — n' =  n' — n. *

Since, however, the state (mV) may equally well be called the state (n'm'), we 
may equally well take

m" — n' — n' — m, n" — m' =  m' — n,

which would give a different state (m"n"). There is thus no unique state (m"n") 
that the theory of uniformising variables demands.

If we neglect the interaction between the two electrons, then we can obtain 
the eigenfunctions for the whole atom simply by multiplying the eigenfunctions 
for one electron when it exists alone in the atom by the eigenfunctions for the 
other electron alone, and taking the same time variable for each.* Thus if 
4>n (x, y, z, t) is the eigenfunction for a single electron in the orbit n, then the 
eigenfunction for the whole atom in the state (mn) is

. 4/-  (*1, Vv Zl> t) (*2. 2> «2> t) =  'I'm (1) (2),
say, where xv yv z± and x2,y2,z2 are the co-ordinates of the two electrons, and 

(r) means (x» Vn z» 0* The eigenfunction (2) (1), however, also
corresponds to the same state of the atom if we count the (mn) and (nm) states 
as identical. But two independent eigenfunctions must give rise to two rows 
and columns in the matrices. If we are to have only one row and column 
in the matrices corresponding to both (mn) and (nm), we must find a set of 
eigenfunctions of the form

tymn ~  amn̂ m (1) (2) “b (2) (1)?
where the amn’s and 6mn’s are constants, which set must contain only one tymn 
corresponding to both (?nn) and (nm), and must be sufficient to enable one to

* The same time variable t must be taken in each owing to the fact that we write the 
Hamiltonian equation for the whole system : H (l) -f- H(2) — W =  0, where H (l) and H(2) 
are the Hamiltonians for the two electrons separately, so that there is a common time t 
conjugate to minus the total energy W.
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Theory o f Quantum Mechanics. 669

obtain the matrix representing any symmetrical function A of the two electrons. 
This means the must be chosen such that A times any chosen can be 
expanded in terms of the chosen <]/mn’s in the form

mm (13)

where the AmV<mn’s are constants or functions of the time only.
There are two ways of choosing the set of ^mn’s to satisfy the conditions. We 

may either take amn =  bmn, which makes each ^mn a symmetrical function of 
the two electrons, so that the left-hand side of (13) is symmetrical and only 
symmetrical eigenfunctions will be required for its expansion, or we may take 
amn — — bmn, which makes antisymmetrical, so that the left-hand side 
of (13) is antisymmetrical and only antisymmetrical eigenfunctions will be 
required for its expansion. Thus the symmetrical eigenfunctions alone or the 
antisymmetrical eigenfunctions alone give a complete solution of the problem. 
The theory at present is incapable of deciding which solution is the correct one. 
We are able to get complete solutions of the problem which make use of less 
than the total number of possible eigenfunctions at the expense of being able to 
represent only symmetrical functions of the two electrons by matrices.

These results may evidently be extended to any number of electrons. For 
r non-interacting electrons with co-ordinates xv yv zx ... , xr, yr, zry the 
symmetrical eigenfunctions are

' k  (<*i) K  (*2) — («r). (u )

where oq, a2 ... ar are any permutation of the integers 1, 2 ... r, while the 
antisymmetrical ones may be written in the determinantal form

M l ) . M 2 )  •... M r )

'M i) . M 2 )  •- M r )

M D . M 2 )  ••• 'K  (r)

If there is interaction between the electrons, there will still be symmetrical and 
antisymmetrical eigenfunctions, although they can no longer be put in these 
simple forms. In any case the symmetrical ones alone or the antisymmetrical 
ones alone give a complete solution of the problem.

An antisymmetrical eigenfunction vanishes identically when two of the 
electrons are in the same orbit. This means that in the solution of the problem 
with antisymmetrical eigenfunctions there can be no stationary states with
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670 P. A. M. Dirac.

two or more electrons in the same orbit, which is just Pauli’s exclusion principle.* 
The solution with symmetrical eigenfunctions, on the other hand, allows any 
number of electrons to be in the same orbit, so that this solution cannot be the 
correct one for the problem of electrons in an atom.|

§ 4. Theory of the Ideal Gas.

The results of the preceding section apply to any system containing several 
similar particles, in particular to an assembly of gas molecules. There will 
be two solutions of the problem, in one of which the eigenfunctions are sym
metrical functions of the co-ordinates of all the molecules, and in the other 
antisymmetrical.

The wave equation for a single molecule of rest-mass m moving in free space is 

{p f  +  Pv1 +  p f  — W2/c2 +  m2c2} — 0

f  02 i 02 i §1 _  I  02 _  , _  0
X d x ' ^ d y ^ d z *  c * d t 2 h *  J *  5

and its solution is of the form

^aiaia, =  exp. i (oqz +  +  a 3z — E t)/h, (16)

where ax, a2, a3 and E are constants satisfying

a-,2 +  a22 +  a32 — E2/c2 +  m2c2 =  0.

The eigenfunction (16) represents an atom having the momentum components 
a3, a2, a3 and the energy E.

We must now obtain some restriction on the possible eigenfunctions due to 
the presence of boundary walls. I t is usually assumed that the eigenfunction, 
or wave function associated with a molecule, vanishes at the boundary, but we 
should expect to be able to deduce this, if it is true, from the general theory. 
We assume, as a natural generalisation of the methods of the preceding section, 
that there must be only just sufficient eigenfunctions for one to be able to 
represent by a matrix any function of the co-ordinates that has a physical 
meaning. Suppose for definiteness that each molecule is confined between two 
boundaries at x =  0 and x =  2tu. Then only those functions of x that are defined 
only for 0 <  x <  2tz have a physical meaning and must be capable of being 
represented by matrices. (This will require fewer eigenfunctions than if every

* Pauli, ‘ Zeits. f. Phys.,’ vol. 31, p. 765 (1925).
t  Prof. Bom has informed me that Heisenberg has independently obtained results 

equivalent to these. (Added in proof)—see Heisenberg, 6 Zeit. fur Phys.,’ vol. 38, p. 411 
(1926).
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Theory o f Quantum Mechanics. 671

function of x had to be capable of being represented by a matrix.) These 
functions/^) can always be expanded as Fourier series of the form

/(*) =  ^ naneinx, (17)
where the on s are constants and the nis integers. Xf we choose from the eigen
functions (16) those for which y.\ /h is an integer, then f(x) times any chosen 
eigenfunction can be expanded as a series in the chosen eigenfunctions whose 
coefficients are functions of t only, and h e n c e c a n  be represented by a matrix. 
Thus these chosen eigenfunctions are sufficient, and are easily seen to be only 
just sufficient, for the matrix representation of any function of x of the form 
(17). Instead of choosing those eigenfunctions with integral values for aJh, 
we could equally well take those with x-J equal to half an odd integer, or more 
generally with v.x\h =  n +  s, where n is an integer and s is any real number. 
The theory is incapable of deciding which are the correct ones. For statistical 
problems, though, they all lead to the same results.

When y and z are also bounded by 0 <  y< 27r, 0 <  z <  we find for the 
number of waves associated with molecules whose energies lie between E and 
E +  dE the value

| ^ ( E 2-  mV)*EdE.

This value is in agreement with the ordinary assumption that the wave function 
vanishes at the boundary. It reduces, when one neglects relativity mechanics, 
to the familiar expression

|^(2m)5E1*dE1, (18)

where Ex == E — me2 is the kinetic energy. For an arbitrary volume of gas V 
the expression must be multiplied by V/(27u)3.

To pass to the eigenfunctions for the assembly of molecules, between which 
there is assumed to be no interaction, we multiply the eigenfunctions for the 
separate molecules, and then take either the symmetrical eigenfimetions, of 
the form (14), or the antisymmetrical ones, of the form (15). We must now 
make the new assumption that all stationary states of the assembly (each repre
sented by one eigenfunction) have the same a priori probability. If now we 
adopt the solution of the problem that involves symmetrical eigenfunctions, we 
should find that all values for the number of molecules associated jwith any 
wave have the same a priori probability, which gives just the Einstein-Bose 
statistical mechanics.* On the other hand, we should obtain a different

* Bose, ‘ Zeits. f. Phys.,’ vol. 26, p. 178 (1924); Einstein, ‘ Sitzungsb. d. Preuss. A c.,’ 
p. 261 (1924) and p. 3 (1925).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 M

ar
ch

 2
02

2 



672 P. A. M. Dirac.

statistical mechanics if we adopted the solution with antisymmetrical eigen
functions, as we should then have either 0 or 1 molecule associated with each 
wave. The solution with symmetrical eigenfunctions must be the correct one 
when applied to light quanta, since it is known that the Einstein-Bose statistical 
mechanics leads to Planck’s law of black-body radiation. The solution with 
antisymmetrical eigenfunctions, though, is probably the correct one for gas 
molecules, since it is known to be the correct one for electrons in an atom, and 
one would expect molecules to resemble electrons more closely than light- 
quanta.

We shall now work out, according to well-known principles, the equation of 
state of the gas on the assumption that the solution with antisymmetrical eigen
functions is the correct one, so that not more than one molecule can be associated 
with each wave. Divide the waves into a number of sets such that the waves 
in each set are associated with molecules of about the same energy. Let As 
be the number of waves in the sth set, and let Es be the kinetic energy of a 
molecule associated with one of them. Then the probability of a distribution 
(or the number of antisymmetrical eigenfunctions corresponding to distribu
tions) in which Ns molecules are associated with waves in the 5th set is

W =  IL A,!

giving for the entropy
NS!(AS- N S) ! ’

s  =  k log W =  kZs {A, (log As -  1) -  N, (log Ns -  1)
- ( A , - N . )  [log (As — Ns) — 1]}.

This is to be a maximum, so that

0 =  SS =  tcLa { -  log Ns - t  log (As -  N,)} 8NS 

=  log (As/Ns — 1). SNs,

for all variations §NS that leave the total number of molecules N =  S3Ns and 
the total energy E =  2 SESNS unaltered, so that

We thus obtain
2 sSNs =  0, 2 sEsSNs =  0. 

log (As/Ns — 1) =  a +  (iEg,

where a and [3 are constants, which gives

N =5 e«+SK, +  ■ (19)
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Theory o f Quantum Mechanics. 673

Bv making a variation in the total energy E and putting 8E/8S =  T, the 
temperature, we readily find that [3 =  1/AT, so that (19) becomes

ga+E,/fcT _|_  ̂*

This formula gives the distribution in energy of the molecules. On the Einstein- 
Bose theory the corresponding formula is

N ==___ ± 2 ___* go. + E*/A;T   ^ ‘

If the sth set of waves consists of those associated with molecules whose 
energies lie between Es and Es +  ^Es, we have from (18) [where Es now means 
the Ex of equation (18)],

As -  2ttV (2m)’ E / <ZEs/(2ttA)3, 
where V is the volume of the gas. This gives

n  =  vN - 2*V(2m)* f00 E„ME,
* {2 izhf  J0 ea+EtlkT +  1

and
E _  v E N - 27rV(2m)} f  E*trfE*

* s (2tuA)3 Jo ea+E,/kT +  1 *
By eliminating a from these two equations and using the formula PV — -£E, 
where P is the pressure, which holds for any statistical mechanics, the equation 
of state may be obtained.

The saturation phenomenon of the Einstein-Bose theory does not occur in 
the present theory. The specific heat can easily be shown to tend steadily to 
zero as T -> 0, instead of first increasing until the saturation point is reached 
and then decreasing, as in the Einstein-Bose theory.

§ 5. Theory of Arbitrary Perturbations.
In this section we shall consider the problem of an atomic system subjected to 

a perturbation from outside (e.g., an incident electromagnetic field) which can 
vary with the time in an arbitrary manner. Let the wave equation for the 
undisturbed system be

(H — W)i|> =  0, (20)
where II is a function of the p’s and f  s only. Its general solution is of the 
form

+ =  (21)
where the cn’s are constants. We shall suppose the to be chosen so that 
one is associated with each stationary state of the atom, and to be multiplied
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674 P. A. M. Dirac.

by the proper constants to make the matrices that represent real quantities 
Hermitic.

Now suppose a perturbation to be applied, beginning at the time t 0. The 
wave equation for the disturbed system will be of the form

(H — W +  A) =  0, (22)

where A is a function of the p’s, q’s and t and is real. I t  will be shown that we 
can obtain a solution of this equation of the form

+ =  (23)
where the an’s are functions of t only, which may have the arbitrary values cn 
at the time t =  0. We shall consider the general solution (21) of equation (20) 
to represent an assembly of the undisturbed atoms in which | cn |2 is the number 
of atoms in the nth. state, and shall assume that (23) represents in the same 
way an assembly of the disturbed atoms, | an (£)j2 being the number in the nth 
state at any time t. We take | an |2 instead of any other function of an because, 
as will be shown later, this makes the total number of atoms remain constant. 

The condition that ^ defined by equation (23) shall satisfy equation (22) is

0 =  Sn( H ~ W  +  A)<vj,n 

=  S a  (H -  W +  A) ^  -  iKLndn^  (24)
since H and A commute with an,j  while Wan — anW =  ihdn identically. 
Suppose A to be expanded in the form

where the coefficients Amn are functions of t only, and satisfy Am?<* =  Anmt 
where the * denotes the conjugate imaginary. Equation (24) now becomes, 
since (H — W) — 0?

Taking out the coefficient of ^m, we find

ih(im =  S nanAmn, (25)
which is a simple differential equation showing how the am’s vary with the time. 

Taking conjugate imaginaries, we find

— iham* =  2 a * Amn* =  S ttaw*Anrn.
Hence, if Nm — amam* is the number of atoms in the mth state, we have

=  ih (dmam* +  dm*am)

^n AnrnP’m)*
t  The statement a commutes with b means ah — ba identically.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 M

ar
ch

 2
02

2 



Theory o f Quantum Mechanics. 675

This gives
e =  2 nm (am*Amnan — an*Anma J  =  0,

as required.
If the perturbation consists of incident electromagnetic radiation moving in 

the direction of the cc-axis and plane polarised with its electric vector in the 
direction of the y-axis, the perturbing term A in the Hamiltonian is, with 
neglect of relativity mechanics, tcjc . 7),f where 7] is the total polarisation in the 
direction of the y-axis and 0, k, 0, 0  are the components of the potential of 
the incident radiation. We can expand Y}̂ n and in the form

*]'!'* =  SmV]m„e<<W”_W*)(/A 4>m,
•'I'k =  Sm7]mne;<w'"-w”)t/A 'jv,

where the 7)mn’s and rimn’s are constants, and 7)mn =  — W . 7)mn. Our
previous Amn is now k/c . r)mnei(Wm_w*)(/A, and equation (25) becomes

ihcd m =  S (26)

We can integrate this equation to the first order in k by replacing the an’s 
on the right-hand side by their values c„ at the time 0. This gives

am =  cm +  1 like . S„cflr)mn f * (*) (W- W*) ,,h (27)
Jo

To obtain a second approximation, we write for the an’s on the right-hand side 
of (26) their values given by (27). We thus find for the value of am at the 
time T,

« .  =  <W + 1 /ihe. f «(1) e1*” - ” -11*

- 1  /*V  . f  « (() *  f .  W e * '" '-" ''*  *  (28)
Jo

+  Cm  ,

say, where cm'and cm" denote the first- and second-order terms respectively.
This gives for the number of atoms in the state at the time T

Nm =  amar* =  cmcm* +  cm'cm* +  cmc„/* +  cm cm * +  c„ * +  cmcm .

If we wish to obtain effects that are independent of the initial phases of the 
atoms, we must substitute cmexp. iym for cm and average over all values of ym

t  We have neglected a term involving k2. This approximation is legitimate, even though 
we later evaluate the number of transitions that occur in a time T to the order k-, provided 
T ie large compared with the periods of the atom.
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676 P. A. M. Dirac.

from 0 to 2tc. This makes the first-order terms in N,„, namely, c and 
cmcm'*, vanish, while the second-order terms give

l/h2c2 . S„cnc„*7]mnv)ron* i k( t)dt . \ k (t) e-i(w»-w-)*/* fa 
Jo Jo

— l/h2c~. ^ncmcm*:qnmrimn j * (t) ci(w’""'->l/* dt I k (s) e<(w"~w
Jo Jo

— l//i2c2 . S„C„,Cm*7)nm*7)mn* f /C (0 fa j ^ et(W«-W„)»M ^

which reduces to

1/A2c2. 2 n{ | c„ | 2 An *  (t) e«yr-yr.W  fa (29)

This gives ANW, the increase in the number of atoms in the state m from the 
time t — 0 to the time t — T. The term in the summation that has the suffix 
n may be regarded as due to transitions between the state m and the state n.

If we resolve the radiation from the time t =  0 to the time t =  T into its 
harmonic components, we find for the intensity of frequency v per unit frequency 
range the value

T =  2tuv2c" 1
r t

« (t)
J A

,27rivt

Hence the term in expression (29) for ANm due to transitions between state m 
and state n may be written

1/2tc7j2v2c • { | e„ | 2 — | cm | 2} I 7)nm | 2 1„,
where

• 2tcv =  (Wm — W„)/A
or

2tc/A2c . { | | 2 — I | 2} | •/)„,„ | 2 I,..

If one averages over all directions and states of polarisation of the incident 
radiation, this becomes

2nj3h2c . {| cn| 2 — | cmI 2} | P*m | 2 I„,
where

I Pnm I 2 =  I I 2 +  I ̂ ]nm I 2 +  I Znm I 2>
y) and £ being the three components of total polarisation. Thus one can say 

that the radiation has caused 2tu/3h2c . | cn | 2 | Pwm |2 I t, transitions from state n 
to state m, and 2tz/3A2c . | cm | 2 | Pww | 21̂, transitions from state m to state n, 
the probability coefficient for either process being

Bn- W =  B,„_*n =  2tt/3h2c . | Pnm | 2,
in agreement with the ordinary Einstein theory.
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The present theory thus accounts for the absorption and stimulated emission 
of radiation, and shows that the elements of the matrices representing the 
total polarisation determine the transition probabilities. One cannot take 
spontaneous emission into account without a more elaborate theory involving 
the positions of the various atoms and the interference of their individual 
emissions, as the effects will depend upon whether the atoms are distributed at 
random, or arranged in a crystal lattice, or all confined in a volume small com
pared with a wave-length. The last alternative mentioned, which is of no 
practical interest, appears to be the simplest theoretically.

It should be observed that we get the simple Einstein results only because 
we have averaged over all initial phases of the atoms. The following argument 
shows, however, that the initial phases are of real physical importance, and 
that in consequence the Einstein coefficients are inadequate to describe the 
phenomena except in special cases. If initially all the atoms are in the normal 
state, then it is easily seen that the expression (29) for holds without the 
averaging process, so that in this case the Einstein coefficients are adequate. 
If we now consider the case when some of the atoms are initially in an excited 
state, we may suppose that they were brought into this state by radiation 
incident on the atoms before the time t =  0. The effect of the subsequent 
incident radiation must then depend on its phase relationships with the earlier 
incident radiation, since a correct way of treating the problem would be to 
resolve both incident radiations into a single Fourier integral. If we do not 
wish the earlier radiation to appear explicitly in the calculation, we must 
suppose that it impresses certain phases on the atoms it excites, and that these 
phases are important for determining the effect of the subsequent radiation. 
It would thus not be permissible to average over these phases, but one would 
have to work directly from equation (28).
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