
IDS/II

Reference Manual

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Database Products: IDS-II

REFERENCE
47 A2 11UD 00

DPS7000/XTA
NOVASCALE 7000

IDS/II
Reference Manual

Database Products: IDS-II

February 1984

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 11UD 00

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1984

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 11UD Rev00 iii

Preface

This manual is a companion volume to the IDS/II User Guide and the IDS/II Data Base
Administrator Guide; it brings together in a single book all the reference information
required for effective use of these other manuals and for a full understanding of the
subject.

IDS/II ("Integrated Data Store II") is a set of techniques, utility programs, and special-
purpose languages which allow the user to define a data base in accordance with his own
requirements, implement it to whatever level of sophistication he chooses, and efficiently
access and update it.

The major tools used to this end are the DDL language, for describing the data-base
"schema"; the DMCL language, for controlling the storage media; the DML language, for
interfacing with standard programming languages (e.g., COBOL); and the
software/firmware functions employed by these languages. Each of these tools (and
related facilities) is described in detail in the following pages.

The manuals listed below are also recommended:

• IDS/II Data Base Administrator Guide (order number 47 A2 13UD) for further
information on designing and managing data bases and their associated schemas,

• IDS/II User Guide (order number 47 A2 12UD) for practical guidance in applying IDS/II
to specific requirements,

• IOF Terminal User's Guide (3 volumes: 47 A2 01 UJ/02 UJ/03 UJ) for information on
the GCOS Command Language (GCL).

• JCL User Guide (order number 47 A2 12UJ) for further information on the Job Control
Language,

• COBOL User Guide (order number 47 A2 02UL) for information on COBOL as used
with IDS/II,

• LINKER (order number 47 A2 10UP) for information on constructing and
interconnecting user programs.

• General Access Control (Order number 47 A2 11UF) for information on this particular
subject (also called GAC).

• TDS Programmers Reference Manual (order number 47 A2 03UT) for information on
Transaction Driven Subsystems.

Reference Manual IDS/II

4 47 A2 11UD Rev00

47 A2 11UD Rev00 1-1

1. Schema Data Description Language

1.1 SCHEMA VIEW

The Schema Data Description Language (DDL) describes the logical structure of the
information that the programmer views when writing programs that access the data base.
There are two main concepts in the schema view:

• Records and their associated fields which represent external items (for example,
orders, invoices, customers etc.).

• Sets which represent relationships between these items (for example, a specific order
may belong to a specific customer).

An additional concept, the area, can be used to partition records on a logical basis (one
area per geographical branch of the company, for example) but may also be used in a
different way when:

• It is not practical to have the whole data base on-line.

• Some areas are security sensitive (pay and personnel records, for example).

1.1.1 Program/Data Independence

If the term data refers to the view of the data base data provided by the schema, then
program logic depends on the structure described. If the structure of the data changes,
then program logic is affected.

If data refers to the apparently unstructured bit strings on disk, program/data
independence exists in two areas:

• There are several options which will map the schema structure on to the bit string. If,
for example, in a future release, for performance reasons, a set is implemented using
an index instead of a chain of pointers, the logic of NEXT/PRIOR/OWNER is kept and
thus the logic of the individual program is kept.

• Use of the same schema on different occurrences of the data base allows use of the
same programs. These occurrences may differ in size (test and live versions of the
data base).

Reference Manual IDS/II

1-2 47 A2 11UD Rev00

1.2 SCHEMA DDL OVERVIEW

A schema written in DDL consists of four types of entry that:

• Identify the schema (schema entry).

• Define areas (area entry).

• Define records (record entry).

• Define sets (set entry).

For each area, record-type, and set-type in the schema, a separate entry is required.
There must be only one schema entry in a schema. The following rules apply to the
sequence of the various types of entry in a schema:

• The schema entry must be the first entry.

• An area entry must precede the record entry for all records in that area.

• A record entry must precede a set entry that includes that record within it.

• A record entry comprises one record subentry followed by zero, one or more field
subentries.

• A set entry comprises one set subentry followed by at least one member subentry.

An entry/subentry consists of one or more clauses that describe its attributes. Clauses
may be written in any sequence provided that the first clause names the entry/subentry.
All entries and subentries are terminated by periods. Each entry/subentry is described, in
this manual, as follows:

• A description of the function of the entry/subentry.

• An entry/subentry skeleton representing the organization of the entry/subentry into
clauses.

• The general formats of the entry/subentry; that is, the general format of each of the
clauses that can be specified in the entry/subentry.

• A separate description of each clause.

Each clause is described, in this manual, as follows:

• A description of its function.

• General format.

• The syntax rules that apply.

• The general rules that apply.

Schema Data Description Language

47 A2 11UD Rev00 1-3

A general format is the arrangement of elements that make up a clause.
The subdivisions of a clause are termed "phrases" and must be written in the order in
which they are shown. A syntax rule amplifies or restricts the usage of the element within
a general format. A general rule amplifies or restricts functions attributed to a general
format or to its constituent elements.

1.2.1 DDL Source Format

Schema DDL is a free-format language. There are no special fields for sequence
number, comment flag or program identification. DDL is not line oriented but the end of
line is a separator when it does not occur within a delimited string (see later this section).

Input enclosures and library members containing DDL must be of type DATA or
DATASSF otherwise they are not accepted by the DDL translator.

Reference Manual IDS/II

1-4 47 A2 11UD Rev00

1.3 NOTATION

The notation used in all formats and the rules that apply to all formats are as follows:

• The elements that make up a clause consist of upper case words, lower case words,
special symbols, and special characters.

• All underlined upper case words are required when the format is used (keywords).
Example: SCHEMA NAME IS schema-name.

• Upper-case not underlined are optional (optional words) and need not be used. In the
preceding example, NAME and IS are optional.

• Lower-case words are generic terms that must be replaced by appropriate names or
values. In the preceding example schema-name must be replaced by the user-defined
name for the schema.

• The meaning of enclosing a portion of a general format in special symbols is as
follows:

Optional. No selection needed.

[a] at least no occurrences
[b]
[c] at most one occurrence

Required. Must select one.

{a} at least one occurrence
{b}
{c} at most one occurrence

Required. Must select at least one.

||a|| at least one occurrence
||b||
||c|| at most one occurrence of each

An ellipsis (that is, ...) indicates that repetition is allowed. The portion of the format that
can be repeated is determined by the bracket ([) or brace () which logically matches the
bracket (]) or brace () to the immediate left of the ellipsis.

Schema Data Description Language

47 A2 11UD Rev00 1-5

Examples:

[POINTERS]

Format notat ion

[area-name] .. .

{record-name} .. .

Coding possibi l i t ies

blank
POINTERS

UPDATE
RETRIEVAL

ACCEPT
C O N N E C T
DISCONNECT
ACCEPT CONNECT
ACCEPT DISCONNECT
CONNECT DISCONNECT
ACCEPT CONNECT DISCONNECT

blank
AR-4
AR-2 AR-6 AR-3

REC-2
REC-4 REC-8

or

or

or
or
or
or
or
or

or
or

or

A C C E P T
C O N N E C T
DISCONNECT

U P D A T E
RETRIEVAL

Reference Manual IDS/II

1-6 47 A2 11UD Rev00

1.4 CHARACTER SET

The character set for the DDL consists of 52 characters that include letters of the
alphabet, digits, and symbols. The specification of this character set defines those
characters that may be used in writing a schema:

Character Name
0, 1, ..., 9 digits
A, B, ..., Z letters

space or blank
+ plus sign
- minus sign
, comma
; semicolon
. period or decimal point
" quotation mark
(left parenthesis
) right parenthesis
' apostrophe
$ dollar sign
/ slash
* asterisk
= equal sign
> greater than
< less than

Additional characters, chosen from the complete DPS 7 character set, may be used in
delimited strings (non-numeric literals, comments) or in the escape form of names.

1.4.1 Punctuation

There are two types of punctuation characters: delimiters and separators.
The end of a line is treated as a separator.

1.4.2 Delimiters

A delimiter is used to indicate the beginning and the end of a delimited string. A
delimited string is a string of any allowable characters in the DPS 7 character set,
preceded and followed by the delimiter. If a delimiter is to be included in a string then it
must be written twice consecutively. The delimiters are:

• Quotation mark, which is used to delimit alphanumeric and hexadecimal literals and
comments,

• Apostrophe, which is used to delimit the alternate form of names.

Schema Data Description Language

47 A2 11UD Rev00 1-7

1.4.3 Separators

A separator is used to separate words and literals and to indicate certain language
constructs. A separator is not significant if it occurs within a delimited string. It becomes
part of the string if it is a character, it is ignored if it is an end of a line. The separators
are:

• Space. One or more spaces acts as a separator. The space or spaces may appear in
addition to (following or preceding) any other separator

• Comma. Comma is an obligatory separator between subscripts in the format of data
base identifiers. It is optional elsewhere.

• Semi-colon. A semi-colon may be used as, and is treated as, a space.

• Full-stop. A full-stop followed by a space or the end of a line is required to end an
entry or subentry.

• Pairs of left and right hand brackets. These are required to delimit a subscript of a
data base identifier. Balanced left and right hand brackets can also be used in
formulating conditions.

• End of line. End of line has the same rules and effect as a space.

Reference Manual IDS/II

1-8 47 A2 11UD Rev00

1.5 WORDS

A word is a sequence of not more than 30 characters. Each character is selected from
the set A to Z, 0 to 9, or -, except that the -(hyphen or minus) may not appear as the first
or last character of a word. A word must begin with a letter.

Examples:

Valid Invalid

A, A-B -A
Z9999, A$B, A+B

1.5.1 Reserved Words

Reserved words are a list of words that may be used, but must not appear as user-
defined names. They include keywords and the optional words.

A keyword is a word that is required whenever the format in which the word appears is
used. Within each format, such words are shown as uppercase and underlined.

An optional word is a word that may be included or not as the user prefers. Within each
format, such words are shown as uppercase not underlined. Misspelling of an optional
word or replacing it by another word is not allowed.

Table 1-1 gives a list of reserved words, with their abbreviations shown in parentheses.

Schema Data Description Language

47 A2 11UD Rev00 1-9

Table 1-1. DDL Reserved Words

ACCESS-CONTROL EXCLUSIVE (EXCL) ORGANIZATION
ACTUAL FIND OWNER
AFTER FIRST PACKED
ALL FIXED PACKED-2
ALLOWED FLOAT PERMANENT
ALTER FOR PICTURE (PIC)
ALWAYS GE POSTPONED
AND GET PRIOR
ANY GT PROCEDURE (PROC)
APPLICATION IDENTIFIED PROCESSABLE
ARE IN PROTECTED (PROT)
AREA INDEX RANGE
AREA-ID INDEXED REAL
ASCENDING (ASC) INSERT RECORD
AUTOMATIC INSERTION RECORD-TYPE
BEFORE IS REMOVE
BINARY (BIN) KEY RESULT
BIT KEYS RETENTION
BY LAST RETRIEVAL (RETR)
CALC LE SCHEMA
CALC-KEY LINKED SEARCH
CALL LOCATION (LOC) SELECTION
CHARACTER (CHAR) LOCK SEQUENCE
CHECK LOCKS SEQUENTIAL
CLOSE LT SET
COMMENT MANDATORY (MAND) SIGNED
COMPLEX MANUAL SORTED
CONSTRAINT MEMBER SOURCE
COPY MEMBERS STORE
CURRENT MEMBERSHIP STRUCTURAL
DATA-BASE-KEY (DB-KEY) MODE SYSTEM
DECIMAL (DEC) MODIFY SYSTEM-DEFAULT
DECODING NAME TEMPORARY (TEMP)
DEFINED NE THEN
DELETE NEXT THIS
DESCENDING (DESC) NON EXCLUSIVE THRU (THROUGH)
DIRECT NONNULL TIMES
DISPLAY NOT TO
DUPLICATES (DUP) NULL TYPE
DURING OCCURS UNPACKED
DYNAMIC OF UNSIGNED
ENCODING ON UPDATE
END ONLY USING
END-SCHEMA OPEN VALUE
EQ OPTIONAL (OPT) VIA
EQUAL OR VIRTUAL
ERROR ORDER WHERE

WITHIN

Reference Manual IDS/II

1-10 47 A2 11UD Rev00

1.6 NAMES

A name is a word beginning with a letter. Types of names are:

data-base-data-name
record-name
area-name
set-name
schema-name
data-base-parameter

Names may be further grouped into:

entry-names = schema-names + area-names + record-names + set-names

data-base-names = entry-names + data-base-data-names

The following example illustrates a complete schema for a two-record data base. All the
user-defined names are underlined (this is not the "format" notation as defined above
and used throughout the body of this manual).
__
| |
| SCHEMA NAME IS SCHEMA-NAME. |
| AREA NAME IS AREA-NAME-A. |
| AREA NAME IS AREA-NAME-B. |
| RECORD NAME IS RECORD-NAME-A |
| |
| LOCATION MODE DIRECT DATA-BASE-PARAMETER-A |
| |
| WITHIN AREA-NAME-A. |
| |
| 02 DATA-BASE-DATA-NAME-A TYPE CHARACTER 1. |
| |
| RECORD NAME IS RECORD-NAME-B |
| LOCATION MODE VIA SET-NAME-A |
| |
| WITHIN AREA-NAME-A AREA-NAME-B |
| |
| AREA-ID IS DATA-BASE-PARAMETER-B. |
| |
| 02 DATA-BASE-DATA-NAME-B TYPE IS SIGNED BINARY 15. |
| |
| |
| SET NAME IS SET-NAME-A |
| OWNER IS RECORD-NAME-A ORDER PERMANENT INSERTION LAST. |
| |
| |
| MEMBER IS RECORD-NAME-B |
| |
| INSERTION AUTOMATIC RETENTION MANDATORY |
| |
| SET SELECTION IS THRU SET-NAME-A |
| |
| OWNER IDENTIFIED BY DATA-BASE-KEY |
| |
| EQUAL TO DATA-BASE-PARAMETER-C. |
| END-SCHEMA. |
|__|

Schema Data Description Language

47 A2 11UD Rev00 1-11

1.6.1 Alternate Form of Names

A name can have an alternate form, composed of a string of any allowable characters in
the DPS 7 character set, delimited by apostrophes. The string length must not exceed 30
characters. The string may include the apostrophe symbol itself if the symbol is written
twice consecutively for each of its occurrences.

Examples:

'WORK.SCHEMA', 'O''CLOCK'

When a user-defined name is identical to a reserved word, it must be written in the
alternate form.

Example:

SCHEMA NAME IS 'SCHEMA'.

1.6.2 Uniqueness of Names

The following rules apply:

1. There must be no duplicates among entry-names. For example, two areas may not
have the same name, nor may an area have the same name as the schema or a
record or a set.

2. An entry-name must not be the same as a data-base-data-name.

3. There must be no duplicate data-base-data-names within a record entry.

4. A data item or aggregate within a record entry may have the same name as a data
item or aggregate within a different record entry.

5. A data-base-parameter may not be the same as a data-base-name.

Reference Manual IDS/II

1-12 47 A2 11UD Rev00

1.6.3 Maximum Number of Names

This is as follows:

Item Maximum Number
Area-names 2048
Record-names 2048
Set-names 2048
Data-base-data-names 2048
within a record-type
Data-base-parameters 2048

Schema Data Description Language

47 A2 11UD Rev00 1-13

1.7 LITERALS

A literal is a string of characters representing a value. In IDS/II there are three types of
literals:

• Alphanumeric literals

• Numeric literals

• Hexadecimal literals

1.7.1 Alphanumeric Literals

An alphanumeric literal represents a character string. It has a maximum of 256
characters chosen from the DPS 7 character set. It is delimited by quotation marks. The
value is the string of character marks. The length of the string is the number of
characters within the string. If a quotation mark is to appear in the string it must be
written twice consecutively for each occurrence. It is counted once for the purposes of
determining the length of the string.

Examples:

"JANUARY IST" value JANUARY IST length 11

"CODE ""4""" value CODE "4" length 8

1.7.2 Numeric Literals

A numeric literal represents a number. Only one form of numeric literal is allowed, the
fixed point decimal literal. It must be:

• The digits 0 through 9
• Plus or minus sign
• The decimal point

It has a maximum of 30 digits. When the decimal point is present it must be followed by
at least one digit. The value represented is the conventional algebraic value.

Examples:

Valid 1 1.0 +322 +0.004 -5789.333 -.004
Invalid 122. +32.1A4

Reference Manual IDS/II

1-14 47 A2 11UD Rev00

1.7.3 Hexadecimal Literals

A hexadecimal literal is a string of up to 512 characters chosen from:

• 0 through 9
• A through F

It is delimited by quotation marks and the final quotation mark is followed by the
character X. The number of characters in the string must be even. The value represented
is the EBCDIC equivalent of each pair of characters in the string. The length of the string
is the number of characters divided by two. A hexadecimal string can be used to
represent characters for which an external symbol does not exist or is not available on an
input device.

Example:

"9481998388"X value: march length 5

Schema Data Description Language

47 A2 11UD Rev00 1-15

1.8 COMMENTS

Comments can be included in DDL to document the schema coding. They can be coded
wherever the space character can appear as a separator. A comment consists of the
following:

either

• the reserved word COMMENT
• 0 to n spaces
• the text of the comment delimited by quotation marks

or

• the text of the comment delimited by and

A quotation mark must be written twice consecutively if it is to be included in a comment

Examples:

COMMENT "***********************
 * INVENTORY SCHEMA *
 ***********************"

SCHEMA NAME IS INVENTORY.

02 QTY TYPE DEC 6. QUANTITY ORDERED

02 SEX TYPE CHAR 1. COMMENT "VALUE ""M"" IF MALE

 VALUE ""F"" IF FEMALE"

1.9 DATA-BASE-DATA-NAMES (OR FIELD-NAMES)

A data-base-data-name is a user-defined name for a data item or a data aggregate.

Reference Manual IDS/II

1-16 47 A2 11UD Rev00

1.10 DATA-BASE-IDENTIFIERS (OR FIELD-IDENTIFIERS)

A data-base-identifier is a reference to a data item (stand-alone or part of an aggregate)
declared in the schema. It consists of a data-base-data-name followed, as required, by
the syntactically correct combination of subscripts and qualifiers necessary to achieve
uniqueness of reference. In certain formats, the qualification is not necessary if the
ambiguity is removed by the context (specific syntax rules).

The format of a data-base-identifier is:

data-base-data-name [(integer-1 [,integer-2] ...)] [{OF} record-name]
 [[]] [{IN}]

1.10.1 Subscripting

Subscripts can be used only when reference is made to a data item within a vector or a
repeating group. The subscript must be an integer.

The lowest possible subscript value is 1. This value refers to the first occurrence of the
data-base-data-name referenced. The highest possible subscript value is 32767.

When more than one subscript is required they are written left to right in the order of
increasing data aggregate level numbers.

For example:

RECORD NAME IS R04

 ...
 02 R04-T1 OCCURS 3.
 03 R04-P1 TYPE IS CHAR 2.
 03 R04-P2 OCCURS 2 TYPE IS SIGNED PACKED DEC 3.
 ...
SET NAME IS S17
 ...
 INSERTION IS SORTED BY DEFINED KEYS ...
 MEMBER IS R04 ...
 KEY IS ASCENDING R04-P2 (1,2)

The number of subscripts is limited to 3, since this is the COBOL limitation.

Schema Data Description Language

47 A2 11UD Rev00 1-17

1.10.2 Qualification

Where the same data-base-data-name is declared in more than one record entry, its use
as a data-base-identifier may have to be qualified to achieve uniqueness. Syntax rules
specify when qualification is necessary.
A name can be qualified even though it does not need qualification.

Example:

C A L C

E N T R Y - S E T

A

B

C

RECORD NAME IS A

 ...
 02 MY-DB-ID TYPE IS CHAR 5.
RECORD NAME IS C
 ...
 02 MY-DB-ID TYPE IS CHAR 5.
SET ENTRY-SET OWNER A... MEMBER B...
 SET SELECTION FOR ENTRY-SET IS THRU ENTRY-SET
 OWNER IDENTIFIED BY CALC-KEY MY-DB-ID EQUAL TO
 MY-DB-ID IN C

NOTE: The CALC data-base-data-name item is usually located in the User Work Area
(UWA) assigned to record A, but in this example a UWA assigned to a data
item in another record is used as an alternate (homonym) source.

Reference Manual IDS/II

1-18 47 A2 11UD Rev00

1.11 DATA-BASE-PARAMETERS

A data-base-parameter is a user-defined name available at execution time to augment
data-base-data-names. The data-base-parameters are not held in records in the data
base but are used for record location (DIRECT), area selection (AREA-ID), or set
selection (EQUAL TO). They take on the characteristics of the usage specified. That is,
the parameter is a data-base-key when used with the DIRECT location clause, it is an
area name when used in an area selection clause (WITHIN), and it will be the same as
the control field when specified in the EQUAL TO phrase.

1.12 CONDITIONS

In general formats the word condition is used to signify an expression evaluated at run
time by IDS/II as either true or false.

• In its general form a condition consists of one or more alternatives separated by the
keyword OR. The form is:

 | |
 | alternative-1 [OR alternative-2]... |
 |_______________________________________|

The condition is true if any of the alternatives (and possibly more than one, the OR is
not exclusive) is true, otherwise it is false.

• An alternative consists of one or more simple conditions separated by the keyword
AND. The form is:

 | |
 | simple-condition-1 [AND simple-condition-2]... |
 |___|

The alternative is true if all the simple conditions are true, otherwise it is false.

• A simple condition has the form:

{relation-condition-1 }
{NOT (relation-condition-2) }
{NOT (condition-1) }

The simple condition is true if:

• Relation-condition-1 is true
• Relation-condition-2 is false
• NOT is omitted and condition-1 is true
• NOT is specified and condition-1 is false

otherwise the simple condition is false.

Schema Data Description Language

47 A2 11UD Rev00 1-19

A relation condition consists of a pair of operands which can be data-base-identifiers or
literals separated by a relational operator. A relation condition has the format:

 {LT}
 {< }
 { }
 {LE}
 {<=}
 { }
{data-base-identifier } {EQ} {data-base-identifier-2}
{ } {= } { }
{literal-1 } { } {literal-2 }
 {GE}
 {>=}
 { }
 {GT}
 {> }
 { }
 {NE}

The relation-condition is true if the relation holds between the operands, otherwise it is
false. The comparison of two data-base-identifiers is permitted in the cases illustrated by
Table 1.2 (YES at the intersection).

The comparison of a data-base-identifier and a literal is permitted in the cases illustrated
by Table 1.3. If the operands are numeric, there must be no loss of non-null digits (to the
left of the integral part and to the right of the fractional part) when the literal is converted
to the format of the data-base-identifier.

If the operands are string data items the comparison is performed according to the
EBCDIC collating sequence. If the operands are numeric data items, the comparison is
performed using the algebraic value of the items. The meaning of the operators is as
follows:

LT or < less than
LE or <= less than or equal to
EQ or = equal to
GE or >= greater than or equal to
GT or > greater than
NE >< not equal to

The operators < <= = >= > must always be preceded by and followed by a space. The
two characters that make up the operators >= and <= must be written on the same line
without a space.

1.12.1 Use of Brackets

For a condition without brackets, each alternative is evaluated and the truth value of the
alternative is used to determine the truth value of the complete condition.

For conditions with brackets, the expressions within brackets are evaluated first and the
truth value of the whole bracketed expression is used to determine the truth value of the
complete condition. Where brackets are nested, the expression in the innermost set of
brackets is evaluated first followed by the next innermost, etc.

If brackets are used, they must always balance.

Reference Manual IDS/II

1-20 47 A2 11UD Rev00

1.12.2 Examples of Conditions

DISCOUNT-RATE = 0.10

AGE >= 25

NOT(AGE < 25)

BIRTH-DATE LE DEATH-DATE

MONTH = "JANUARY" AND DAY <= 31 OR MONTH = "FEBRUARY" AND DAY <=
29

SEX = "M" AND MAIDEN-NAME = " "
OR SEX = "F" AND NOT (MAIDEN-NAME = " ")

RTYPE = "1" AND (SUBTYPE = "1" OR SUBTYPE = "2") OR
RTYPE = "2" AND ((SUBTYPE = "1" AND QTY < 1000) OR
 (SUBTYPE = "2" AND QTY >= 1000))

OR RTYPE = "3"

Table 1-2. Comparison of Two Data-Base-Identifiers

Identifier-1 TYPE / DECIMAL m DECIMAL m,+-p (p<>0) BINARY CHARACTER

Identifier-2 TYPE
DECIMAL m YES YES
DECIMAL m,+-p
(p<>0)

YES
(if same scale)

BINARY YES YES
CHARACTER YES

Table 1-3. Comparison of a Data-Base-Identifier and a Literal

Identifier TYPE / DECIMAL m,+-p BINARY CHARACTER

Literal TYPE
signed/unsigned
integral/fraction
decimal

YES YES

character string YES
hexadecimal string YES

Schema Data Description Language

47 A2 11UD Rev00 1-21

1.13 SCHEMA DDL SYNTAX

A schema is divided into the sections or types of entries:

Schema names the schema.

Area names each area in the data base.

Record names and defines each record type in the data base,
specifies data items and storage location method.

Set names and defines each relationship between records.

Each entry/subentry is terminated with a period followed by a space or an end of line.
The entire DDL source text is terminated by an END-SCHEMA statement. The complete
DDL for a schema may be summarized as:

 | |
 | Schema Entry |
 | |
 | {Area Entry}... |
 | |
 | {Record Entry}... |
 | |
 | [Set Entry]... |
 |______________________|

Each of the entries will be describe in detail later.

|__|
| |
| |
| COMMENT "***" |
| COMMENT "* SCHEMA DDL FOR TEST-GROUP *TG19* *" |
| COMMENT "***" |
| |
| COMMENT "********************************" |
| COMMENT "* SCHEMA *" |
| COMMENT "********************************" |
| |
| SCHEMA TG19-SH. |
| |
| COMMENT "********************************" |
| COMMENT ** AREAS *" |
| COMMENT "********************************" |
| |
| AREA TG19-A00. |
| AREA TG19-A01. |
| |
| COMMENT "********************************" |
| COMMENT "* RECORDS *" |
| COMMENT "********************************" |
| |
| |
|

Figure 1-1. Sample DDL Source Schema (1/2)

Reference Manual IDS/II

1-22 47 A2 11UD Rev00

__
| |
| |
| COMMENT "**************************" |
| COMMENT "* R01 (PART) *" |
| COMMENT "**************************" |
| RECORD R01 |
| LOCATION CALC USING R01-NUM DUP NOT |
| WITHIN ANY AREA AREA-ID ARID1. |
| 02 R01-IDENT TYPE CHAR 7. |
| 02 R01-NUMH TYPE CHAR 5. |
| 02 R01-NUM TYPE UNPACKED DEC 3. |
| 02 R01-TRAILER TYPE CHAR 4. |
| |
| COMMENT "**************************" |
| COMMENT "* R02 (COMPONENT) *" |
| COMMENT "**************************" |
| RECORD R02 |
| LOCATION VIA S01 |
| WITHIN AREA OF OWNER. |
| 02 R02-IDENT TYPE CHAR 7. |
| 02 R02-R01-UPH TYPE CHAR 4. |
| 02 R02-R01-UP TYPE UNPACKED DEC 3. |
| 02 R02-R01-DOWNH TYPE CHAR 6. |
| 02 R02-R01-DOWN TYPE UNPACKED DEC 3. |
| 02 R02-QTYH TYPE CHAR 5. |
| 02 R02-QTY TYPE UNPACKED DEC 3. |
| 02 R02-TRAILER TYPE CHAR 4. |
| |
| COMMENT "**********************************" |
| COMMENT "* SETS *" |
| COMMENT "**********************************" |
| |
| COMMENT "**************************" |
| COMMENT "* S01 (CALL-OUT) *" |
| COMMENT "**************************" |
| SET S01 |
| OWNER R01 |
| ORDER PERMANENT INSERTION SORTED DEFINED KEYS DUP NOT. |
| MEMBER R02 |
| INSERTION AUTO RETENTION MAND |
| KEY ASCENDING R02-R01-DOWN |
| SELECTION THRU S01 |
| OWNER IDENTIFIED BY CALC-KEY R01-NUM EQUAL TO R02-R01-UP. |
| |
| COMMENT "**************************" |
| COMMENT "* S02 (WHERE-USED) *" |
| COMMENT "**************************" |
| SET S02 |
| OWNER RO1 |
| ORDER PERMANENT INSERTION SORTED DEFINED KEYS DUP NOT. |
| MEMBER R02 |
| INSERTION AUTO RETENTION MAND |
| KEY ASCENDING R02-R01-UP |
| SELECTION THRU S02 |
| OWNER IDENTIFIED BY CALC-KEY R01-NUM EQUAL TO R02-R01-DOWN |
| AREA-ID EQUAL TO OTHER-ARID1. |
| |
| END-SCHEMA. |
| |
| |
|__|

Figure 1-1. Sample DDL Source Schema (2/2)

Schema Data Description Language

47 A2 11UD Rev00 1-23

1.13.1 SCHEMA Entry

Function

To name the schema. This name is entered into the dictionary of the schema file and is
used in all further references to the schema. This clause is required.

General Format

 | |
 | SCHEMA NAME IS schema-name. |
 |_____________________________|

Syntax Rules

1. Schema-name is a name of up to 30 characters in length.

2. This clause must appear first in the schema text.

3. Schema-name must be unique among the data-base-names of the schema.

General Rule

The schema named by schema-name consists of all the DDL entries that appear after
the SCHEMA clause and before the END-SCHEMA entry.

1.13.2 AREA Entry

Function

To name an area within the data base.

General Format

 | |
 | AREA NAME IS area-name. |
 |_________________________|

Syntax Rules

1. Area-name must be unique among data-base-names of the schema.

Reference Manual IDS/II

1-24 47 A2 11UD Rev00

1.13.3 RECORD Entry

Function

To name and give certain characteristics of records and their subordinate data items
within a data base.

General Format of Record Entry

 | |
 | record subentry |
 | |
 | [data subentry] ... |
 |______________________|

General Format of Record Subentry

RECORD NAME IS record-name

 {DIRECT data-base-parameter-1 }
 { }
LOCATION MODE IS {CALC USING {data-base-identifier-1} ... }
 { DUPLICATES ARE [NOT] ALLOWED }
 { }
 {VIA set-name-1 SET }
 { }
 { }
 {{ ANY AREA } AREA-ID IS data-base-parameter-2 }
WITHIN {{ {area-name-1} ...} }
 { }
 {AREA OF OWNER }
[CHECK IS condition-1] ...

General Format of Data Subentry

[level-number-1] data-base-data-name-1

[{ { {UNPACKED} } }]
[{ { [UNSIGNED] {[PACKED]} } }]
[{ { {PACKED-2} } }]
[{ { } DECIMAL integer-1 [integer-2] }]
[TYPE IS { {SIGNED {UNPACKED} } }]
[{ { {[PACKED]} } }]
[{ {15} }]
[{ {SIGNED] BINARY {31 } }]
[{ }]
[{ CHARACTER integer-3 }]

[OCCURS integer-4 TIMES]
[CHECK IS VALUE [NOT] {literal-1 [THRU literal-2] } ...] .

1.13.3.1 RECORD Clause

Function

To name a record-type in the schema; that is, to specify a name for all occurrences of
the record-type in the data base.

Schema Data Description Language

47 A2 11UD Rev00 1-25

General Format

 | |
 | RECORD NAME IS record-name |
 |_____________________________|

Syntax Rules

1. Record-name must be unique among the data-base-names given by a schema.

2. At least one record-name must be specified in the schema.

General Rules

None.

1.13.3.2 LOCATION Clause

Function

To control the assignment of data-base-keys to the record.

General Format

 {DIRECT data-base-parameter-1 }
 { }
 {CALC USING {data-base-identifier-1} ... }
LOCATION MODE IS { DUPLICATES ARE [NOT] ALLOWED }
 { }
 {VIA set-name-1 SET }

Syntax Rules

1. Data-base-parameter-1 refers to a data item generated by the COBOL compiler as
a data-base-key item. The item is implicitly defined by its appearance in the clause.

2. Data-base-identifier-1..., must refer to data items included in the record-type being
described (CALC).

3. Set-name-1 must be a set-type in which the record-type is defined as being a
member (VIA).

General Rules

1. By its appearance in a LOCATION clause, data-base-parameter-1 is treated as a
data-base-key and is not part of a record.

2. The DBCS assigns a data-base-key to a record when a STORE is executed. This
may also happen when a MODIFY CALC-key entails a record migration.

Reference Manual IDS/II

1-26 47 A2 11UD Rev00

3. The assignment of data-base-keys is subject to the overall constraint of the WITHIN
clause for the same record subentry.

4. If DIRECT is specified, the contents at execution time of the data item associated
with the DIRECT phrase are used in assigning a data-base-key. The contents may
be a complete data-base-key that is relative to the entire data base, or an area-key
that is relative to only one area. In any case, only the area-key part is used by the
DBCS.

5. If CALC is specified, the contents at execution time of the data items associated
with the CALC phrase are used in assigning a data-base-key. The data-base-key is
developped using a system-supplied algorithm.

6. The DUPLICATES ARE NOT ALLOWED phrase instructs the DBCS to permit no
more than one record of this type with identical values for the data items associated
with the CALC phrase to be stored in an area of the data base.

7. If VIA set-name-1 SET is specified, the DBCS assigns a data-base-key to the object
record as though it were to become a member of an occurrence of the set-type
named in the VIA phrase. The set selection criteria defined for the set type named
are consulted by the DBCS when assigning a data-base-key.

1.13.3.3 WITHIN Clause

Function

To define the areas in which occurrences of a record-type can be stored and to provide a
means of differentiating between such areas.

General Format

 { { ANY AREA } [AREA-ID IS data-base-parameter-1]}
 { { {area-name-1} ...} }
WITHIN { }
 {AREA OF OWNER }

Syntax Rules

1. The area names must be the names of areas for which an area entry is included in
the schema.

2. If OWNER is specified, the LOCATION mode of the record must be VIA set-name.

General Rules

1. By its appearance in a WITHIN clause, data-base-parameter-1 is implicitly defined
to be a data item that contains a character string that conforms to the rules for the
formation of area-names (alphanumeric 30 characters long).

2. When only one area-name is specified, all records of the type being described are
stored in the named area (area-name-1).

Schema Data Description Language

47 A2 11UD Rev00 1-27

3. When more than one area-name is specified, the contents of data-base-parameter-
1 determine the area into which a record is stored.

4. If ANY AREA is specified then all declared areas are valid for the placement of this
record-type.

5. If ANY AREA is specified and implies several areas or if a list of more than one
area-name is specified then AREA-ID must be present.

6. The contents of data-base-parameter-1, which must be one of the area-names
specified in the WITHIN clause or any valid area-name if ANY AREA is declared,
must be set before the object record can be stored.

Example:

 Schema: RECORD A ...
 WITHIN AREA-1, AREA-2, AREA-3, AREA-ID IS
 PARM-1.

 Program: MOVE "AREA-3" TO PARM-1.
 STORE A.

At run time, the program makes the selection of which area will contain this record.
Before it is stored, the DBCS checks the contents of data item PARM-1 for a valid
area-name. If the area-name is invalid then an error of "INVALID REALM" will be
returned. Once an area is specified that is contained in this WITHIN clause, then
standard key range and location mode considerations apply.

To retrieve a CALC record by a "FIND ANY" statement, the proper area-name must
be initialized in the AREA-ID field of PARM-1.

7. If AREA OF OWNER is declared then the record will be stored in the same area as
its owner record, as determined by the set selection criteria of the set specified in
the VIA LOCATION mode.

8. The record's area assignment remains constant regardless of changes in its set
membership.

NOTE: It is recommended that each AREA-ID data-base-parameter be uniquely
named. This avoids conflicts in the use of AREA-ID's when set selection is
performed.

1.13.3.4 CHECK Clause (Record Subentry)

Function

To specify a validity check on data item values of a record.

General Format

 | |
 | CHECK IS condition-1 |

Reference Manual IDS/II

1-28 47 A2 11UD Rev00

 |_______________________|

Syntax Rules

1. All the data-base-identifiers used as arguments of condition-1 must be data items
specified in the record entry.

General Rules

1. The condition is tested whenever a record of this type is stored or any of the
arguments of the condition is to be changed by a MODIFY statement.

2. If the condition is found to be false, the DBCS will report an error and the data base
will not be changed.

1.13.3.5 Data-base-data-name Clause

Function

To name a data item, a vector or a repeating group or a non-repeating group and
indicate its structural level within the record.

General Format

 | |
 | [level-number] data-base-data-name |
 |_____________________________________|

Syntax Rules

1. Data-base-data-name must be unique among the data-base-data-names declared
for this record, and may not be an entry-name.

2. Level-number is an unsigned decimal integer greater than zero and less than 100.
Default is 01.

General Rules

1. The content of a record is defined by a series of zero or more data subentries.
When a record contains no data subentry it is used in a structural manner to assist
in accessing other records ("root" or "relation " records).

2. A data item is described by a data subentry containing a TYPE clause but no
OCCURS clause.

3. A vector is described by a data subentry containing a TYPE clause and an
OCCURS clause.

Schema Data Description Language

47 A2 11UD Rev00 1-29

4. A repeating group is described by a data subentry containing an OCCURS clause
but no TYPE clause.

5. A non-repeating group is described by a data subentry which does not contain a
TYPE clause or an OCCURS clause.

6. If a data subentry defines a repeating or non-repeating group, it must be followed by
one or more data subentries with higher value level numbers.

1.13.3.6 TYPE Clause

Function

To describe the characteristics of a data item (stand-alone or element ofa vector or
repeating group or non-repeating group).

General Format

 { { {UNPACKED} } }
 { { [UNSIGNED] {[PACKED]} } }
TYPE IS { { {PACKED-2 } } DECIMAL integer-1 [integer-2] }
 { { } }
 { {SIGNED {UNPACKED } } }
 { { {[PACKED]} } }
 { }
 { [SIGNED] BINARY {15 } }
 { {31} }
 { }
 { CHARACTER integer-3 }

[OCCURS integer-4 TIMES]
[CHECK IS VALUE [NOT] {literal-1 [THRU literal-2] } ...] .

Syntax Rules

1. Integer-1 and integer-3 must be unsigned decimal constants with values greater
than zero. The maximum value varies by data type and is specified by the General
Rules.

2. Integer-2 is a signed decimal constant.

General Rules

1. The TYPE clause defines a numeric data item (decimal or binary) or a string data
item.

2. DECIMAL specifies a numeric data item with a decimal base. DECIMAL data items
correspond to COBOL PIC 9 items.

3. Integer-1 specifies the number of significant digits to be maintained for all values of
a data item. The maximum value of integer-1 is 30.

4. Integer-2, when specified, indicates the scale of a DECIMAL data item. Integer-2
can be any value in the range -29 to 30. When integer-2 is negative, the decimal
point is positioned integer-2 places to the right of the rightmost actual digit.

Reference Manual IDS/II

1-30 47 A2 11UD Rev00

(DECIMAL 4, -1 means PICTURE 9999P in COBOL-74 terms.) When integer-2 is
positive, the decimal point is positioned integer-2 places to the left of the rightmost
actual digit. (DECIMAL 4, 1 means PICTURE 999V9 in COBOL-74 terms.) When
integer-2 is zero, or when not specified, the decimal point is positioned immediately
to the right of the righmost digit.

5. Integer-1 and integer-2 must be such that total number of digits (if the data item is
displayed) does not exceed 30.

6. The keywords SIGNED/UNSIGNED PACKED/PACKED-2/UNPACKED specify the
internal format of the data item. Their COBOL equivalents are shown in Table 1-4.

7. BINARY specifies a numeric item with a binary base. BINARY items correspond to
COBOL COMP-1 and COMP-2. They contain signed integer values in 2-byte (15
bits plus sign bit) or 4-byte (31 bits plus sign bit) form.

8. CHARACTER specifies a string data item. CHARACTER items correspond to the
COBOL PIC X family. A character data item is assumed to contain characters from
the EBCDIC character set, and any comparisons are made using the EBCDIC
collating sequence.

9. Integer-3 gives the length of the string data item. The maximum value of integer-3
is theoretically 65535 but the record size cannot exceed the access area page size.

10. Table 1-4 summarizes the correspondence between the TYPE clause definition and
the equivalent in COBOL-74.

11. All data items are aligned on a byte boundary when they appear in the UWA record
description of a DML program.

Schema Data Description Language

47 A2 11UD Rev00 1-31

Example:

RECORD NAME IS data-base-record-name-1

 02 Display-item-1 TYPE IS CHARACTER 3.
 02 Decimal-item-1 TYPE IS SIGNED PACKED DECIMAL 5, +2.
 02 Binary-item-1 TYPE IS SIGNED BINARY 31.

NOTES: 1. Display-item-1 will occupy three 8-bit EBCDIC bytes in the record.

2. Decimal-item-1 will occupy five packed decimal digit positions plus
an extra sign for a total of six positions, or three 8-bit bytes. The
implied decimal point is two places to the left of the last digit, or in
COBOL-74 terms:

 PIC S9(3)V99 USAGE COMP.

3. Binary-item-1 will occupy four 8-bit bytes starting on the next byte
boundary.

Reference Manual IDS/II

1-32 47 A2 11UD Rev00

Table 1-4. DDL and COBOL Data Types

DDL TYPE

SIGNED
UNPACKED
DECIMAL

COBOL TYPE

m

m,p

m,-p

PICTURE U S A G E

m > p
m = p

m < p

s9 (m-p) V9 (p)

s9 (m)

sV9 (m)

SP (p-m) 9 (m)

s9 (m) P (p)

C O M PSIGNED PACKED DECIMAL
m
m,p
m,-p

UNSIGNED
UNPACKED
DECIMAL

m

m,p

m,-p

m > p
m = p
m < p

9 (m)

9 (m-p) V9 (p)

p (p-m) 9 (m)
9 (m) P (p)

V9 (m)

UNSIGNED PACKED DECIMAL
m
m,p
m,-p

same as
UNSIGNED UNPACKED

C O M P

UNSIGNED PACKED-2DECIMAL
m
m,p
m,-p

same as
UNSIGNED UNPACKED COMP-8

COMP-1

COMP-2

SIGNED BINARY 15

SIGNED BINARY 31

CHARACTER n X (n)

same as
SIGNED UNPACKED

Schema Data Description Language

47 A2 11UD Rev00 1-33

1.13.3.7 OCCURS Clause

Function

To define a vector or repeating group by specifying the number of timesthe data item or
group occurs within a record or repeating group.

General Format

 | |
 | OCCURS integer TIMES |
 | |

Rules

1. The number of times the group component is repeated is specified by the value of
integer, which must be greater than 1.

2. This clause may be supplied to define a vector, in conjunction with a TYPE clause:

 02 EDX TYPE SIGNED BINARY 31 OCCURS 10.

or, it may be used to define a repeating group, if the TYPE clause is omitted:

 02 EDAB OCCURS 18.

 03 EDA TYPE CHARACTER 20.
 03 EDB OCCURS 8.

 04 EDBX ...
 04 EDBY ...
 04 EDBZ ...

This shows both EDAB and EDB as group identifiers.

Reference Manual IDS/II

1-34 47 A2 11UD Rev00

1.13.3.8 CHECK Clause (Data Subentry)

Function

To specify validity checking that is to be executed when a value is changed or when new
data is being stored.

General Format

| |
| CHECK IS VALUE [NOT] {literal-1 [THRU literal-2]} ... |
|___|

Syntax Rules

1. The data subentry containing this CHECK clause must also contain a TYPE clause.

2. The type of literal-1 and literal-2 must match the type of the data subentry as
specified in Table 1-3.

3. For string data the literals must be in ascending order as defined by the EBCDIC
collating sequence. For numeric data the literals must be in ascending algebraic
order.

General Rules

1. The value of the data item is compared with the individual values or ranges
specified in this clause. An individual value is specified by a literal. A range is
specified by two literals separated by THRU.

2. The value of an item satisfies a comparison if it is equal to the literal, in the case of
a single literal. In the case of a range, the value of the item must be greater than or
equal to the literal specifying the low end of the range and less than or equal to the
literal specifying the high end of the range.

3. The value is valid if it satisfies a comparison and the NOT is omitted or if it fails and
the NOT is specified.

4. The specified validity checking occurs whenever a new value of the item is to be
stored on the data base (STORE statement) or if the value is to be modified
(MODIFY statement).

5. If an invalid value is detected, an error will be reported and the data base will not be
changed.

Schema Data Description Language

47 A2 11UD Rev00 1-35

CHECK Clause Examples

CHECK IS VALUE "1"

CHECK IS VALUE NOT 1000

CHECK IS VALUE "A" "B" "C"

CHECK IS VALUE 20 THRU 30 50 THRU 60

CHECK IS VALUE NOT 0 THRU 200

1.13.4 SET Entry

Function

To name and give certain characteristics of the sets within a data base.

General Format of Set Entry

 | |
 | Set subentry |
 | |
 | {member subentry} ... |
 |_______________________|

General Format of Set Subentry

SET NAME IS set-name

OWNER IS record-name-1

ORDER IS PERMANENT INSERTION IS

{FIRST }
{LAST }
{NEXT }
{PRIOR }
{ }
{ } .
{ {WITHIN RECORD-TYPE } }
{ {BY DEFINED KEYS } }
{SORTED { [RECORD-TYPE SEQUENCE IS {record-name-2} ...] } }
{ }
{ { {FIRST } } }
{ { DUPLICATES ARE {LAST } } }
{ { {NOT ALLOWED} } }

Reference Manual IDS/II

1-36 47 A2 11UD Rev00

General Format of Member Subentry

MEMBER IS record-name-3

 {AUTOMATIC RETENTION IS MANDATORY}
INSERTION IS { }
 {MANUAL RETENTION IS OPTIONAL }

[DUPLICATES ARE NOT ALLOWED FOR {data-base-identifier-1} ...] ...

[{ASCENDING } {data-base-identifier-2}]
[KEY IS {DESCENDING } {RECORD-TYPE }]
[{DATA-BASE-KEY }]
[]
[[[ASCENDING] {data-base-identifier-3}]]
[[[DESCENDING] {RECORD-TYPE }] ...]
[{DATA-BASE-KEY }]]
[]
[[{FIRST }]]
[[DUPLICATES ARE {LAST }]]
[[{NOT ALLOWED}]]

SET SELECTION [FOR set-name-1] IS

THRU set-name-2 OWNER IDENTIFIED BY

{APPLICATION }
{ }
{DATA-BASE-KEY [EQUAL TO data-base-parameter-1] }
{ }
{CALC-KEY [data-base-identifier-4 EQUAL TO] }
{ [] }
{ [{data-base-identifier-5}] }
{ [{ }] ... }
{ [{data-base-parameter-2 }] }
{ }
{ [AREA-ID EQUAL TO data base-parameter-3] }

THEN THRU set-name-3 WHERE OWNER IDENTIFIED BY

[{ [{data-base-identifier-7}]}]
[{data-base-identifier-6 [EQUAL TO {data-base-parameter-4 }]} ...]

1.13.4.1 SET Clause

Function

To name a set-type in the schema; that is, to specify a name for all occurrences of the
set-type in the data base.

General Format

 | |
 | SET NAME IS set-name-1 |
 |__________________________|

Syntax rule

Set-name-1 must be unique among the data-base-names known to the schema.

Schema Data Description Language

47 A2 11UD Rev00 1-37

General Rules

None.

1.13.4.2 OWNER Clause

Function

To specify the name of a record-type, each occurrence of whichestablishes the existence
of an occurrence of the set-type named in this set entry.

General Format

 | |
 | OWNER IS record-name-1 |
 |_________________________|

Syntax Rules

1. Record-name-1 must have been previously declared in a record entry.

2. Record-name-1 must be different from the member record types of this set entry.

3. A record-type may be specified as an owner in more than one set entry. It may also
be defined as a member in one or more set entries.

General Rules

1. The OWNER clause specifies the record-type that is the owner in the set-type being
described. Each occurrence of the owner record-type entails an occurrence of the
set-type being described.

2. A record can only own one occurrence of a given set-type.

Reference Manual IDS/II

1-38 47 A2 11UD Rev00

1.13.4.3 ORDER Clause

Function

To specify the insertion point of a member record within a set and thereby define the
order of sequential progression.

General Format

ORDER IS PERMANENT INSERTION IS

{FIRST }
{LAST }
{NEXT }
{PRIOR }
{ }
{ {WITHIN RECORD-TYPE } }
{ { } }
{ {BY DEFINED KEYS } }
{SORTED { } }
{ { [RECORD-TYPE SEQUENCE IS {record-name-2} ...] } }
{ { } }
{ { {FIRST } } }
{ { DUPLICATES ARE {LAST } } }
{ { {NOT ALLOWED} } }

Syntax Rules

1. If the SORTED WITHIN RECORD-TYPE phrase is specified, then a KEY clause
must be stated in at least one member subentry for this set-type.

2. If the SORTED BY DEFINED KEYS phrase is specified, then a KEY clause must be
stated for each member subentry for this set-type.

General Rules

1. ORDER FIRST refers to the position within the set that immediately follows the
owner record. This is a reversed chronological sequencing. The most recent
member record inserted into the set becomes the first member of the set.

2. ORDER LAST refers to the position within the set that immediately precedes the
owner record. This is a chronological sequencing. The most recent member record
becomes the last member in the set.

3. ORDER PRIOR and ORDER NEXT refer to NEXT insertion points relative to the
member record of the set most recently selected by the run unit. If this record is the
owner record, ORDER PRIOR is equivalent to ORDER LAST.

4. The SORTED phrase allows specification of a set order based on the record-type
values or the data-base-keys of the member records of the set, or on the values of
data items specified in the KEY clauses for the member records of the set.

Schema Data Description Language

47 A2 11UD Rev00 1-39

5. The WITHIN RECORD-TYPE phrase allows records to be sorted without regard to
the order of other record-types in the set. This does not mean that there is an
implied major sort by record-type. It means only that for a given type, it is in
sequence by its own sort-control-key. The sort-control-keys are specified by the
KEY clause for each of the member record-types that are to be sorted.

6. The DEFINED phrase specifies that the member records in a set are to be
maintained in a single sequence regardless of the number of different member
record-types specified in the set entry. The corresponding sort-control-keys are
specified in the KEY clauses for each member record-type.

7. The optional RECORD-TYPE SEQUENCE IS phrase allows the declaration of the
order-by-record-type sequence so that the record-type can be declared as a key
item in the KEY clause for member records of the set.

8. If the DUPLICATES ARE NOT ALLOWED phrase is specified, the DBCS rejects
the insertion into any given set of those member records that have the same values
for the specified key items as a record that is already a member of that set. This
may occur during an attempt to store a new member record in the data base or to
insert an existing record into a set, or to modify the value of a key item.

9. If the DUPLICATES ARE FIRST or DUPLICATES ARE LAST phrase is specified,
member records are inserted into the set sequence before or after, depending on
the option specified, any existing member records in the set that have the same
values for the specified key items.

1.13.4.4 MEMBER Clause

Function

To specify the name of a record-type, the occurrences of which may be members in
occurrences of the set named in this set entry.

General format

 | |
 | MEMBER IS record-name-3 |
 |__________________________|

Syntax Rules

1. A MEMBER clause must be specified for each record-type that can participate as a
member in the set-type being described.

2. More than one record-type can be declared as a member of any given set-type.

3. A record can be defined as a member of more than one set-type. It can also be
defined as an owner in one or more set-types.

4. Record-name-3 must be different from the set owner record-type, as defined in the
set OWNER clause.

Reference Manual IDS/II

1-40 47 A2 11UD Rev00

General Rules

1. Each record occurrence participates in at most one occurrence of each set-type for
which it is declared a member record-type. That is, it may be associated with no
more than one owner record for each set-type for which it may be a member. A
record can only appear once in a given set.

1.13.4.5 INSERTION RETENTION Clause

Function

To specify the type of membership within the set-type.

General Format

| |
| INSERTION IS { AUTOMATIC RETENTION IS MANDATORY } |
| { MANUAL RETENTION IS OPTIONAL } |
|__|

General Rules

1. If AUTOMATIC MANDATORY is used, then an occurrence of the member record is
inserted into (made a current member of) the selected occurrence of the set type
named in this set entry when the record is added to the data base. It will always be
a member of one or another set occurrence of that set-type. The record may be
switched between set occurrences of the same set type only by a MODIFY function.

2. If MANUAL OPTIONAL is used, adding an occurrence of the member record-1 to
the data base does not cause that record to become a current member of any
occurrence of the set-type named in this set entry. Membership in the set is
established by a run-unit by means of the DML CONNECT function. Membership
can also be cancelled by means of the DML DISCONNECT function. If the location
mode is VIA for this record, the record is physically placed near the owner
occurrence of the set named in the VIA set-name phrase. After the record has been
stored, it may be inserted into the appropriate MANUAL OPTIONAL sets.

Schema Data Description Language

47 A2 11UD Rev00 1-41

Example:

DIVISION-REC

ORGANIZATION-UNIT

EMPLOYEE

STAFF-TO

W O R K S - F O R

RECORD NAME IS EMPLOYEE
 LOCATION MODE IS VIA WORKS-FOR
 SET
...
SET NAME IS STAFF-TO
 OWNER IS DIVISION-REC ...

MEMBER IS EMPLOYEE
 INSERTION MANUAL
 RETENTION OPTIONAL ..
 ...
SET NAME IS WORKS-FOR
 OWNER IS ORGANIZATION-UNIT ...
 MEMBER IS EMPLOYEE
 INSERTION AUTOMATIC RETENTION
 MANDATORY ...

In this example, when an employee record is stored, it is automatically inserted into the
WORKS-FOR set, and also placed near to the owning ORGANIZATION-UNIT record. If
the employee has a staff function with the corporate division, then a CONNECT function
can be used to link this employee into the optional STAFF-TO set.

1.13.4.6 DUPLICATES Clause

Function

To check and reject the insertion within the same set occurrence of those member
records that have duplicate values for specified data items.

Reference Manual IDS/II

1-42 47 A2 11UD Rev00

General Format

 __
| |
| DUPLICATES ARE NOT ALLOWED FOR { data-base identifier-1}... |
|__|

Syntax Rules

1. More than one DUPLICATES clause, corresponding to various groups of fields, may
be specified in the member subentry.

2. The data-base-identifiers must refer to data items included in the record-type
named in this member subentry.

General Rules

1. If the DUPLICATES ARE NOT ALLOWED clause is used, the DBCS rejects the
insertion into any given set of a member record whose values, for all data items
specified in this clause, duplicate the values contained in an existing member of the
set. This may occur during an attempt to store a new record, or to insert an existing
record into a set or to modify the value of such data to cause a duplication. The
entire set is searched to satisfy this criterion before the ORDER INSERTION clause
requirements are processed. In particular, if a field is specified and the INSERTION
mode is NEXT, the whole length of the set is checked before the new record is
inserted next to the current record in the set.

1.13.4.7 KEY Clause

Function

To specify the sort-control-key for a member record of a sorted set.
A key item may be a data item within the record, or the record-type, or the data-base-key
of the record.

General Format

 {ASCENDING } {data-base-identifier-2}
KEY IS { } {RECORD-TYPE }
 {DESCENDING} {DATA-BASE-KEY }

 [{data-base-identifier-3 }]
 [[ASCENDING] {RECORD-TYPE }] ...
 [[DESCENDING] {DATA-BASE-KEY }]

[{FIRST }]
[DUPLICATES ARE {LAST }]
[{NOT ALLOWED}]

Schema Data Description Language

47 A2 11UD Rev00 1-43

Syntax Rules

1. The KEY clause must be specified in all member subentries of any set entry that
includes the SORTED BY DEFINED KEYS phrase in the ORDER clause.

It must be specified in at least one member subentry of any set entry that includes
the SORTED WITHIN RECORD-TYPE phrase in the ORDER clause.

The KEY clause must not be specified if the set entry does not include the SORTED
phrase in the ORDER clause.

2. The data-base-identifiers must refer to data items declared in the record entry for
the record-type named in the MEMBER clause of this entry.

3. If RECORD-TYPE is a key item, it must be specified once only and the phrase
RECORD-TYPE SEQUENCE IS ... must be present in the ORDER clause of the set
entry. All the record-names specified must be members of the set. All the member
records of the set must be declared in the RECORD-TYPE SEQUENCE phrase.

4. If DATA-BASE-KEY is a key item, it must be specified once only and as the last key
item. The relevant DUPLICATES phrase, whether in the ORDER clause or KEY
clause, must specify "NOT ALLOWED".

5. If the set entry includes the SORTED BY DEFINED KEYS phrase in the ORDER
clause, corresponding data items must be specified in the KEY clauses of all
member record-types. The corresponding data items must have identical data
characteristics and must also match in terms of whether ASCENDING or
DESCENDING is specified for them. Two data items to which identical TYPE
clauses apply have identical data characteristics. If RECORD-TYPE is a key item,
the rules of one-to-one correspondence described previously apply only to the data
items given to the left of RECORD-TYPE.

6. The DUPLICATES phrase must be specified only if the ORDER clause in the set
entry contains the SORTED WITHIN RECORD-TYPE phrase.

General Rules

1. The data-base-identifiers are the key items that together constitute the sort-control-
key for the member record-type named in the MEMBER clause of this entry. The
key items are stated in the KEY clause in order of decreasing significance; that is,
data-base-identifier-2 is the major key item and data-base-identifier-3,... are minor
key items.

2. The ASCENDING option is applied to a key item if in the KEY clause the data-base-
identifier that identifies the key item is preceded by the keyword ASCENDING, and
the keyword DESCENDING does not appear between that instance of the keyword
ASCENDING and the data-base-identifier; otherwise the DESCENDING option
applies to the key item. The sorted sequence of the member records within a set is
from the lowest (highest) value of the key item to the highest (lowest) value if the
ASCENDING (DESCENDING) option applies to that key item.

3. If the DUPLICATES ARE NOT ALLOWED phrase is specified, the DBCS rejects
the insertion into any given set of those member records that are of the same type
and have the same values for the specified key items as a record that is already a
member of that set. This may occur during an attempt to store a new member
record in the data base, or to insert an existing record into a set, or to modify the
value of a key item.

Reference Manual IDS/II

1-44 47 A2 11UD Rev00

4. If the DUPLICATES ARE FIRST or DUPLICATES ARE LAST phrase is specified,
member records are inserted into the set sequence before or after (depending on
the option specified) any existing member records in the set that are of the same
type and have the same values for the specified key items.

1.13.4.8 SELECTION Clause

Function

To define the rules governing the selection of the appropriate occurrence of a set-type
for the purpose of inserting or accessing a member record.

General Format

SET SELECTION [FOR set-name-1] IS

THRU set-name-2 OWNER IDENTIFIED BY

{APPLICATION }
{ }
{DATA-BASE-KEY [EQUAL TO data-base-parameter-1] }
{ }
{CALC-KEY [data-base-identifier-4] }
{ [EQUAL TO {data-base-identifier-5}] ... }
{ [{data-base-parameter-2 }] }
{ }
{ [AREA-ID EQUAL TO data base-parameter-3] }

[THEN THRU set-name-3 WHERE OWNER IDENTIFIED BY]
[]
[{data-base-identifier-6 [EQUAL TO {data-base-identifier-7}]}]
[{ [{data-base-parameter-4 }]} ...] ...

Syntax Rules

1. Set-name-1 is the name of the set-type of this set entry.

2. If the CALC-KEY option is specified, the owner record type of set-name-2 must
have a location mode of CALC with the "DUPLICATES NOT" phrase. Data-base-
identifier-5 must have identical data characteristics to those of the CALC-key data-
base-identifier-4 as specified in the LOCATION clause. If an EQUAL TO phrase is
specified for an item of a multi-item CALC-key, it must be specified for all of them.

3. Data-base-identifier-6 is a declared elementary item in the owner record of set-
name-3.

4. Data-base-identifier-7 must have identical data characteristics to those of data-
base-identifier-6.

5. Set-name-2, set-name-3,... must form a continuous path in the sense that the owner
of set-name-3 is a member of set-name-2..., with set-name-2 as a start point, or
root. In that path the same set-name must not appear more than once. The last set-
type named must be the subject of the set entry of which this clause is a part.

Schema Data Description Language

47 A2 11UD Rev00 1-45

Example:

C A L C

A

B

C

D

A-B

B-C

C-D

 SET SELECTION FOR C-D IS THRU A-B OWNER IDENTIFIED BY CALC-KEY,
 THEN THRU B-C WHERE OWNER IS IDENTIFIED BY FIELD IN-B, THEN THRU
 C-D WHERE OWNER IS IDENTIFIED BY FIELD-IN-C.

6. The elementary items referenced by data-base-identifier-6 must together uniquely
identify the owner of set-name-3 among the members of set-name-2. A
DUPLICATES ARE NOT ALLOWED phrase must be declared for those elementary
items considered as a group in the ORDER clause of set-name-2 or in the KEY
clause, or in a DUPLICATES clause, for the owner of set-name-3 as a member of
set-name-2.

7. If DATA-BASE-KEY or CALC-KEY phrase is stated, a location mode of DIRECT or
CALC respectively must be specified for the owner record-type of set-name-2.

General Rules

1. The data characteristics of data-base-parameter-1 are those required to hold a
data-base-key value.

2. The data characteristics of data-base-parameter-2 are identical to those of the
CALC-key as specified in the LOCATION clause in the record entry for the owner
record-type of set-name-2.

3. The data characteristics of data-base-parameter-3 are those required to hold an
area-name.

4. The data characteristics of the parameter named by data-base-parameter-4 are
identical to those of data-base-identifier-6.

Reference Manual IDS/II

1-46 47 A2 11UD Rev00

5. The SELECTION clause for the appropriate member record-type and set-type
combinations governs the selection of a specific set for the purpose of inserting or
accessing a member record. The set occurrence is determined by identifying the
specific owner record occurrence.

6. Prior to the execution of any DML function involving selection, values must be
supplied for the parameters and/or UWA elementary items specified in the EQUAL
TO phrase(s) or in the LOCATION clause if one is implied.

7. The APPLICATION option causes the selection from set-name-2 of the occurrence
given by the "current-of-set-name-2". The current-of-set can be the owner or a
member.

8. The DATA-BASE-KEY option causes the selection from set-name-2 of that
occurrence whose owner record has a data-base-key equal to the value contained
in data-base-parameter-1 or, in the absence of the EQUAL TO specification, the
parameter as specified in the LOCATION MODE IS DIRECT clause for the owner
record-type.

9. The CALC-KEY option causes the selection from set-name-2 of that owner record:

- Having a CALC-key equal to the value contained in the UWA elementary item
or parameter named in the EQUAL TO phrase, or in the absence of the
EQUAL TO specification, the UWA data items as specified in the LOCATION
MODE IS CALC clause for the owner record-type.

- Located in the case of a multi-area record-type in the area specified in the
parameter named in AREA-ID EQUAL TO, or, if this is absent, in the
parameter named in AREA-ID of the WITHIN clause.

10. When only the THRU set-name-2 phrase is specified, the occurrence of set-name-1
is selected as described in General Rules 7 through 9. For example, for set A-B, the
clause is:

 SET SELECTION THRU A-B OWNER IDENTIFIED BY CALC-KEY

11. Where both the THRU set-name-2 and one or more THEN THRU phrases are
specified, the occurrence of set-name-2 is selected as described in General Rules 7
through 9. For each subsequent set in the path, the THEN THRU phrase causes the
selection of the owner record of set-name-3... in its capacity as a member of the
selected occurrence of the previously named set-type such that the owner record
has values for data-base-identifier-6 equal to values contained in the UWA
elementary items or parameters named in the EQUAL TO phrase, or if EQUAL TO
is absent, the UWA data items data-base-identifier-6.

Examples:

C A L C

A

B

A - T O - B

Schema Data Description Language

47 A2 11UD Rev00 1-47

If record A has a CALC location mode, then if the set selection clause is:

SELECTION THRU A-TO-B OWNER IDENTIFIED BY APPLICATION.

the program selects an occurrence of set A-TO-B before a STORE (or FIND) of record B
is executed. The established current position in the set (A-TO-B) is used to identify the
set occurrence. It may be the owner or a member. Insertion orders of NEXT and PRIOR
are relative to the current set record and place the new record either after or prior to the
current one. Orders of FIRST and LAST cause a return to the owner record (A) and the
new record is then inserted either first or last in the set A-TO-B.

Processing related to a SORTED insertion depends on the current position in the set:

• If it is the owner, the key comparisons are made going forward through the set.

• If it is a member, the key of the member to be inserted is compared with the key of the
current-of-set. If the member is to be inserted after the current-of-set, the key
comparison proceeds forward through the set.

• If the new member must be inserted between the owner and the current-of-set, the key
comparisons are made starting from the owner, forward.

• If the new member and the current-set are not of the same record type for a SORTED
WITHIN RECORD-TYPE set, the key comparisons are made forward from the owner.

2. If the clause was:

 SELECTION THRU A-TO-B OWNER IDENTIFIED BY CALC-KEY.

the owner record A is always located and then the specified insertion order is used.
In each case, the operation begins with the owner record A.

3. Use of EQUAL TO.

In the example of a network structure where different occurrences of record A are
related to each other by means of linking through record B, there is the problem of
having one field in record A that is used to identify this record (DIRECT or CALC
fields), when actually two different A records must be identified and both accessed
to connect record B into both sets. The schema can be stated as follows:

Reference Manual IDS/II

1-48 47 A2 11UD Rev00

A

B

C A L C

D O W N U P

 SET NAME IS DOWN...

 MEMBER IS B...

 SELECTION THRU DOWN OWNER IDENTIFIED BY CALC-KEY.

 SET NAME IS UP...

 MEMBER IS B...

 SELECTION THRU UP

 OWNER IDENTIFIED BY CALC-KEY MYKF EQUAL TO PARM-1.

In order to locate the proper A record, the CALC fields named by the LOCATION
MODE clause of record A must be initialized to identify the A record. This is
sufficient to satisfy the selection criteria for the DOWN set. If the UP set had exactly
the same selection clause, there would be a conflict since the same CALC field in
record A would be needed to identify the second occurrence of record A. The
EQUAL TO clause allows a data-base-parameter to be used as a temporary holder
for the CALC field, so that after the new B record is inserted into the DOWN set, the
UP set can identify its proper owner by using the control-field value saved in PARM-
1.

47 A2 11UD Rev00 2-1

2. Device Media Control Language

2.1 STORAGE VIEW

Between the schema view composed of records, sets and areas, and the disk extents
which represent the final form of the data base, there exists an intermediate view, the
storage view, composed of storage records and storage areas (see Figure 2-1).

A storage record has the usual attributes of a record.

A storage area is a group of n pages which acts as a container for the storage records. It
corresponds to a UFAS file.

S c h e m a V i e w S t o r a g e V i e w D e v i c e / M e d i u m

M a p p i n g M a p p i n g

A r e a s

R e c o r d s

S e t s

S to ra ge
area s

S to ra ge
R ec ords

D isk
ex ten t s

D M C L (D S D L) P R E A L L O CD D L

Figure 2-1. Storage View Between Schema View and Device/Medium

Reference Manual IDS/II

2-2 47 A2 11UD Rev00

2.1.1 DMCL

DMCL stands for Device/Media Control Language; it has been renamed DSDL (Data
Storage Description Language) in the CODASYL proposals since it no longer deals with
the device/media. In this manual the term DMCL is used for the sake of compatibility and
also because media characteristics can influence the choice of certain parameters.

The purpose of DMCL is twofold:

1. To select options for the mapping of the schema onto storage. In the current
release, the mapping rules are imposed by IDS/II:

- Each schema area corresponds to one storage area.

- Each schema record occurrence corresponds to one storage record
occurrence.

- Each schema set occurrence corresponds to pointers placed as data fields in
all the storage records in this set (chain implementation).

2. To provide quantitative information upon the population of the data base, since
these are absent from the DDL. Rather than specifying the maximum number of
occurrences of each record-type, the DBA specifies the overall size parameters of
the containers, that is, of the storage areas.

Other parameters may be supplied to restrict the placement of storage records to
given ranges within storage areas or to allow for the migration of records or to
specify the default buffer requirements for run-time execution, etc.

2.1.2 PREALLOC Function

PREALLOC is in charge of mapping one storage area, that is, a UFAS file, onto one or
several extents of one or several disks.

This topic is discussed in detail in Section IV of this manual.

Device Media Control Language

47 A2 11UD Rev00 2-3

2.1.3 Program/Data Independence

Figure 2-2 illustrates what is meant by program/data independence.

• There is no independence between the program and the schema view, since the
program logic is adapted to the objects described in this view.

• There is an independence between the program and the storage view, since it is
possible to specify several storage views against the same schema view, without the
program being aware of it. For example, the same programs can be run against the
production data base or a smaller test data base.

In certain circumstances, such as the computation or interpretation of data-base-keys,
the program needs to know DMCL parameters. An extension to the ACCEPT function
is provided to allow the program to read this information and thus to adapt itself
automatically to the version in use.

For implementation, the schema view and the storage view are in the same object
schema. It is therefore necessary to duplicate the schema view in a second object
schema (MOVE command of DDLPROC) if an alternate storage view is desired.

• There is an independence between the program and the device/media, since it is
possible to preallocate several occurrences of the data base against the same storage
view, without the program being aware of it. This is the case when each programmer
uses his own occurrence of the same test data base.

• The link between the program and the occurrence of the data base is made at run-
time by selecting, through JCL ASSIGN statements, the needed object schema and
storage areas.

Reference Manual IDS/II

2-4 47 A2 11UD Rev00

P r o g r a m
S c h e m a

V i e w

N o I n d e p e n d e n c e D a t a
B a s e
S ize
I n d e p e n d e n c e

S t o r a g e
V i e w

1

S t o r a g e
V i e w

2

T e s t
D a t a
B a s e

1

T e s t
D a t a
B a s e

2

P r o d u c t i o n
D a t a
B a s e

D e v i c e /
M e d i a

I n d e p e n d e n c e

Figure 2-2. Program/Data Independence

Device Media Control Language

47 A2 11UD Rev00 2-5

2.2 STORAGE AREA STRUCTURE

2.2.1 Area Code Number

The data base is composed of a number NUMA of storage areas. Each storage area is
identified by an area code number a, starting from 0:

 | |
 | O <= a <= NUMA - 1 |
 |_____________________|

The area numbers are assigned in sequence, in the order of the schema DDL area
entries.

2.2.2 Area Characteristics

• Each storage area is divided into a number NUMP of "pages" of equal length (see
Figure 2-). The page is the unit of transfer between the disk and the DBCS buffers.

 The upper limit of NUMP is (2**24) -1 = 16,777,215.

Each page is identified within the area by a page number p, starting from 0:

 | |
 | 0 <= P <= NUMP - 1 |
 |_____________________|

Pages are placed sequentially on disk in the order of their page number. Programs
may take advantage of this order to optimize disk head movements by a sequential
processing of the area.

NUMP is specified in the NUMBER-OF-PAGES clause of the DMCL area entry. The
page size is specified in the PAGE-SIZE clause of the same entry.

• Each page is divided into a number LPP of "lines" (see Figure 2-3). The line is the
container for one record.

 The upper limit of LPP is 255.

Each line is identified within the page by a line number l, starting from 0:

 | |
 | O <= l <= LPP - 1 |
 |____________________|

The size of a line is variable according to the type of record it currently contains. A
record cannot span pages.

Reference Manual IDS/II

2-6 47 A2 11UD Rev00

LPP is specified in the LINES-PER-PAGE clause of the DMCL area entry.

• A storage area containing CALC records is also characterized by the size of the
buckets which are involved in the hashing algorithm.
This size is expressed as a number of pages (upper limit 255) in the CALC-INTERVAL
clause of the DMCL area entry.

• The number of pages, page size, number of lines per pages and CALC interval may
vary between areas.

LPP
(Lines
per
page)

Line
 0

Line
 1

Line
LPP
 -1

0

1

LPP
-1

PAGE 0 PAGE 1 PAGE NUMP -1

0

1

LPP
-1

empty
 line

line with
 record

NUMP pages

Figure 2-3. Storage Area Subdivisions

Device Media Control Language

47 A2 11UD Rev00 2-7

2.2.3 Page Structure

The page structure is outlined in Figure 2-4 The page contains:

• A page header of 12 bytes in length, which contains information on the space currently
used, the space occupied by logically deleted records, the highest line number in use,
etc.

• A variable length array of storage record locators, indexed by the line number from the
bottom of the page. Each locator contains the 2 byte offset (relative to the end of the
page header) of the storage record corresponding to this line number. The maximum
size of the locator array is 2*LPP.

• Storage records composed of a header, a pointer zone and a data zone. These
records are referenced by line number. They may be active or logically deleted.
Logical deletion allows the DBCS to defer the reorganizaton of the page until
compacting becomes necessary to store a new record in the page.

• CALC chain overflow-link records (OWL), of 10 bytes in length, used in the
implementation of the CALC chain. These records are not referenced by line number.
There is always such a record immediately after the page header (even if the storage
area does not contain CALC records).

Page heade r (12 by tes)

O W L r e c o r d (1 0 b y t e s)

Log ica l l y de le ted s to rage reco rd

Ac t i ve S to rage reco rd

Ac t i ve S to rage reco rd

Log ica l l y de le ted s to rage reco rd

O W L r e c o r d (1 0 b y t e s)

Ac t i ve S to rage reco rd

u n u s e d s p a c e

Loca to r 5

Loca to r 3

Loca to r 1

Loca to r 4

Loca to r 2

Loca to r 0

P A G E - S I Z E

Figure 2-4. Page Structure

Reference Manual IDS/II

2-8 47 A2 11UD Rev00

2.3 STORAGE RECORD ADDRESSING

2.3.1 Definitions

• When a storage record is stored in an area, or migrates within this area as a result of a
MODIFY CALC-key, it is assigned a logical address, called its "area-key", which
uniquely identifies the record within this area. The components of this area-key are:

 | | |
 | Components of area-key ak: | page number p |
 | | line number l |
 |_____________________________|_________________|

• This logical address, local to the storage area, gives rise, by addition of the area
number, to another logical address, called the "data-base-key", which uniquely
identifies the record within the whole data base.

 __
Components of data-base-key dbk:	area number a
	page number p
	line number l
________________________________	_________________

• When the area-key is used in the "chain" implementation of a set, it is represented as
a local pointer whose numeric value is calculated as:

 | |
 | ak = p * LPP + l |
 |____________________|

where LPP is the number of lines-per-page of the area.

To optimize the disk space, a local pointer is implemented on the minimum of bytes:
2, 3 or 4 (see Figure 2-5). The local pointer size may be different between areas.

• When the data-base-key is used in the "chain" implementation of a set, it is
represented as a global pointer, obtained by concatenation of the area number and the
area-key value ak.

To optimize the disk space, a global pointer is implemented on the minimum of bytes:
2, 3, or 4 (see Figure 2-5). The area code zone is left-justified, except for the 4-byte
pointer, where the leftmost bit is reserved for the positive sign of a COBOL DB-KEY
item, as defined below. The global pointer size is constant for all areas.

Device Media Control Language

47 A2 11UD Rev00 2-9

• When a data-base-key appears in COBOL items declared with USAGE DB-KEY
(equivalent to USAGE COMP-2), it is equal to the global pointer value right-justified,
with zero fill in the case of 3 or 2 byte pointers (see Figure 2-5).

A DB-KEY item may be involved in any COBOL verb (MOVE, COMPUTE...) which
handles COMP-2 fields.

4 by tes 3 by tes 2 by tes

a k

o

4-by te g loba l po in te r Z e r o
Fil l

3 -by te
g loba l po in te r

a k a k

a aa k a k a k

Z e r o
Fil l

a ka ka a a
o

G L O B A L P O I N T E R S

C O B O L D B - K E Y I T E M S

2 by tes

ao a k

a ka kao

L O C A L P O I N T E R S

4 by tes 3 by tes 2 by tes4 by tes 2 by tes

2-by te
g loba l
po in te r

Figure 2-5. Structure of Local Pointers, Global Pointers, DB-KEY Items

Reference Manual IDS/II

2-10 47 A2 11UD Rev00

2.3.2 Local Pointer Size

• Let LPP and NUMP be respectively the number of lines per page and the number of
pages of an area. The number of area-keys available in this area is NUMAK such that:

 NUMAK = LPP * NUMP

The number of bits BL required to represent the highest area-key value (NUMAK-1) as
an unsigned binary number is calculated using the formula:

 2 BL-1 < NUMAK <= 2 BL

Then the local pointer size in bytes is.

 2,if BL <= 16
 3,if 16 <BL <=24
 4,if 24 <BL <=30

Detailed values are given below:

Table 2-1. Local Pointer Size

B i t s Requ i red
(BL)

4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5

2 by tes a re
ac tua l l y used

N U M A K v a l u e
r a n g e

9 - 1 6
1 7 - 3 2
3 3 - 6 4

6 3 - 1 2 8
1 2 9 - 2 5 6
2 5 7 - 5 1 2

5 1 3 - 1 0 2 4
1 0 2 5 - 2 0 4 8
2 0 4 9 - 4 0 9 6
4 0 9 7 - 8 1 9 2

8 1 9 3 - 1 6 3 8 4
1 6 3 8 5 - 3 2 7 6 8
3 2 7 6 9 - 6 5 5 3 6

6 5 5 3 7 - 1 3 1 0 7 2
1 3 1 0 7 3 - 2 6 2 1 4 4
2 6 2 1 4 5 - 5 2 4 2 8 8

5 2 4 2 8 9 - 1 0 4 8 5 7 6
1 0 4 8 5 7 7 - 2 0 9 7 1 5 2
2 0 9 7 1 5 3 - 4 1 9 4 3 0 4
4 1 9 4 3 0 5 - 8 3 8 8 6 0 8

8 3 8 8 6 0 9 - 1 6 7 7 7 2 1 6
1 6 7 7 7 2 1 7 - 3 3 5 5 4 4 3 2

By tes Used f o r
Loca l Po in te r

1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4

• The local pointer size may vary between areas since LPP and NUMP depend on the
area.

Device Media Control Language

47 A2 11UD Rev00 2-11

• The local pointer size as calculated above is the default value chosen by DDLPROC.
However the EXTEND LOCAL POINTERS clause of the DMCL area entry allows the
DBA to select a greater size than required. (See the paragraph entitled "Local sets").

2.3.3 Global Pointer Size

• Let NUMA be the number of storage areas of the data base. The number of bits BLA
required to represent the highest area number (NUMA-1) as an unsigned binary
number is calculated using the formula:

 2 BLA-1 < NUMAK <= 2 BLA

Detailed values are given below:

Table 2-2. Global Pointer Size

Number of Areas Number of Bits (BLA)
1-2 1
3-4 2
5-8 3
9-16 4
17-32... 5...

• Let BLM be the number of bits in the larger local pointers. The total number of bits
BLG required for a global pointer is given by:

 BLG = BLM + BLA

Then the global pointer size in bytes is:

 2, if BLG <= 16
 3, if 16 < BLG <= 24
 4, if 24 < BLG <= 31

When BLG is not equal to exactly 16, 24 or 31, the area code zone is left-justified
within the required number of bytes, leaving a longer bit field for the area-key zone. In
the 4-byte case, the leftmost high-order bit is always reserved and set to zero.

• The maximum addressing capability of global pointers is:

Table 2-3. Global Pointer Addressing

Pointer Size Number of Records
4 bytes (-1 bit) 2 147 483 648
3 bytes 26 777 216
2 bytes 65 536

• The global pointer size is the same for all areas of the data base.

Reference Manual IDS/II

2-12 47 A2 11UD Rev00

• The global pointer size, as calculated above, is the default value chosen by
DDLPROC. In view of future growth of the data base, the DBA may select the
following DMCL options:

- The EXTEND GLOBAL POINTERS clause of the schema entry increases the
global pointer size. The area code zone is left justified within the specified number
of bytes.

- The EXTEND NUMBER OF AREAS clause of the schema entry increases the
number of bits reserved for the area code zone of global pointers.

• Figure 2-6 illustrates the format and size of local and global pointers for a data base
composed of three areas of different sizes.

4 by tes

3 by tes

2 by tes

a k

a rea # 0

4 by tes

4 by tes

4 by tes

a k

a ka k

a k

a k

a rea # 1

a rea # 2

G loba l Po in te rs Loca l Po in te rs

0

1

2

Figure 2-6. Local and Global Pointers in Areas of Different Sizes

Device Media Control Language

47 A2 11UD Rev00 2-13

2.4 SET IMPLEMENTATION BY A CHAIN OF POINTERS

2.4.1 Set Code Number

Each DDL set-type is identified internally by a set code number s, starting from 1 (s=o is
reserved by the system).

Set code numbers are assigned in sequence, in the order of the schema DDL set entries.

The set code number itself is not stored in storage records, but it influences the order of
the set pointers embedded in the storage records (see Storage Record Structure).

2.4.2 Number of Pointers

When a storage record is the owner of a set, it contains two pointers, NEXT and PRIOR.

When a storage record is a member of a set, it contains three pointers, NEXT, PRIOR
and OWNER.

2.4.3 Local Sets

A set is termed local if DDL declarations imply that the owner and the members of a set
occurrence are located in the same area. There are two cases of this as illustrated by
Figures 2-7 and 2-8.

A

B

A-B

A1

B2 B9

A5

B7

AREA-X

RECORD A LOCATION ...
 WITHIN AREA-X
RECORD B LOCATION
 WITHIN AREA-X
 (or WITHIN AREA OF OWNER)

Figure 2-7. Local Set - Mono-area Case

Reference Manual IDS/II

2-14 47 A2 11UD Rev00

A

B

A-B

AREA-X

B8

B2

B5

B17

A6

B9

AREA-Y

RECORD A LOCATION ...
 WITHIN AREA-X AREA-Y
RECORD B LOCATION VIA A-B SET
 WITHIN AREA OF OWNER

A4

Figure 2-8. Local Set - Multi-area Case

If no contradictory DMCL options are selected, DDLPROC will implement a local set:

• with local pointers in the mono-area case.

• with local pointers in the multi-area case, if the local pointer size in bytes is the same
in all the areas involved. (The current implementation imposes that the structure of a
storage record-type be the same in all the areas where it can be located).

• with global pointers in the multi-area case, if the local pointer size in bytes is not the
same in all the areas involved.

When the DBA knows that some currently local sets will become global sets in the future,
he may use:

• either the NO LOCAL POINTERS clause of the schema entry to force all the local sets
to be implemented with global pointers.

• or the NO LOCAL POINTERS clause of the set entry to force specific local sets to be
implemented with global pointers.

In the multi-area case with different local pointer sizes, the DBA may use the EXTEND
LOCAL POINTER clause of the area entry to force a larger local pointer size to be
implemented than that currently required, and thus to make local pointer sizes equal in
all the areas involved.

Device Media Control Language

47 A2 11UD Rev00 2-15

Example:

Suppose that the DMCL entries corresponding to figure 2-8 are as.

AREA NAME IS AREA-X
 NUMBER-OF-PAGES IS 1500
 NUMBER OF LINES-PER-PAGE IS 50
 ...
AREA NAME IS AREA-Y
 NUMBER-OF-PAGES IS 1300
 NUMBER OF LINES-PER-PAGE IS 50
 EXTEND LOCAL POINTERS TO 3 BYTES
 ...

The number of records that should be addressed by a local pointer in AREA-X is 1500 *
50 = 75000 key values; from the list of pointer sizes, 3 bytes are required. The same
calculation for AREA-Y gives 2 bytes (1300 * 50 = 65000). Since, for the example, there
is a set-type which has local occurrences in both areas, the local pointer length must be
forced to the same value for both areas. Therefore there is an EXTEND LOCAL
POINTERS entry required in the DMCL entry for AREA-Y.

2.4.4 Global Sets

A set is termed global if DDL declarations imply that the participants in a set occurrence
can be located in different areas. Figure 2-9 illustrates this case.

AREA-R

AREA-P AREA-Q

F7

G1

G2
F

G
G8

G4

F4

G6

G3

F1 F9

G26

RECORD F LOCATION ...
 WITHIN AREA-P AREA-Q AREA-R
RECORD G LOCATION ...
 WITHIN AREA-P AREA-Q AREA-R

Figure 2-9. Global Set

A global set is always implemented with global pointers.

Reference Manual IDS/II

2-16 47 A2 11UD Rev00

2.5 STORAGE RECORD STRUCTURE

2.5.1 Record Code Number

Each storage record is identified internally by a record code number r, starting from 1
(r=0 is reserved by the system).

Record code numbers are assigned in sequence, in the order of the DDL record entries.

The record code number is stored in the header of each storage record in the data base.

2.5.2 Record Structure

A storage record is composed of three parts, as shown in Figure 2-10.

H E A D E R

S E T
P O I N T E R S
Z O N E

D A T A
Z O N E

Figure 2-10. Storage Record Structure.

The header is 5 bytes in length for non-CALC records and 9 bytes for CALC records. It
contains the code number of the record, its total length, its status indicators and its CALC
chain information for CALC records.

The set pointers zone, whose length varies with the record-type, contains the set pointers
for the sets in which the record is declared as owner or member.

The number, type, and size of the pointers are determined for each set as explained in
the previous paragraphs.

The order of the set pointer groups is:

• first the sets in which the record is declared as the owner. These sets appear in
increasing order of code number.

Device Media Control Language

47 A2 11UD Rev00 2-17

• then the sets in which the record is declared as a member. If the location mode of the
record is not VIA set-name, these sets appear in increasing order of code number. If
the location mode is VIA set-name-1, set-name-1 appears first, then the others in
ascending order of code number.

When a record-type does not participate in any set-type, the set pointers zone does not
exist.

The data zone, whose length varies with the record-type, contains the data as defined in
the DDL data subentries. In the current implementation, the data format in the storage
records is identical to the data format in the UWA records seen by the program.

The data zone may not exist for certain "root" or "relation" records whose role is
restricted to the participation in sets.

The PRINT STORAGE DESCRIPTION command of DDLPROC enables the DBA to
display the lay-out of the storage records.

2.5.3 Example

Consider the data base of Figure 2-1. Assume that:

• The record RC has a LOCATION mode VIA B-C and contains one data field of TYPE
CHARACTER 12.

• The sets are declared in the order A-C B-C C-D C-E in the DDL.

• The local sets B-C C-D are implemented with 2-byte local pointers.

• the global sets A-C C-E are implemented with 3-byte global pointers.

The storage record RC has a header of 5 bytes as it is non-CALC. The total length
(header+pointer+data) is 42 bytes.

Set C-D is the first set whose RC is the owner. The pointer group contains 2 local
pointers: NEXT, PRIOR.

Set C-E is the second set whose RC is the owner. The pointer group contains 2 global
pointers: NEXT, PRIOR.

Set B-C is not the first set whose RC is a member but it is the set involved in the
LOCATION mode VIA. The pointer group contains 3 local pointers: NEXT, PRIOR,
OWNER.

Set A-C is the first set whose RC is a member. The pointer group contains 3 global
pointers: NEXT, PRIOR, OWNER.

The data zone is 12 bytes long.

Reference Manual IDS/II

2-18 47 A2 11UD Rev00

RA Set
A-C

Set B-C

Set C-D

AREA-1 AREA-2 AREA-3

RB

RC

RD RE

Header

Set C-D owner

Set C-E owner

Set A-C member

Data Zone

 Storage record RC

NEXT PRIOR

OWNER

OWNER

PRIOR

PRIOR

PRIOR

NEXT

NEXT

NEXT

length
 42 bytes

Set B-C member

Figure 2-11. Example of Storage Record Lay-out.

Device Media Control Language

47 A2 11UD Rev00 2-19

2.6 CHOICE OF THE PAGE-SIZE PARAMETER

When the DBA selects the DMCL PAGE-SIZE parameter, he must take several factors
into consideration and decide on the best compromise among them.

1. PAGE-SIZE represents the overall size of the page. It includes the page header, the
record locators, at least one OWL record, and for each storage record its header,
pointer zone, and data zone.

2. The page size must conform to the device characteristics and UFAS rules:

- PAGE-SIZE must be a multiple of 256 bytes. It is recommended that multiples
of 512 bytes be chosen to ease migration to fixed-sector disks.

- The larger the page size with respect to the track size, the fewer bytes are
reserved for inter-page gaps.

- Pages may not overlap tracks. This restricts the choice to certain values if the
disk space is to be used efficiently, in particular as the page size comes near
to the track nominal size.

The recommended values are listed in Table 2-4 for the MSU 0300 and MSU 0400
families, the MSU 0500 and the SMD 300.

The percentages show the efficiency of track space use as compared with the nominal
track capacity.

3. Large pages are recommended when they contain clusters of records which are
processed together. In this case only one I/O is necessary to bring the cluster into
memory.

Large pages are not recommended if they are usually loaded into memory to
process only one record at a time; not only is the buffer size required as large as the
page size and may far exceed the record size, but also the transfer time is
proportional to the page size.

4. In a TDS environment with many simultaneous transactions, large page sizes imply
large buffer requirements if one wants to avoid competition for buffers (assuming
that there is no concurrent access to the same pages).

5. The page size may vary between areas. If areas of different page sizes are used in
the same pool, an extra CPU overhead is associated with the dynamic adaptation of
buffer sizes to page sizes. This overhead may be avoided if areas have the same
page size.

For more details on the UFAS buffer pool management, see the UFAS User Guide.
The IDS term "page" is a synonym for the "CI" or "Control Interval".

Reference Manual IDS/II

2-20 47 A2 11UD Rev00

Table 2-4. Recommended Page Size Values

PAGE SIZE PAGES PER
TRACK

PAGES PER
CYLINDER

MSU 0350/400/401/402/45
2

12800 1 (98%) 19
12288 1 (94%) 19
6144 2 (94%) 38
4096 3 (94%) 57
3072 4 (94%) 76
2048 6 (94%) 114
1536 7 (83%) 133
1024 11 (86%) 209
512 20 (79%) 380

MSU 0310
6144 1 (84%) 20
3072 2 (84%) 40
2048 3 (84%) 60
1536 4 (84%) 80
1024 6 (84%) 120
512 11 (77%) 220

MSU 0500
18944 1 (98%) 38
9216 2 (96%) 76
6144 3 (96%) 114
4608 4 (96%) 152
3584 5 (93%) 190
2560 7 (93%) 266
2048 8 (85%) 304
1536 11 (88%) 418
1024 15 (80%) 570
512 27 (72%) 1026

SMD 300
18944 1 (97%) 19
18432 1 (94%) 19
9216 2 (94%) 38
6144 3 (94%) 57
4608 4 (94%) 76
3584 5 (91%) 95
3072 6 (94%) 114
2560 7 (91%) 134
2048 8 (83%) 152
1536 11 (86%) 209
1024 16 (83%) 304
512 28 (73%) 532

Device Media Control Language

47 A2 11UD Rev00 2-21

2.7 CHOICE OF THE LINES-PER-PAGE PARAMETER

• LINES-PER-PAGE defines the maximum number of records that can be addressed in
a page. It must not exceed 255. It may vary between areas.

• If the PAGE-SIZE parameter has been defined beforehand, LINES-PER-PAGE is
derived by considering the size of the records of the area. The value selected must be
large enough to address all the records that can fit in the page space.

If LINES-PER-PAGE is too small, line number saturation occurs before space
saturation, giving a poor use of the disk space.

If LINES-PER-PAGE is too large, space saturation occurs before line number
saturation; line numbers are lost, thus reducing the total addressing capability of the
data-base-key.

If the area contains record-types of different sizes, it is recommended that the LINES-
PER-PAGE value for the smaller records be chosen. For large records, space will be
used up before line numbers are used up.

• The LINES-PER-PAGE parameter may be selected before PAGE-SIZE. This is the
case when the area contains groups of member records and one page is supposed to
accomodate the average number of records of a group. Then LINES-PER-PAGE is
chosen equal to this number and PAGE-SIZE is taken from the record size.

If the resulting PAGE-SIZE is too large, for reasons discussed in the paragraph Choice
of the PAGE-SIZE Parameter, it may be advisable to store the group on a fixed
number n of pages (with n = 1). LINES-PER-PAGE is then chosen equal to the
number of records of a group divided by n and PAGE-SIZE is derived as above from
the record size.

Reference Manual IDS/II

2-22 47 A2 11UD Rev00

2.8 CHOICE OF THE CALC-INTERVAL PARAMETER

As a rule, assuming that the CALC distribution is uniform, the CALCinterval of a record-
type in a range may be chosen as:

• If the number of CALC records is less than the number of pages in the range, for
example because their clusters of non-CALC members are located in the same range
and spread over 2 or more pages, then the CALC interval value is calculated by
dividing the number of pages by the number of CALC records. In the ideal situation,
the CALC chain would contain only one record.

• If the number of CALC records is greater than the number of pages in the range, the
CALC interval value is 1 page, since the minimum value minimizes the average
number of records per CALC chain and consequently the overflow to the following
pages.

The CALC interval is constant throughout the area. Its value may therefore be the result
of a compromise if several CALC record-types are to be located in the same or different
range of the area.

The number of pages of an area or of a range must be a multiple of the CALC interval. It
is recommended that the number of CALC buckets, that is the number of pages divided
by the CALC interval, should be a prime number or that at least it should not possess
small factors: 2, 3, 5, 7, 11, 13, 17, 19. The automatic selection of the nearest prime
number may be requested through the OPTIMIZE option of the DMCL area and record
entries.

The insertion of new records or retrieval of existing records from the CALC chain may
involve a search of the entire list of records from the appropriate CALC bucket. If
duplicate records are not allowed then during insertion the entire CALC chain is searched
looking for a duplication of the fields used for randomization.

When non-CALC members are clustered near their CALC owners, and when owners are
likely to be accessed more often than their members, it may be advisable to load all the
owners first and then the members. This will cause the CALC synonyms to be located in
the first page of a CALC bucket and therefore require only one I/0 for access. Otherwise,
if the distribution is not uniform or if the number of records of a cluster is variable, the
members of a CALC record may fill the first page of the CALC bucket and cause the next
synonym to be placed in an overflow page.

The CALC overflow rate increases with the number of records stored in the area; areas
should therefore be large enough to avoid saturation. A load factor of 70% (space or
lines percentage) may be satisfactory.

The CALC interval chosen may be checked for suitability before area allocation, using
the simulation function of H_DBUTILITY utility.

Device Media Control Language

47 A2 11UD Rev00 2-23

2.9 DEVICE MEDIA CONTROL LANGUAGE SYNTAX

DMCL uses the same syntax conventions as DDL. See Section I.

Each DMCL entry references a schema DDL object and describes how it is mapped onto
storage.

The general structure of the DMCL is:

Schema Entry
(Area Entry) ...
[Record Entry] ...
[Set Entry] ...

Entries may appear in any order after the schema entry. Each entry is terminated with a
period followed by a space or an end-of-line. The entire DMCL source text is terminated
by an END-DMCL statement.

Each of the entries is described in detail below.

Figure 2-12 shows a sample DMCL source.

__
| |
| COMMENT "***" |
| COMMENT "* SCHEMA DMCL FOR TEST-GROUP *TG19* *" |
| COMMENT "***" |
| |
| COMMENT "********************************" |
| COMMENT "* SCHEMA *" |
| COMMENT "********************************" |
| |
| SCHEMA TG19-SH. |
| |
| COMMENT "********************************" |
| COMMENT ** AREAS *" |
| COMMENT "********************************" |
| |
| AREA TG19-A00. |
| NUMBER-OF-PAGES 53 |
| LINES-PER-PAGE 45 |
| PAGE-SIZE 2048. |
| |
| AREA TG19-A01. |
| NUMBER-OF-PAGES 52 |
| LINES-PER-PAGE 45 |
| PAGE-SIZE 2048. |
| |
| END-DMCL. |
| |
|__|

Figure 2-12. Sample DMCL Source

2.9.1 SCHEMA Entry

Function

To identify the name of the schema and to specify miscellaneous storage and execution
attributes which are not specific to a given area or record or set.

Reference Manual IDS/II

2-24 47 A2 11UD Rev00

General Format

 __
 | |
 | SCHEMA NAME IS schema-name |
 | |
 | [EXTEND NUMBER OF AREAS TO integer-1] |
 | |
 | [EXTEND GLOBAL POINTERS TO integer-2 BYTES] |
 | |
 | [NO LOCAL POINTERS] |
 | |
 | [BUFFER POOL NAME IS buffer-pool-name] |
 | |
 | [NUMBER OF BUFFERS IS integer-3] . |
 |__|

2.9.1.1 SCHEMA Clause

Function

To specify the schema-name.

Format

 | |
 | SCHEMA NAME IS schema-name |
 |_____________________________|

Rules

1. Schema-name is the name of the schema as specified in the SCHEMA entry of the
DDL.

2.9.1.2 EXTEND NUMBER OF AREAS Clause

Function

To force the pointer size of global pointers to allow for a larger number of areas than that
declared by the current schema.

Format

 | |
 | EXTEND NUMBER OF AREAS TO integer |
 |____________________________________|

Device Media Control Language

47 A2 11UD Rev00 2-25

Rules

1. If present this clause must specify a value greater than the number of areas being
described.

2. If this clause is specified, the DBCS will build global pointers with an area code
zone large enough to accommodate the number of areas specified.

For further details see the paragraph Storage Record Addressing in this section.

3. If this clause is not used then the global pointers will have sufficient space to
process the number of areas declared. If, for example, 3 areas are declared it is not
necessary to specify EXTEND NUMBER OF AREAS TO 4 because there is already
space in the global pointers to handle 4 areas.

2.9.1.3 EXTEND GLOBAL POINTERS Clause

Function

To force the size of global pointers for the schema to a size greater than that which is
currently required.

Format

 __
 | |
 | EXTEND GLOBAL POINTERS TO integer BYTES |
 |__|

Reference Manual IDS/II

2-26 47 A2 11UD Rev00

Rules

1. "integer" can take the values 3 or 4.

2. When specified, the value must be equal to or greater than the size that would be
automatically chosen.

3. If this clause is omitted, the calculation of global pointer size is performed using the
information declared in DMCL for each area.

4. If this clause is specified, global pointers are implemented with the size specified.

5. For further details, see the paragraph Storage Record Addressing at the beginning
of this section.

2.9.1.4 NO LOCAL POINTERS Clause

Function

To force all sets to have global pointers.

Format

 | |
 | NO LOCAL POINTERS |
 |____________________|

Rules

1. If this clause is omitted then set-types which are local by schema definition will be
held with local pointers, unless otherwise specified in the set entry itself.

2. If this clause is specified, all local sets are implemented with global pointers.

3. For further details see the paragraph Set Implementation by a Chain of Pointers at
the beginning of this section.

Device Media Control Language

47 A2 11UD Rev00 2-27

2.9.1.5 BUFFER POOL Clause

Function

To name a buffer pool to be used by the areas of the schema at execution time.

Format

 | |
 | BUFFER POOL NAME IS buffer-pool-name |
 |_______________________________________|

Syntax Rules

1. The buffer-pool-name must be no more than four characters long.

2. If the blank name is used then it must be in the form ' ' (that is, 4 blanks enclosed by
apostrophes).

3. Non-blank names may contain letters, digits, the minus sign, and the underscore.
They must be delimited by apostrophes if they do not conform to the rules for the
formation of DDL names.

General Rules

1. If this clause is omitted then the default name chosen is DBPL (for Data Base Pool).

2. If the specified value is blank (' ') then the NUMBER OF BUFFERS clause gives the
number of buffers reserved for each area (each area has its own set of buffers).

3. A non-blank entry (the default) means that the NUMBER OF BUFFERS clause
gives the total number of buffers that will be shared by all areas.

4. Buffer control information can also be specified in the run-time options. Any DMCL
declaration can be overridden.

5. The purpose of the pool of buffers is to reduce the total buffer space requirements
when several areas are in the READY state. Suppose that a DML program
accesses one area for a certain length of time:

- If there is no buffer pool, it cannot use more buffer space than that reserved
for this area. The space reserved for the other areas is not available.

- If there is a buffer pool, the total pool space may be used for this area. When
the program starts working on a different area, the pool space is assigned to
the buffers of the new area.

Reference Manual IDS/II

2-28 47 A2 11UD Rev00

2.9.1.6 NUMBER OF BUFFERS Clause

Function

To specify the number of buffers to be used at execution time.

Format

 | |
 | NUMBER OF BUFFERS IS integer |
 |_______________________________|

Rules

1. This statement is optional. If it is omitted then the default chosen is 4.

2. The minimum value that can be specified is 3.

3. If there is a non-blank buffer-pool-name then the value specified is the number of
buffers to be shared amongst all areas. In the case where different areas have
different page sizes, the largest value will be chosen as the buffer size.

4. If there is a blank pool-name then the value specified (or implied by default) is the
number of buffers to be reserved for each area.

5. Buffer control information can also be specified in the run-time options at execution
time. Any DMCL declaration can be overridden.

6. The number of buffers to choose at run time is a compromise between the buffer
space requirements and the performance requirements.

The DBCS will function with a minimum of 3 buffers, whether there is a buffer pool
or not.

If a program works for a certain time on a limited set of pages the number of buffers
can be chosen to accomodate all these pages.

If a program accesses pages in a completely random manner, then increasing the
number of buffers will not improve the total performance.

Device Media Control Language

47 A2 11UD Rev00 2-29

2.9.2 AREA Entry

Function

To declare the attributes of the storage area that corresponds to a schema area.

General Format

AREA NAME IS area-name

 [AREA INTERNAL FILE NAME IS ifn]

 [{HIGH}]
 NUMBER-OF-PAGES IS integer-1 [OPTIMIZE { }]
 [{LOW }]

 NUMBER OF LINES-PER-PAGE IS integer-2

 PAGE-SIZE IS integer-3 BYTES

 [CALC-INTERVAL IS integer-4 PAGES]

 [EXTEND LOCAL POINTERS TO integer-5 BYTES] .

Rules

1. There must be one area entry per area declared in the schema.

2.9.2.1 AREA NAME Clause

Function

To name the schema area which is mapped onto the storage area described in the other
clauses of this entry.

Format

 | |
 | AREA NAME IS area-name |
 |_________________________|

Rules

1. "area-name" is the DDL name of a schema area.

2. The DMCL name of the storage area is implicitly the same as the DDL name of the
schema area.

Reference Manual IDS/II

2-30 47 A2 11UD Rev00

2.9.2.2 AREA INTERNAL FILE NAME Clause

Function

To define the internal-file-name to be used at run-time in the ASSIGN/DEFINE
statements referencing this storage area.

Format

 | |
 | AREA INTERNAL FILE NAME IS ifn |
 | |
 |_________________________________|

Rules

1. "ifn" must conform to the rules for internal-file-names defined in the JCL Reference
Manual.

In addition, "ifn" must be different from:

 IDSOPT
 IDSTRACE
 PRTFILE
 COMFILE
 SLLIBa
 DDLIBb
 SAVEc

where a,b,c, are decimal digits or spaces.

2. If this clause is omitted, the default internal-file-name chosen is the storage area-
name (right-truncated to 8 characters if necessary).

3. There must be no duplicates among the internal-file-names of a schema.

If several data bases are accessed in the same step, and if the internal-file-names
are not unique among the different schemas, the user must ensure the uniqueness
of each internal-file-name by using the INTERNAL FILE NAME command in the
run-time options for the relevant schemas.

4. In the TDS generation and operator commands, storage areas are referenced by
their internal-file-names as defined, explicitly or implicitly, in the DMCL. These
names may be overriden by run-time options.

Device Media Control Language

47 A2 11UD Rev00 2-31

2.9.2.3 NUMBER OF PAGES Clause

Function

To define the number of pages of the storage area.

Format

 [{HIGH}]
NUMBER-OF-PAGES IS integer [OPTIMIZE { }]
 [{LOW }]

Rules

1. "integer" represents the number of pages, NUMP. It must be such that:

 1 <= NUMP <= 16,777,215

2. If OPTIMIZE is not specified and the storage area does not contain CALC storage
records, there is no other constraint on NUMP.

3. If OPTIMIZE is not specified and the storage area contains CALC storage records,
NUMP must be a multiple of the CALC-INTERVAL parameter.

It is recommended that the number of "buckets" (that is, the number of pages
divided by the CALC-INTERVAL) should be a prime number or that at least it
should not possess small factors: 2, 3, 5, 7, 11, 13, 17, 19.

4. If OPTIMIZE is specified and the storage area contains CALC storage records,
DDLPROC increments (HIGH) or decrements (LOW) NUMP in order to obtain the
next prime number for the number of buckets.

5. OPTIMIZE must not be specified if the storage area contains no CALC storage
records.

2.9.2.4 LINES-PER-PAGE Clause

Function

To define the number of lines of each page of the storage area.

Format

 | |
 | NUMBER OF LINES-PER-PAGE IS integer |
 |______________________________________|

Reference Manual IDS/II

2-32 47 A2 11UD Rev00

Rules

1. "integer" is the number of lines per page LPP. It must be such that:

 1 <= LPP <= 255

2. For details on selecting values, see the paragraph Choice of LINES-PER-PAGE in
this section.

2.9.2.5 PAGE SIZE Clause

Function

To define the size in bytes of the pages of the storage area.

Format

 | |
 | PAGE-SIZE IS integer BYTES |
 |____________________________|

Rules

1. "integer" must be a multiple of 256 and preferably a multiple of 512 for migration to
fixed-sector disks.

2. For details on selection values, see the paragraph Choice of PAGE-SIZE in this
section.

2.9.2.6 CALC-INTERVAL Clause

Function

To define the number of pages of the "bucket" involved in the randomization algorithm
for the placement of CALC records in this storage area.

Format

 | |
 | CALC-INTERVAL IS integer PAGES |
 |_________________________________|

Rules

1. "integer" is the number of pages B of the bucket. It must be such that:

Device Media Control Language

47 A2 11UD Rev00 2-33

 1 <= B <= 255

2. This clause must not be specified for a storage area which does not contain CALC
storage records.

3. When the clause is not specified and the storage area contains CALC storage
records, the default value 1 is assumed.

4. For details on selecting values, see the paragraph Choice of CALC-INTERVAL in
this section.

2.9.2.7 EXTEND LOCAL POINTERS Clause

Function

To force the size of the local pointers of the storage area to a size greater than is
theoretically required.

Format

 | |
 | EXTEND LOCAL POINTERS TO integer BYTES |
 |___|

Rules

1. "integer" can take the values 3 or 4.

2. This clause may be specified when records of the same type participate in a local
set-type and are stored in several areas with different local pointer sizes. Since
pointers within the same storage record-type must be the same size, the user may
force the smaller pointer size to that of the larger.

3. For further details, see the paragraph Set implementation by a Chain of Pointers in
this section.

Reference Manual IDS/II

2-34 47 A2 11UD Rev00

2.9.3 RECORD Entry

Function

To declare attributes of the storage record which corresponds to a schema record.

General Format

RECORD NAME IS record-name

 [RANGE [WITHIN area-name] IS {PAGE p-1 THRU p-2 }]
 [{m PAGES FROM PAGE p-1 }]
 [] ...
 [{HIGH}]]
 [OPTIMIZE { }]]
 [{LOW }]]

[MIGRATION IS ALLOWED] .

Rules

1. This entry is optional. If it is not specified, the default options of each clause are
assumed.

2.9.3.1 RECORD Clause

Function

To name the schema record-type which is mapped onto the storage record-type whose
attributes are described in the other clauses of this entry.

Format

 | |
 | RECORD NAME IS record-name |
 |_____________________________|

Rules

1. "record-name" is the DDL name of a schema record-type.

2. The DMCL name of the storage record-type is implicitly the same as the DDL name
of the schema record-type.

Device Media Control Language

47 A2 11UD Rev00 2-35

2.9.3.2 RANGE Clause

Function

To specify, for each of the storage areas where the storage record may be located, the
range within which the record is to be placed.

Format

 {PAGE p-1 THRU p-2 }
RANGE [WITHIN area-name] IS { }
 {m PAGES FROM PAGE p-1}

 [{HIGH}]
 [OPTIMIZE { }]
 [{LOW }]

Rules

1. If the clause is omitted, the range is assumed to be equal to the area itself.

2. If this clause is specified, the location of the storage record is restricted to the range
specified. There can be only one range per record-type in a given area.

3. The WITHIN phrase is required when the record-type is multi-area. It is optional if
the record-type is mono-area.

4. The range may be described as either:

- A range of pages specified by a first page number and a last page number
(PAGE THRU). If NUMP is the number of pages of the area, the integers p-1
p-2 must satisfy the condition:

 0 <= p-1 <= p-2 <= NUMP - 1

- A number of pages beginning at a specified page number (PAGES FROM
PAGE). The integers m and p-1 must satisfy the conditions:

 m>O
 O<= p-1 <= NUMP - 1
 p-1 + m <= NUMP

5. If the record-type is CALC, the first page of the range must coincide with the first
page of a CALC bucket.

6. If OPTIMIZE is not specified for a CALC record-type, the number of pages of the
range must be a multiple of the CALC-INTERVAL.

It is recommended that the number of buckets (that is the number of pages divided
by the CALC-INTERVAL) should be a prime number or that at least it should not
possess small factors: 2, 3, 5, 7, 9, 11, 13, 17, 19.

Reference Manual IDS/II

2-36 47 A2 11UD Rev00

7. If OPTIMIZE is specified for a CALC record-type, DDLPROC increments (HIGH) or
decrements (LOW) the number of pages specified in order to obtain the next prime
number for the number of buckets.

If OPTIMIZE HIGH causes the range to overflow the area, no optimization occurs.
The value selected is the value specified, provided that it is a multiple of the CALC-
INTERVAL.

8. If two CALC record-types are to be located in two adjacent ranges within the same
area, the use of the OPTIMIZE function may cause a slight overlap of the two
ranges. As the overlap is not desirable, the range starting addresses may be
adjusted in a second run of DDLPROC.

9. The OPTIMIZE phrase must not be specified for non-CALC record-types.

Example

A data base consists of 2 areas (AA, BB), 2 record-types (R01, R02), and 1 set-type
(S01) whose owner is R01 and member R02.

R01 is CALC within AA and BB.

R02 is located VIA S01 WITHIN AREA OF OWNER.

Area AA contains 500 pages. Its CALC-INTERVAL is 1. R01 is located in pages 0 thru
102 (103 is prime), R02 in pages 103 thru 499.

Area BB contains 1500 pages. Its CALC-INTERVAL is 1. R01 is located in pages 0 thru
306 (307 is prime), R02 in pages 307 thru 1499.

The DMCL record entries are as:

RECORD R01
 RANGE WITHIN AA IS PAGE O THRU 102.
 RANGE WITHIN BB IS PAGE 0 THRU 306.

RECORD R02
 RANGE WITHIN AA IS PAGE 103 THRU 499.
 RANGE WITHIN BB IS PAGE 307 THRU 1499.

Device Media Control Language

47 A2 11UD Rev00 2-37

2.9.3.3 MIGRATION Clause

Function

To specify whether the CALC storage record may be moved to the new CALC bucket as
a result of a MODIFY CALC-key function.

Format

 | |
 | MIGRATION IS ALLOWED |
 |_______________________|

Rules

1. This clause must not be specified for non-CALC records.

2. If this clause is specified for a CALC record, the record will be moved to the new
CALC bucket during a MODIFY CALC-key function. All the set pointers pointing to
this record will be updated. If the data-base-key of the record is a sort-key item in a
set, this set will be reordered.

3. If this clause is not specified for a CALC record, the record will not be moved during
a MODIFY CALC-key function. The function may fail, however, if an overflow link
record (OWL) corresponding to the new CALC chain has to be created in the page
of the record and there is no room left.

2.9.4 SET Entry

Function

To specify the implementation of a schema set-type.

General Format

 | |
 | SET NAME IS set-name |
 | |
 | [NO LOCAL POINTERS]. |
 |___________________________|

Rules

1. This entry is optional. If it is not specified, the default options of each clause are
assumed.

Reference Manual IDS/II

2-38 47 A2 11UD Rev00

2.9.4.1 SET Clause

Function

To name the schema set-type whose implementation is described in the other clauses of
this entry.

Format

 | |
 | SET NAME IS set-name |
 |________________________|

Rules

1. "set-name" is the DDL name of a schema set-type.

2.9.4.2 NO LOCAL POINTERS

Function

To force the global pointer implementation of the set-type.

Format

 | |
 | NO LOCAL POINTERS |
 |_____________________|

Rules

1. This clause must not be specified for a global set-type.

2. If this clause is omitted and the set-type is local, the set will be implemented with
local pointers, unless the set-type is multi-area and the local pointer sizes are
unequal or a NO LOCAL POINTERS clause is specified in the schema entry.

3. If this clause is specified and the set-type is local, the set will be implemented with
global pointers.

4. For further details, see the paragraph Set Implementation by a Chain of Pointers in
this section.

47 A2 11UD Rev00 3-1

3. Schema Processing

3.1 DDLPROC FUNCTIONS

When the DDL and DMCL are written they must then be processed into an Object
Schema by the IDS/II processor DDLPROC. This processor performs five different
elementary functions, as shown in Figure 3-1.

1 . T R A N S L A T E A N D L I S T D D L A N D O P T I O N A L L Y B U I L D P A R T I A L O B J E C T

D D L P R O C
T R A N S L A T E
C O M M A N D

S O U R C E
D D L

T R A N S L A T I O N
 R E P O R T

O B J E C T
S C H E M A

D D L
D D L P R O C

2 . T R A N S L A T E A N D L I S T D M C L A N D O P T I O N A L L Y E N T E R R E S U L T I N T O O B J E C T

D D L P R O C
T R A N S L A T E
C O M M A N D

S O U R C E
D M C L

O B J E C T
S C H E M A

D D L D M C L

T R A N S L A T I O N
 R E P O R T

D D L P R O C

Figure 3-1. DDLPROC Functions (1/2)

Reference Manual IDS/II

3-2 47 A2 11UD Rev00

OBJECT
S C H E M A

DDL DMCL

3. DELETE AN OBJECT

DDLPROC
DELETE
C O M M A N D

DDLPROC

4. PRINT THE CONTENTS OF AN OBJECT

DDLPROC

OBJECT
S C H E M A

DDL DMCL

DDLPROC
PRINT
C O M M A N D

DDLPROC

OBJECT
S C H E M A

DDL DMCL

5. MOVE AN OBJECT

OBJECT
S C H E M A

DDL DMCL

DDLPROC
M O V E
C O M M A N D

S C H E M A
C O N T E N T S
R E P O R T

Figure 3-1. DDLPROC Functions (2/2)

Schema Processing

47 A2 11UD Rev00 3-3

3.2 SL AND DD OBJECT USAGE

DDLPROC handles two types of object:

• SL (Source Language) objects corresponding to the schema DDL, DMCL source.

• DD (Data Description) objects corresponding to the schema in object format.

SL objects can reside in:

• Input-enclosures with the TYPE option DATA or DATASSF.

• Members of libraries of type SL. The TYPE option of these members must be
DATASSF. Libraries of type SL are preallocated using LIBALLOC SL:

 LIBALLOC SL (library-description SIZE=integer)
 [MAXSIZE=integer]
 {DIRSIZE=integer}
 {MEMBERS=integer}
 [COMPACT] ;

DD objects reside in members of libraries of type BIN. These are allocated using
LIBALLOC BIN:

 LIBALLOC BIN (library-description SIZE=integer)
 [MACSIZE=integer]
 {DIRSIZE=integer} ;
 {MEMBERS=integer}

There is no connection between the name X of a schema, as declared in the DDL
SCHEMA NAME clause, and the name of the input-enclosure or library member that
contains its DDL or DMCL source.

The following convention may be adopted, if the name of the schema is not too long:

• Name of container of DDL source: X-DDL (input-enclosure, member)

• Name of container of DMCL source: X-DMCL (input-enclosure, member)

The number of characters allowed must not exceed:

• 30 for a schema-name.

• 16 for an input-enclosure.

• 31 for a member.

The name of the member containing the object schema must be identical with the name
X of the schema, as declared in the DDL SCHEMA NAME clause:

• Name of container of object schema: X (member)

If different schemas corresponding to the same DDL schema-name are required
(initial loading, test, production) they must be located in different libraries since
member-names are unique within a library.

Reference Manual IDS/II

3-4 47 A2 11UD Rev00

Object schemas may be in two states:

• The "DDL" state. This state corresponds to the end of a successful DDL source
translation. An object schema in this state is accessible only to COBOL and QUERY
for compiling programs/requests.

• The "DDL-DMCL" state. This state corresponds to the end of a successful DMCL
source translation. An object schema in this state is accessible to COBOL and QUERY
for compiling programs, and to user steps, IDS/II utilities and QUERY for executing
DML programs/commands/requests.

Input-enclosures containing SL objects need not be assigned statically since DDLPROC
assigns them dynamically (through the ifn INPENC). Such SL objects are referenced in
the DDLPROC command language by the name of the input-enclosure, immediately
preceded by an *.

Libraries containing SL objects must be assigned statically using the LIB SL INLIB1,
INLIB2, INLIB3 in the extended JCL or the reserved ifn's SLLIB1, SLLIB2, SLLIB3 in the
basic JCL. In both cases the ifn's used are SLLIB1, SLLIB2, SLLIB3.

SL objects are referenced in the DDLPROC command language by:

• The name of the containing member. In this case the SL object is searched in the
libraries assigned, in the order defined by the sequence SLLIB1, SLLIB2, SLLIB3.

• The name of the containing member qualified by the efn of a library or one of the
keywords SLLIB1, SLLIB2, SLLIB3. In this case the SL object is searched in the library
specified. If libraries have identical efn's but reside on different devices, the
qualification by a keyword SLLIBi is required.

Libraries containing DD objects must be assigned statically using the keywords DDLIB1,
DDLIB2, DDLIB3 in the extended JCL or the reserved ifn's DDLIB1, DDLIB2, DDLIB3 in
the basic JCL. In both cases the ifn's used are DDLIB1, DDLIB2, DDLIB3.

DD objects have the same name as that of their container. They arereferenced in the
DDLPROC command language by:

• The name of the schema (explicit or implicitly derived from the DDL, DMCL source). If
the DD object is processed in retrieval or update mode, it is searched in the libraries
assigned, in the order defined by the sequence DDLIB1, DDLIB2, DDLIB3. If the DD
object is processed in creation mode, it is created in the first library assigned, in the
order defined by the sequence DDLIB1, DDLIB2, DDLIB3.

• The name of the schema (explicit or implicit) qualified by the efn of a library or any of
the keywords DDLIB1, DDLIB2, DDLIB3. In this case, the DD object is searched or
created in the library specified. If libraries have identical efn's but reside on different
devices, the qualification by a keyword DDLIBi is required.

The previous considerations are summarized in Figure 3-2.

Schema Processing

47 A2 11UD Rev00 3-5

ifn's for
static assignment

X-DDL (TYPE=DATASSF)

SCHEMA X.
(DDL SOURCE)

X-DMCL (TYPE=DATASSF)

SCHEMA X.
(DMCL SOURCE)

LIBRARIES OF TYPE
 SL

Search
rules

ifn's for
static assignment

Search
rules

LIBRARIES OF TYPE
 BIN

X

SCHEMA X.
(OBJECT SCHEMA)

ifn for
dynamic
assignment

INPUT ENCLOSURES
Y-DDL (TYPE=DATA or DATASSF)

SCHEMA Y.
(DDL SOURCE)

Y-DMCL (TYPE=DATA or DATASSF)

SCHEMA Y.
(DMCL SOURCE)

SLLIB1
SLLIB2
SLLIB3

DDLIB1
DDLIB2
DDLIB3

INPENC

Figure 3-2. DDLPROC Access to SL and DD Objects

Reference Manual IDS/II

3-6 47 A2 11UD Rev00

3.3 DDLPROC EXTENDED JCL STATEMENT

DDLPROC can be called using the extended JCL statement:

[LIB SL INLIB1 = (library-description)]
[[INLIB2 = (library-description)]]
[[INLIB3 = (library-description)] ;]

DDLPROC

 { {*input-enclosure-name }}
 {COMFILE = { }}
 { {(sequential-file-description)}}
 { }
 { }
 {COMMAND = ' {command} ... ' }

 [DDLIB1 = (library-description)]
 [DDLIB2 = (library-description)]
 [DDLIB3 = (library-description)]
 [PRTFILE = (print-file-description)]
 [PRTDEF = (define-parameters)]
 [PRTOUT = (sysout-parameters)] ;

3.3.1 DDLPROC Parameter Description

LIB SL This statement defines the libraries containing SL objects
and their search path.

COMFILE This keyword is followed by a parameter group defining the
input file containing the DDLPROC commands. Input can be
from an input-enclosure (TYPE=DATA or TYPE=DATASSF)
or from a library member (TYPE=DATASSF) or from a
sequential file.

COMMAND This keyword is used instead of COMFILE to introduce
DDLPROC commands directly.

DDLIBi These keywords define the libraries containing DD objects
and their search path.

PRTFILE
PRTDEF
PRTOUT These keywords allow a redefinition of the standard options

applied to the DDLPROC report.

Schema Processing

47 A2 11UD Rev00 3-7

3.4 DDLPROC BASIC JCL

DDLPROC can also be called using the basic JCL:

STEP H_DDLPROC SYS [step-option] ...

{ OPTIONS = ' {command} ...' ; }
{ ; ASSIGN COMFILE {*input-enclosure-name } }
{ {sequential_file-description} ; }

[SIZE 100 ;]
[ASSIGN SLLIB1 library-description;]
[ASSIGN SLLIB2 library-description;]
[ASSIGN SLLIB3 library-description;]
[ASSIGN DDLIB1 library-description;]
[ASSIGN DDLIB2 library-description;]
[ASSIGN DDLIB3 library-description;]
[ASSIGN PRTFILE print-file-description;]
[DEFINE PRTFILE define-parameters;]
[SYSOUT PRTFILE SYSOUT-parameters;]
ENDSTEP;

3.4.1 Parameter Description

The correspondence between the extended JCL and the basic JCL is straightforward.
The slight differences are listed below.

The COMMAND keyword is replaced by the OPTIONS string.

The LIB SL statement is replaced by the ASSIGN SLLIBi.

Reference Manual IDS/II

3-8 47 A2 11UD Rev00

3.5 DDLPROC COMMAND LANGUAGE

The syntax rules and descriptive notation are practically the same as those described for
the DDL statements in Section I.

A command is an entry composed of several clauses and terminated with a period
followed by a space or an end-of-line. Unlike DDL entries, a DDLPROC command can
also be terminated with a semicolon (";"). The semicolon can no longer play the role of
punctuation character elsewhere in the text. Clauses may appear in any order except for
the first which identifies the entry.

A library efn which does not comply with the rules for DDL names:

• Can be written without protection if the only illegal characters it contains are periods
(example: PRINT SCHEMA INVENTORY OF MIDS.OD).

• Must be written in the escape form in all other cases.

3.5.1 Reserved Words

DDLPROC reserved words are listed below:

CHECK QUERY
COBOL RECORD (RECORDS)
COMPACT REPLACE
CONVERSION REPORT
DATA RESET
DDL RETRIEVAL
DDLIB1 SCHEMA
DDLIB2 SEVERITY
DDLIB3 SLLIB1
DEBUG SSLIB2
DELETE SSLIB3
DESCRIPTION SOURCE
DMCL STATEMENTS
DML STATUS
EXCEPT STORAGE
FOR TIME
FORCED TO
IN (OF) TRANSLATE
IS UPDATE
MOVE USE
OBJECT UWA
OF (IN) XREF
PRINT

Schema Processing

47 A2 11UD Rev00 3-9

3.5.2 Types of Command

There are six types of command. Five reflect the five functions shown in Figure 3-1. The
last one is related to the command flow when several commands are submitted in the
same run.

The commands:

- TRANSLATE SCHEMA DDL

- TRANSLATE DMCL

- PRINT SCHEMA

- DELETE SCHEMA

- MOVE SCHEMA

- STATUS

are described in detail on the following pages.

Reference Manual IDS/II

3-10 47 A2 11UD Rev00

3.5.3 TRANSLATE SCHEMA DDL Command

Function

To translate the schema DDL source and optionally create an object schema in the
"DDL" state.

General Format

TRANSLATE SCHEMA DDL

 {*input-enclosure-name }
 { [{library-efn}] }
SOURCE IS { [{IN } {SLLIB1 }] }
 {member-name [{ } {SLLIB2 }] }
 { [{OF} {SLLIB3 }] }

[[{library-efn}]]
[OBJECT [{IN } {DDLIB1 }]]
[[{OF} {DDLIB2 }] [REPLACE]]
[[{DDLIB3 }]]

[REPORT SEVERITY integer]
[XREF]

[FORCED DATE IS {yy mm dd} TIME IS hh mm]
[{yy ddd }]

 [FOR CONVERSION]

[CHECK FOR COBOL USE]
[QUERY] .

Rules

1. The SOURCE clause defines the input-enclosure or library member containing the
DDL statements.

2. If the OBJECT clause is specified, an object schema in the "DDL" state is created,
provided that the DDL source is correct.

The output library may be specified if the default search rules for creation are not
appropriate.

If the operation is to replace an existing member of the same name currently in the
output library, then the keyword REPLACE must be coded in the OBJECT clause.
Otherwise an error will result.

3. If the OBJECT clause is not specified, no object schema is created. Only a DDL
listing is produced.

Schema Processing

47 A2 11UD Rev00 3-11

4. If the REPORT clause is specified, some listing options are provided. The
SEVERITY option specifies the minimum level of diagnostics to be produced. There
are five levels numbered 0, 1, 2, 3, 4. Level 0 corresponds to messages such as
"SYNTAX ANALYSIS RESUMED"... Levels 1 and 2 correspond to warnings. Level
3 corresponds to syntax fatal error messages and level 4 to environment fatal error
messages.

"Integer" may take the values 0, 1, 2, 3. For example, if SEVERITY 3 is coded, only
the fatal error messages will appear.
If the SEVERITY option is not selected, level 0 is assumed.
The XREF option requests that a cross-reference listing of user-defined names be
produced.
If the XREF option is not selected, no cross-reference listing is produced.

5. If the REPORT clause is not specified, SEVERITY 0 and no XREF are assumed.

6. If the FORCED DATE clause is not specified, the object schema created is given a
DDL reference date-time equal to the current date-time.

Note that the run-time consistency checks between the DDL reference date-time of
a schema and the DDL reference date-time of the programs compiled against it are
effective only if this clause is omitted.

7. If the FORCED DATE clause is specified, the object schema created is given the
date-time indicated.

The date can be specified as either year, month and day (yy mm dd) or as day
number within year (yy ddd). The time is specified as hours and minutes (hh mn).
Leading zeroes may be omitted.

The fact that the date-time has been forced is recorded in the object schema.

When a schema used under 1D is retranslated under GCOS 7 for compatibility
reasons, the phrase FOR CONVERSION may be specified if the reference date of
the 1D schema was not forced. In this case the fact that the date-time is forced is
not recorded in the schema.

Apart from the 1D to GCOS 7 conversion, the use of the FORCED DATE clause
must be restricted to the following cases:

- The object schema is destroyed and there are compiled programs which
reference the schema. In order for these programs to continue to work without
recompilation, the DDL source is retranslated with the old DDL reference date-
time.

- The same DML programs are run against a production data base and a test
data base of a smaller size. The test schema has the same DDL as the
production schema and must be stamped with the same DDL reference date-
time. Its DMCL is different, reflecting the differences in area sizes. Note that
the FORCED DATE option may be avoided if the production schema is first
moved to another library (see MOVE command) and the test DMCL is applied
to the copy.

8. If the CHECK clause is specified, DDLPROC will check that the user-defined names
are not reserved words for COBOL or for QUERY.

9. If the CHECK clause is not specified, no check is performed.

Reference Manual IDS/II

3-12 47 A2 11UD Rev00

10. Figure 3-3 shows a TRANSLATE SCHEMA DDL listing with some errors.

__
| |
| |
| DDLPROC 30.00 X1167.2 DOCLIST FAYOT IDS2 IDS2__R5 18:15:33 |
| MAY 22, 1980 PAGE 4 |
| TRANSLATE SCHEMA COMMAND REPORT SOURCE LISTING AND ERRORS |
| ILN XLN TEXT |
| |
| |
| 1 10 COMMENT "***" |
| 2 20 COMMENT "* SCHEMA DDL FOR TEST-GROUP *TG19 *" |
| 3 30 COMMENT "***" |
| 4 40 |
| 5 50 COMMENT "********************************" |
| 6 60 COMMENT "* SCHEMA *" |
| 7 70 COMMENT "********************************" |
| 8 80 |
| 9 90 SCHEMA TG19-SH. |
| 10 100 |
| 11 110 COMMENT "********************************" |
| 12 120 COMMENT "* AREAS *" |
| 13 130 COMMENT "********************************" |
| 14 140 |
| 15 150 AREA TG19-A00. |
| 16 160 AREA TG19-A01. |
| 17 170 |
| 18 180 COMMENT "********************************" |
| 19 190 COMMENT "* RECORDS *" |
| 20 200 COMMENT "********************************" |
| 21 210 |
| 22 220 COMMENT "************************" |
| 23 230 COMMENT "* R01 (PART) *" |
| 24 240 COMMENT "************************" |
| 25 250 RECORD R01 |
| 26 260 LOCATION CALC USING R01-NUM DUP NOT |
| 27 270 WITHIN ANY AREA . |
| 1 |
| *** 1 3-03-52 AREA -ID PHRASE MISSING |
| |
| 28 280 02 R01-IDENT TYPE CHAR 7. |
| 29 290 02 R01-NUHN TYPE CHAR 5. |
| 30 300 02 R01-NUM TYPE UNPACKED DEC 3. |
| 31 310 02 R01-TRAILER TYPE CHAR 4. |
| 32 320 |
| 33 330 COMMENT "************************" |
| 34 340 COMMENT "* R02 (COMPONENT) *" |
| 35 350 COMMENT "************************" |
| 36 360 RECORD R02 |
| 37 370 LOCATION VIA S01 |
| 38 380 WITHIN AREA OF OWNNER |
| 39 390 02 R02-IDENT TYPE CHAR 7. |
| 1 2 |
| *** 1 3-00-02 CLAUSE NOT RECONNIZED WITHIN THE CURRENT (SUB)ENTRY - DATA SKIPPED TILL |
| NEXT RECORD SUBENTRY CLAUSE OR |
| PERIOD |
| 2 0-00-50 SYNTAX ANALYSIS RESUMED AT THIS POINT |
| |
| 40 400 02 R02-R01-UPH TYPE CHAR 4. |
| 41 410 02 R02-R01-UP TYPE UNPACKED DEC 3. |
| 42 420 02 R02-R01-DOWNH TYPE CHAR 6. |
| 43 430 02 R02-R01-DOWN TYPE UNPACKED DEC 3. |
| 44 440 02 R02-QTYH TYPE CHAR 5. |
| 45 450 02 R02-QTY TYPE UNPACKED 3. |
| 12 |
| *** 1 5-07-09 MANDATORY KEYWORD MISSING : DECIMAL - TYPE CLAUSE ANALYSIS DISCONTINUED|
| |
| |
| |
|__|

Figure 3-3. TRANSLATE SCHEMA DDL Listing (1/2)

__

Schema Processing

47 A2 11UD Rev00 3-13

| |
| |
| DDLPROC 30.00 X1167.2 DOCLIST FAYOT IDS2 IDS2__R5 |
| 18:15:33MAY 22, 1980 PAGE 5 |
| TRANSLATE SCHEMA COMMAND REPORT SOURCE LISTING AND ERRORS |
| ILN XLN TEXT |
| |
| *** 2 0-00-50 SYNTAX ANALYSIS RESUMED AT THIS POINT |
| |
| 46 460 02 R02-TRAILER TYPE CHAR 4. |
| 47 470 |
| 48 480 COMMEMT "************************************" |
| 49 490 COMMENT "* SETS *" |
| 50 500 COMMENT "************************************" |
| 51 510 |
| 52 520 COMMENT "*************************" |
| 53 530 COMMENT "* S01 (CALL-OUT) *" |
| 54 540 COMMENT "*************************" |
| 55 550 SET S01 |
| 56 560 OWNER R01 |
| 57 570 ORDER PERMANENT INSERTION SORTED DEFINED KEYS DUP NOT. |
| 58 580 MEMBER R02 |
| 59 590 INSERTION AUTO RETENTION MAND |
| 60 600 KEY AS CENDING R02-R01-DOWN |
| 61 610 SELECTION THRU S01 |
| 62 620 OWNER IDENTIFIED BY CALC-KET R01-NUM EQUAL TO R02-R01-UP. |
| 63 630 |
| 64 640 COMMENT "*************************" |
| 65 650 COMMENT "* S02 (WHERE-USED) *" |
| 66 660 COMMENT "*************************" |
| 67 670 SET S02 |
| 68 680 OWNER R01 |
| 69 690 ORDER PERMANENT INSERTION SORTED DEFINED KEYS . |
| 1 |
| *** 1 4-03-07 MANDATORY KEYWORD MISSING : DUPLICATES DISPOSITION-ORDER CLAUSE ANALYSIS |
| DISCONTINUED |
| 1 0-00-50 SYNTAX ANALYSIS RESUMED AT THIS POINT |
| |
| 70 700 MEMBER R02 |
| 71 710 INSERTION AUTO RETENTION MAND |
| 72 720 KEY R02-R01-UP |
| 1 |
| *** 1 6-04-02 MANDATORY KEYWORD MISSING : ASCENDING/DESCENDING - KEY CLAUSE ANALYSIS |
| DISCONTINUED |
| |
| 73 730 SELECTION THRU S02 |
| 1 |
| 1 0-00-50 SYNTAX ANALYSIS RESUMED AT THIS POINT |
| 1 |
| 74 740 OWNER IDENTIFIED BY CALC-KEY R01-NUM EQUAL TO R02-R01-DOWN |
| 75 750 AREA-ID EQUAL TO OTHER-ARID1. |
| 76 760 |
| 77 770 END-SCHEMA. |
| |
| |
|__|

Figure 3-3. TRANSLATE SCHEMA DDL Listing (2/2)

3.5.4 TRANSLATE DMCL Command

Function

To translate the schema DMCL source and optionally enter the result in the object
schema.

Reference Manual IDS/II

3-14 47 A2 11UD Rev00

General Format

TRANSLATE DMCL

 {*input-enclosure-name }
 { [{library-efn}] }
 {member-name [{IN}] {SLLIB1 }] }
SOURCE IS { [{ }] { }] }
 { [{OF}] {SLLIB2 }] }
 { [{SLLIB3 }] }

[{ {library-efn}]
[SCHEMA {IN } {DDLIB1 }]
[{ {DDLIB2 }]
[{OF} {DDLIB3 }]

 [OBJECT [REPLACE]]
 [REPORT SEVERITY integer]

[{yy mm dd}]
[FORCED DATE IS {yy ddd } TIME IS hh mm]
[]
[[FOR CONVERSION]]

Rules

1. The SOURCE clause defines the input-enclosure or library member containing the
DMCL statements.

2. If the SCHEMA clause is not specified, the object schema, whose name is derived
from the SCHEMA NAME clause of the DMCL, is retrieved according to the search
rules.

3. If the SCHEMA clause is specified, the object schema is taken from the library
specified.

4. Before processing, the object schema may be in the "DDL" state or in the "DDL-
DMCL" state.

5. If the OBJECT clause is specified, the object schema is updated with the DMCL
information, provided that the DMCL source is correct.

If the object schema was already in the "DDL-DMCL" state, (i.e. contained DMCL
information), the keyword REPLACE must be specified.

After a successful processing, the object schema is left in the "DDL-DMCL" state.

6. If the OBJECT clause is not specified, the object schema is left unchanged. Only a
DMCL listing is produced.

7. If the REPORT clause is specified, the diagnostics produced are those whose level
is equal to or greater than "integer". (See details under TRANSLATE SCHEMA DDL
command).

8. If the REPORT clause is not specified, SEVERITY 0 is assumed.

9. If the FORCED DATE clause is not specified, the object schema updated is given a
DMCL reference date-time equal to the current date-time.

Schema Processing

47 A2 11UD Rev00 3-15

Note that the run-time consistency checks between the DMCL reference date-time
of a schema and the DMCL reference date-time of the areas preallocated against it
are effective only if this clause is omitted.

10. If the FORCED DATE clause is specified, the object schema updated is given the
DMCL reference date-time indicated.

The date can be specified as either year, month and day (yy mm dd) or as day
number within year (yy ddd). The time is specified as hours and minutes (hh mm).
Leading zeroes may be omitted.

The fact that the date-time has been forced is recorded in the object schema.

When a schema used under 1D is retranslated under GCOS 7 for compatibility
reasons, the phrase FOR CONVERSION may be specified if the reference date of
the 1D schema was not forced. In this case the fact that the date-time is forced is
not recorded in the schema.

Apart from the 1D to GCOS 7 conversion, the use of the FORCED DATE clause
must be restricted to the following cases:

- The object schema is destroyed and there are loaded areas which reference
the schema. In order that these areas can continue to be used without
reloading, the DMCL source is retranslated with the old DMCL reference date-
time.

- In order to speed up the initial loading of the data base, a loading schema is
designed whose DDL differs from the DDL of the production schema by some
set selection or set ordering criteria. As it references the production areas, the
loading schema contains the same DMCL and must be stamped with the
DMCL reference date-time of the production schema.

11. Figure 3-4 shows a TRANSLATE DMCL Listing with some errors.

Reference Manual IDS/II

3-16 47 A2 11UD Rev00

__
| |
| |
| DDLPROC 30.00 X1167.2 DOCLIST FAYOT IDS2 IDS2__R5 18:15:33 |
| MAY 22, 1980 PAGE 8 |
| TRANSLATE DMCL COMMAND REPORT SOURCE LISTING AND ERRORS |
| ILN XLN TEXT |
| |
| |
| 1 10 COMMENT "***" |
| 2 20 COMMENT "* SCHEMA DMCL FOR TEST-GROUP *TG19* *" |
| 3 30 COMMENT "***" |
| 4 40 |
| 5 50 COMMENT "********************************" |
| 6 60 COMMENT "* SCHEMA *" |
| 7 70 COMMENT "********************************" |
| 8 80 |
| 9 90 SCHEMA TG19-SH. |
| 10 100 |
| 11 110 COMMENT "********************************" |
| 12 120 COMMENT "* AREAS *" |
| 13 130 COMMENT "********************************" |
| 14 140 |
| 15 150 AREA TG19-A00 |
| 16 160 NUMBER-OF-PAGES 53. |
| 17 180 PAGE-SIZE 2040. |
| |
| *** 2-00-24 MANDATORY LINES-PER-PAGE CLAUSE MISSING |
| |
| 18 190 |
| 19 200 AREA TG19-A01 |
| 20 210 NUMBER-OF-PAGES 52. |
| 21 0 CALC-INTERVAL 3. |
| 1 |
| |
| *** 1 2-06-60 CALC-INTERVAL VALUE MUST DIVIDE THE AREA NUMBER OF PAGES |
| |
| 22 220 LINES-PER-PAGE 45 |
| 23 230 PAGE-SIZE 2040. |
| 1 2 |
| *** 1 2-05-17 PAGE-SIZE VALUE MUST BE AN INTEGER NUMBER OF TIMES 256 BYTES - CLAUSE |
| IGNORED |
| 2 0-00-50 SYNTAX ANALYSIS RESUMED AT THIS POINT |
| |
| 24 240 |
| 25 250 END-DMCL. |
| |
|__|

Figure 3-4. TRANSLATE DMCL Listing

Schema Processing

47 A2 11UD Rev00 3-17

3.5.5 PRINT SCHEMA Command

Function

To provide a report on the storage characteristics of the data base and a report on the
DML programming rules.

General Format

 [{library-efn}]
PRINT SCHEMA schema-name [{IN } {DDLIB1 }]
 [{OF} {DDLIB2 }]
 [{DDLIB3 }]

[STORAGE DESCRIPTION [COMPACT]]
[]
[[FOR RECORDS [EXCEPT] {record-name} ...]]
[]
[UWA DESCRIPTION]
[DML [[UPDATE] STATEMENTS]]
[[[RETRIEVAL]]]
[] .
[[FOR RECORDS [EXCEPT] {record-name} ...]]

Rules

1. If the STORAGE DESCRIPTION clause is specified, a report giving the storage
characteristics of the data base is produced.

This report contains:

- general information about the reference dates of the schema, the number of
areas, record-types, set-types, fields, the size and segmentation of the schema
in main memory, the size and format of the global pointers of the data base,
etc.

- information specific to a given storage record: code number of the record,
code numbers of the sets in which it participates, code numbers of its fields,
lay out of the storage record (header, pointer zone and data zone),
characteristics of the storage areas containing the record.

2. If the FOR RECORDS phrase is not specified, the STORAGE report provides
information on all the records of the schema.

3. If the FOR RECORDS phrase is specified, the STORAGE report provides
information on:

- the records in the list, if EXCEPT is not coded.

- the records in the schema except for those of the list, if EXCEPT is coded.

4. If the COMPACT keyword is not coded, the information on repeating groups and
vectors is given for each occurrence of their components.

Reference Manual IDS/II

3-18 47 A2 11UD Rev00

5. If the COMPACT keyword is coded, the information on repeating groups and
vectors is not detailed for each occurrence of their components.

6. The length of a group represents the length of one occurrence of this group,
whether COMPACT is coded or not.

The offset of a group represents the offset of the occurrence of this group if
COMPACT is not coded and the offset of the first occurrence of this group (value 1
for all indexes) if COMPACT is coded.

7. If the DML clause is specified, a report giving the COBOL programming rules for
this schema is produced.

The report contains, on a record-type basis, two kinds of information:

- The COBOL description in the UWA record and the sets in which it
participates.

- The COBOL DML verbs available to process this record and the various fields
to be initialized prior to their use.

8. If the UWA phrase is specified, the report contains the COBOL record description
and miscellaneous control information.

9. If the STATEMENTS phrase is specified, the report contains the COBOL DML
verbs.

If UPDATE is coded, the update verbs are listed.

If RETRIEVAL is coded, the retrieval verbs are listed.

If neither UPDATE nor RETRIEVAL is coded, all verbs are listed.

10. If neither the UWA nor the STATEMENTS phrase is specified, the report contains
the COBOL descriptions and all the DML verbs.

11. If the FOR RECORDS phrase is not specified, the DML report provides information
on all the records of the schema.

12. If the FOR RECORDS phrase is specified, the DML report provides information on:

- the records of the list if EXCEPT is not coded.

- the records of the schema except for those of the list if EXCEPT is coded.

13. If neither the STORAGE clause nor the DML clause is specified, both reports are
produced with all options.

14. The STORAGE report is available only if the object schema is in the "DDL-DMCL"
state. The DML report is available whether the object schema is in the "DDL" or
"DDL-DMCL" state.

15. Figure 3-5 shows a STORAGE report listing without the COMPACT option. Figure
3-6 shows a STORAGE report listing with the COMPACT option. Figure 3-7 shows
a DML report listing.

Schema Processing

47 A2 11UD Rev00 3-19

__
| |
| |
| |
| * SCHEMA TG05-SH * * PRINT STORAGE REPORT OF RECORD R17 * |
| |
| |
| |
| |
|RECORD CODE NUMBER : 17 |
|==================== |
| S T O R A G E R E C O R D L A Y - O U T |
|** |
|* LEVEL * FIELD DESCRIPTION * CODE *SIZE IN BYTES* OFFSET(HEXA)* OFFSET(HEXA)* |
|* * OR FIELD NAME * NUMBER * (DECIMAL) * / RECORD * /USER DATA * |
|** |
|* HEADER * UFAS HEADER * * 4 * 0000 * * |
|* HEADER * STATUS * * 1 * 0004 * * |
|* POINTER * MEMBERSHIP GLOBAL POINTERS FOR SET: * * * |
|* * S07 7 * 6 * 0005 * |
|** |
|* 1 * R17-IDENT * 0 * 17 * 000B * 0000 * |
|* 2 * R17-IDENTH * 1 * 7 * 000B * 0000 * |
|* 2 * R17-CH * 2 * 3 * 0012 * 0007 * |
|* 2 * R17-C * 3 * 2 * 0015 * 000A * |
|* 2 * R17-FH * 4 * 3 * 0017 * 000C * |
|* 2 * R17-F * 5 * 2 * 001A * 000F * |
|* 1 * R17-S2H * 6 * 9 * 001C * 0011 * |
|* 1 * R17-S2GROUP1(1) * 7 * 5 * 0025 * 001A * |
|* 2 * R17-ITEM1(1) * 8 * 3 * 0025 * 001A * |
|* 2 * R17-S2(1,1) * 9 * 1 * 0028 * 001D * |
|* 2 * R17-S2(1,2) * 9 * 1 * 0029 * 001E * |
|* 1 * R17-S2GROUP1(2) * 7 * 5 * 002A * 001F * |
|* 2 * R17-ITEM1(2) * 8 * 3 * 002A * 001F * |
|* 2 * R17-S2(2,1) * 9 * 1 * 002D * 0022 * |
|* 2 * R17-S2(2,2) * 9 * 1 * 002E * 0023 * |
|* 1 * R17-S1H * 10 * 4 * 002F * 0024 * |
|* 1 * R17-S1H * 11 * 1 * 0033 * 0028 * |
|* 1 * R17-FILLER * 12 * 120 * 0034 * 0029 * |
|* 1 * R17-TRAILER * 13 * 4 * 00AC * 00A1 * |
|** |
|* HEADER SIZE : 5 * |
|* POINTER ZONE SIZE : 6 * |
|* DATA ZONE SIZE : 165 * |
|* RECORD TOTAL LENGTH : 175 * |
|** |
| |
| C O N T A I N I N G A R E A (S) |
|** |
|* AREA NAME * CODE *PAGE SIZE* RANGE IN * RANGE IN * LINES *LOCAL PTR SIZE* |
|* *NUMBER* IN BYTES* PAGES * AREA-KEYS *PER PAGE *IN BYTES* BITS* |
|*** |
|* TG05-A01 * 1 * 1024 * 0,120 * 0,1200 * 10 * 2 * 11 * |
|** |
| |
|___|

Figure 3-5. PRINT STORAGE DESCRIPTION Listing

Reference Manual IDS/II

3-20 47 A2 11UD Rev00

__
| |
| |
| |
| * SCHEMA TG05-SH * * PRINT STORAGE REPORT OF RECORD R17 * |
| |
| |
| |
| |
|RECORD CODE NUMBER : 17 |
|==================== |
| S T O R A G E R E C O R D L A Y - O U T |
|** |
|* LEVEL * FIELD DESCRIPTION * CODE *SIZE IN BYTES* OFFSET(HEXA)* OFFSET(HEXA)* |
|* * OR FIELD NAME * NUMBER * (DECIMAL) * / RECORD * /USER DATA * |
|** |
|* HEADER * UFAS HEADER * * 4 * 0000 * * |
|* HEADER * STATUS * * 1 * 0004 * * |
|* POINTER * MEMBERSHIP GLOBAL POINTERS FOR SET: 6 * * * |
|* * S07 7 * * * |
|* * 0005 * * |
|** |
|* 1 * R17-IDENT * 0 * 17 * 000B * 0000 * |
|* 2 * R17-IDENTH * 1 * 7 * 000B * 0000 * |
|* 2 * R17-CH * 2 * 3 * 0012 * 0007 * |
|* 2 * R17-C * 3 * 2 * 0015 * 000A * |
|* 2 * R17-FH * 4 * 3 * 0017 * 000C * |
|* 2 * R17-F * 5 * 2 * 001A * 000F * |
|* 1 * R17-S2H * 6 * 9 * 001C * 0011 * |
|* 1 * R17-S2GROUP1 * 7 * 5 * 0025 * 001A * |
|* 2 * R17-ITEM1 * 8 * 3 * 0025 * 001A * |
|* 2 * R17-S2 * 9 * 1 * 0028 * 001D * |
|* 1 * R17-S1H * 10 * 4 * 002F * 0024 * |
|* 1 * R17-S1 * 11 * 1 * 0033 * 0028 * |
|* 1 * R17-FILLER * 12 * 120 * 0034 * 0029 * |
|* 1 * R17-TRAILER * 13 * 4 * 00AC * 00A1 * |
|** |
|* HEADER SIZE : 5 * |
|* POINTER ZONE SIZE : 6 * |
|* DATA ZONE SIZE : 165 * |
|* RECORD TOTAL LENGTH : 175 * |
|** |
| |
| C O N T A I N I N G A R E A (S) |
|** |
|* AREA NAME * CODE *PAGE SIZE* RANGE IN * RANGE IN * LINES *LOCAL PTR SIZE* |
|* *NUMBER* IN BYTES* PAGES * AREA-KEYS *PER PAGE *IN BYTES* BITS* |
|** |
|* TG05-A01 * 1 * 1024 * 0,120 * 0,1200 * 10 * 2 * 11 * |
|** |
| |
| |
| |
| |
|___|

Figure 3-6. PRINT STORAGE DESCRIPTION COMPACT Listing

Schema Processing

47 A2 11UD Rev00 3-21

__
| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 |
| 08:02:18AUG 20, 1980 PAGE 19 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 * |
| |
| |
|*** |
|* DML RECORD CHARACTERISTICS * |
|*** |
| |
| |
|******************************** |
|* UWA RECORD DESCRIPTION * |
|******************************** |
| |
| 01 R16. |
| 02 R16-IDENT PIC X(7). |
| 02 R16-CREATE-IC . |
| 03 R16-CREATE-CATEH PIC X(10). |
| 03 R16-CREATE-CATE PIC 9(6). |
| 03 R16-CREATE-TIMEH PIC X(10). |
| 03 R16-CREATE-TIME PIC 9(8). |
| 03 R16-CREATE-TESTH PIC X(10). |
| 03 R16-CREATE-TEST PIC X(4). |
| 03 R16-CREATE-SIMUH PIC X(10). |
| 03 R16-CREATE-SIMU PIC X(12). |
| 02 R16-MODIFY-IC . |
| 03 R16-MODIFY-CATEH PIC X(10). |
| 03 R16-MODIFY-CATE PIC 9(6). |
| 03 R16-MODIFY-TIMEH PIC X(10). |
| 03 R16-MODIFY-TIME PIC 9(8). |
| 03 R16-MODIFY-TESTH PIC X(10). |
| 03 R16-MODIFY-TEST PIC X(4). |
| 03 R16-MODIFY-SIMUH PIC X(10). |
| 03 R16-MODIFY-SIMU PIC X(12). |
| 02 R16-CALCH PIC X(6). |
| 02 R16-CALC. |
| 03 R16-CALC-OCC PIC 9(2). |
| 03 R16-CALC-NUM PIC 9(3). |
| 02 R16-MODIFY-DATAH PIC X(10). |
| 02 R16-MODIFY-DATA PIC 9(8). |
| 02 R16-TRAILER PIC X(4). |
| |
|************************ |
|* CONTROL FIELDS * |
|************************ |
| |
|CALC-KEYS ITEMS (CUP NOT) |
| R16-CALC-OCC |
| R16-CALC-NUM |
|SORT KEY ITEMS(DUF NOT) IN SET S10 : |
| R16-CALC-OCC ASCENDING |
| R16-CALC-NUM ASCENDING |
|SORT KEY ITEMS(DUP NOT) IN SET S11 : |
| R16-CALC-OCC DESCENDING |
| R16-CALC-NUM DESCENDING |
| |
|*************************** |
|* SET PARTICIPATION * |
|*************************** |
| |
|OWNER OF SETS : |
| |
| |
|__|

Figure 3-7. PRINT DML Listing (1/8)

Reference Manual IDS/II

3-22 47 A2 11UD Rev00

__
| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 |
| 08:02:18AUG 20, 1980 PAGE 20 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 * |
| |
| |
| S13 |
| MEMBER OF SETS : |
| S10 |
| ORDER SORTED BY DEFINED KEYS DUP NOT |
| INSERTION AUTOMATIC RETENTION MANDATORY |
| S11 |
| ORDER SORTED BY DEFINED KEYS DUP NOT |
| INSERTION AUTOMATIC RETENTION MANDATORY |
| |
| ****************** |
| * LOCATION * |
| ****************** |
| |
| LOCATION MODE CALC |
| |
| REALMS : |
| TG24_A02 |
| TG24-A05 |
| TG24-A08 |
| TG24-A11 |
| TG24-A14 |
| AREA-ID DB-PARAMETER : ARID16 |
| |
| |
|__|

Figure 3-7. PRINT DML Listing (2/8)

Schema Processing

47 A2 11UD Rev00 3-23

__
| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 |
| 08:02:18AUG 20, 1980 PAGE 21 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 |
| |
| |
| ** |
| * DML RETRIEVAL STATEMENTS (FORMAT AND PREREQUISITE ACTION OR CONDITION) * |
| ** |
| |
| |
| ********************************* |
| * FIND (WITHIN DATA BASE) * |
| ********************************* |
| |
| FIND |R16| DB-KEY IS IDENTIFIER |RETAINING . . .| |
| * INITIALIZE IDENTIFIER WITH A DATA-BASE-KEY |
| |
| FIND ANY R16 |RETAINING . . . | |
| * INITIALIZE AREA-ID DB-PARAMETER ARID16 WITH ANY OF : |
| TG24-A02 |
| TG24-A05 |
| TG24-A08 |
| TD24-A11 |
| TG24-A14 |
| * INITIALIZE CALC-KEY ITEMS : |
| R16-CALC-OCC |
| R16-CALC-NUM |
| |
| FIND CURRENT |RETAINING . . .| |
| * CURRENT-OF-RUN-UNIT MUST REFERENCE A RECORD OF THE SAME TYPE |
| |
| *********************************** |
| * FIND (WITHIN RECORD-TYPE) * |
| *********************************** |
| |
| FIND CURRENT R16 |RETAINING . . .| |
| * CURRENT-OF-RECORD-TYPE MUST REFERENCE A RECORD |
| |
| *** |
| * FIND (WITHIN REALM WHERE RECORD IS LOCATED) * |
| *** |
| |
FIND FIRST	R16	WITHIN REALM-NAME	RETAINING . . .	
FIND LAST	R16	WITHIN REALM-NAME	RETAINING . . .	
FIND INTEGER	R16	WITHIN REALM-NAME	RETAINING . . .	
FIND IDENTIFIER	R16	WITHIN REALM-NAME	RETAINING . . .	
WHERE REALM-NAME IS ANY OF :				
TG24-A02				
TG24-A05				
TG24-A08				
TG24-A11				
TG24-A14				
* INITIALIZE IDENTIFIER IF FORMAT 4 IS USED				
FIND NEXT	R16	WITHIN REALM-NANE	RETAINING . . .	
FIND PRIOR	R16	WITHIN REALM-NAME	RETAINING . . .	
WHERE REALM-NAME IS ANY OF :				
TG24-A02				
TG24-A05				
TG24-A08				
TG24-A11				
__				

Figure 3-7. PRINT DML Listing (3/8)

Reference Manual IDS/II

3-24 47 A2 11UD Rev00

| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 |
| 08:02:18AUG 20, 1980 PAGE 22 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 *|
| |
| |
| TG24-A14 |
| * CURRENT-OF-REALM MUST REFERENCE A RECORD OR BE VIRTUAL |
| |
|FIND CURRENT |R16| WITHIN REALM-NAME |RETAINING . . . | |
| WHERE REALM-NAME IS ANY OF : |
| TG24-A02 |
| TG24-A05 |
| TG24-A08 |
| TD24-A11 |
| TG24-A14 |
| * CURRENT-OF-REALM MUST REFERENCE A RECORD OF THE SAME TYPE |
| |
|** |
|* FIND (WITHIN SET OF WHICH RECORD IS OWNER) * |
|** |
| |
|FIND OWNER WITHIN S13 |RETAINING . . .| |
| * CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD (OWNER OR MEMBER) OR BE VIRTUAL |
| |
|FIND CURRENT |R16| WITHIN S13 |RETAINING . . .| |
| * CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD(OWNER) |
| |
|*** |
|* FIND WITHIN SET OF WHICH RECORD IS MEMBER) * |
|*** |
| |
FIND FIRST	R16	WITHIN SET-NAME	RETAINING . . .	
FIND LAST	R16	WITHIN SET-NAME	RETAINING . . .	
FIND INTEGER	R16	WITHIN SET-NAME	RETAINING . . .	
FIND IDENTIFIER	R16	WITHIN SET-NAME	RETAINING . . .	
FIND NEXT	R16	WITHIN SET-NAME	RETAINING . . .	
FIND PRIOR	R16	WITHIN SET-NAME	RETAINING . . .	
WHERE SET-NAME IS ANY OF :				
S10				
S11				
* CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD (OWNER OR MEMBER) OR BE VIRTUAL				
* INITIALIZE IDENTIFIER IF FORMAT 4 IS USED				
FIND CURRENT	R16	WITHIN SET-NAME	RETAINING . . .	
WHERE SET-NAME IS ANY OF :				
S10				
S11				
* CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD (MEMBER) OF THE SAME TYPE				
FIND R16 WITHIN SET-NAME CURRENT	USING FIELD-LIST		RETAINING . . .	
WHERE SET-NAME IS ANY OF :				
S10				
S11				
* CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD (OWNER OR MEMBER) OR BE VIRTUAL				
* INITIALIZE ELEMENTARY FIELDS OF THE LIST , IF USING IS SPECIFIED				
FIND R16 WITHIN S 10	USING FIELD-LIST		RETAINING . . .	
* APPLY SET SELECTION FOR S10				
- LEVEL 1 - IN ORDER TO SELECT OWNER : R15				

Figure 3-7. PRINT DML Listing (4/8)

Schema Processing

47 A2 11UD Rev00 3-25

_ __
| |
| |
| DDLPROC 30.00 X1159.2 DOCLIST FAYOT IDS2 IDS2__R5 08:06:49 |
| AUG 22, 1980 PAGE 21 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 * |
| |
| |
| OF SET : S1* |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| * INITIALIZE ELEMENTARY FIELDS OF THE LIST IF "USING" IS SPECIFIED |
| |
| FIND R16 WITHIN S11 |USING FIELD-LIST | |RETAINING . . . | |
| * APPLY SET SELECTION FOR S11 |
| - LEVEL 1 - IN ORDER TO SELECT OWNER : R15 |
| OF SET : S11 |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| * INITIALIZE ELEMENTARY FIELDS OF THE LIST IF "USING" IS SPECIFIED |
| |
| FIND DUPLICATE WITHIN SET-NAME USING FIELD-LIST |RETAINING . . . | |
| WHERE SET-NAME IS ANY OF : |
| S10 |
| S11 |
| * CURRENT-OF-SET-TYPE MUST REFERENCE A RECORD (MEMBER) OF THE SAME TYPE |
| * INITIALIZE ELEMENTARY FIELDS OF THE LIST |
| |
| ************* |
| * GET * |
| ************* |
| |
| GET |R16| |
| GET FIELD-LIST |
| * ESTABLISH OBJECT RECORD AS :CURRENT-OF-RUN-UNIT |
| |
| |
| |
|__|

Figure 3-7. PRINT DML Listing (5/8)

Reference Manual IDS/II

3-26 47 A2 11UD Rev00

| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 08:02:18 |
| AUG 20, 1980 PAGE 22 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 |
| |
| |
| *** |
| * DML UPDATE STATEMENTS (FORMAT AND PREREQUISITE ACTION OR CONDITION) * |
| *** |
| |
| |
| ***************** |
| * STORE * |
| ***************** |
| |
| STORE R16 |RETAINING . . .| |
| * INITIALIZE ALL FIELDS OF RECORD |
| * INITIALIZE AREA-ID DB-PARAMETER ARID16 |
| WITH ANY OF : |
| TG24-A02 |
| TG24-A05 |
| TG24-A03 |
| TG24-A11 |
| TG24-A14 |
| * APPLY SET SELECTION FOR S10 |
| - LEVEL 1 - IN ORDER TO SELECT OWNER : R15 |
| OF SET : S10 |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| * APPLY SET SELECTION FOR S11 |
| - LEVEL 1 - IN ORDER TO SELECT OWNER : R15 |
| OF SET : S11 |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| |
| |
| *************************** |
| * MODIFY (CONTENTS) * |
| *************************** |
| |
| MODIFY |R16| |RETAINING . . .| |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT (A GET IS NOT REQUIRED) |
| * INITIALIZE ALL FIELDS OF THE RECORD WITH THEIR NEW VALUES |
| |
| MODIFY FIELD-LIST |RETAINING . . .| |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT (A GET IS NOT REQUIRED) |
| * INITIALIZE ELEMENTARY FIELDS OF THE LIST WITH THEIR NEW VALUES |
| |
|___|

Figure 3-7. PRINT DML Listing (6/8)

Schema Processing

47 A2 11UD Rev00 3-27

__
| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 08:02:18 |
| AUG 20, 1980 PAGE 25 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 * |
| |
| |
| ***************************** |
| * MODIFY (MEMBERSHIP) * |
| ***************************** |
| |
| MODIFY |R16| ONLY ALL MEMBERSHIP |RETAINING | |
| WHERE "ALL" REPRESENTS THE FOLLOWING SETS : |
| S10 |
| S11 |
| * APPLY SET SELECTION FOR S10 |
| - LEVEL 1 - IN ORDER TO SELECT OWNER : R15 |
| OF SET : S10 |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| * APPLY SET SELECTION FOR S11 |
| - LEVEL 1 - IN ORDER TO SELECT OWNER : R15 |
| OF SET : S11 |
| INITIALIZE AREA-ID DB-PARAMETER ARID15 |
| WITH ANY OF : |
| TG24-A01 |
| TG24-A04 |
| TG24-A07 |
| TG24-A10 |
| TG24-A13 |
| INITIALIZE CALC-KEY ITEMS : |
| R15-CALC-OCC |
| R15-CALC-NUM |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT |
| |
| MODIFY |R16| ONLY SET-NAME-LIST MEMBERSHIP |RETAINING . . .| |
| WHERE SET-NAME-LIST IS A SUBSET OF THE LIST OF THE PRECEDING FORMAT |
| * APPLY SET SELECTION FOR EACH SET OF SET-NAME-LIST (SEE PRECEDING FORMAT) |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT |
| |
| ** |
| * MODIFY (CONTENTS AND MEMBERSHIP) * |
| ** |
| |
MODIFY	R16	INCLUDING ALL MEMBERSHIP	RETAINING . . .	
MODIFY	R16	INCLUDING SET-NAME LIST MEMBERSHIP	RETAINING . . .	
MODIFY FIELD-LIST INCLUDING ALL MEMBERSHIP	RETAINING . . .			
MODIFY FIELD-LIST INCLUDING SET-NAME-LIST MEMBERSHIP	RETAINING . .			
* PERFORM THE ACTIONS REQUIRED BY THE MODIFY(CONTENTS) STATEMENT				
AND THE MODIFY (MEMBERSHIP) STATEMENT WHICH ARE COMBINED IN THE				
SELECTED MODIFY (CONTENTS AND MEMBERSHIP) STATEMENT				

* ERASE *				
__				

Figure 3-7. PRINT DML Listing (7/8)

Reference Manual IDS/II

3-28 47 A2 11UD Rev00

__
| |
| |
| DDLPROC 20.00 X1864.1 DOCLIST FAYOT IDS2 IDS2__R5 |
| 08:02:18AUG 20, 1980 PAGE 26 |
| * SCHEMA TG24-SH * * PRINT DML REPORT OF RECORD R16 * |
| |
| |
|*************** |
| |
| |
|ERASE |R16| |
| * OBJECT RECORD MUST BE OWNER OF EMPTY SETS |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT |
|ERASE |R16| ALL MEMBERS |
| * ESTABLISH OBJECT RECORD AS CURRENT-OF-RUN-UNIT |
| - WARNING - THIS STATEMENT MAY ERASE THE FOLLOWING RECORDS : |
| R16 |
| R17 |
| |
|__|

Figure 3-7. PRINT DML Listing (8/8)

Schema Processing

47 A2 11UD Rev00 3-29

3.5.6 DELETE SCHEMA Command

Function

To delete an object schema.

General Format

 [{library-efn}]
DELETE SCHEMA schema-name [{IN } {DDLIB1 }] .
 [{OF} {DDLIB2 }]
 [{DDLIB3 }]

Rules

1. The library containing the object schema to be deleted is determined by the default
search rules for update processing or by the qualification.

2. The object schema may be in the "DDL" or "DDL-DMCL" state.

3. The deletion of an object schema may also be obtained using the DELETE
command of LIBMAINT BIN.

Reference Manual IDS/II

3-30 47 A2 11UD Rev00

3.5.7 MOVE SCHEMA Command

Function

To move an object schema from one library to another library.

General Format

 [{library-efn}]
MOVE SCHEMA schema-name [{IN } {DDLIB1 }]
 [{OF} {DDLIB2 }]
 [{DDLIB3 }]

 [{library-efn}]
 [TO {DDLIB1 }] [REPLACE] .
 [{DDLIB2 }]
 [{DDLIB3 }]

Rules

1. The library containing the object schema to be moved is determined by the default
search rules for retrieval processing or by the qualification.

2. The object schema may be in the "DDL" or "DDL-DMCL" state.

3. The library containing the copy is determined by the default search rules for
creation processing or by the qualification.

4. If the copy action is to overwrite an existing member of the same name currently in
the output library selected, then the keyword REPLACE must be coded, otherwise
an error will result.

5. The move of an object schema may also be obtained using the MOVE command of
LIBMAINT BIN.

Schema Processing

47 A2 11UD Rev00 3-31

3.5.8 STATUS Command

Function

To control the flow of DDLPROC commands.

General Format

 | |
 | STATUS RESET . |
 |_________________|

Rules

1. After each command other than STATUS, DDLPROC sets a status indicator to one
of two positions.

The NORMAL position corresponds to the normal completion of the command (no
fatal errors).

The ABNORMAL position corresponds to the abnormal completion of the command
(fatal errors).

2. When the status indicator is in the NORMAL position, DDLPROC looks for the next
command and executes it.

3. When the status indicator is in the ABNORMAL position, DDLPROC looks for the
next command, expecting a STATUS RESET command.

If the next command is not STATUS RESET, DDLPROC terminates abnormally
with a severity code SEV3.

If the next command is STATUS RESET, DDLPROC resets the status indicator to
the NORMAL position and continues its processing as defined in rule 2.

4. A STATUS RESET command is ineffective if the status indicator is already in the
NORMAL position.

Reference Manual IDS/II

3-32 47 A2 11UD Rev00

3.6 DDLPROC EXAMPLES

1. The DDL of schema INVENTORY is entered from an input enclosure
(INVENTORY-DDL) and is to be translated and listed but not loaded.
This is only a first pass to detect DDL syntax errors:

 | |
 | $JOB TRADDL,USER=PC, PROJECT=MCE; |
 | DDLPROC COMMAND=' |
 | TRANSLATE SCHEMA DDL |
 | SOURCE IS *INVENTORY-DDL. |
 | '; |
 | $INPUT INVENTORY-DDL; |
 | SCHEMA NAME IS INVENTORY. |
 | ... |
 | END-SCHEMA. |
 | $ENDINPUT; |
 | $ENDJOB; |
 |______________________________________|

2. The DDL of schema PERSONNEL is entered from a source library MIDS.SLLIB
(member PERSONNEL-DDL). It is to be translated and loaded into an object
schema library MIDS.BINLIB (member PERSONNEL). The DMCL of schema
PERSONNEL is also entered from the source library MIDS.SLLIB (member
PERSONNEL-DMCL). It is to be translated and loaded into the partial object
schema created by the previous command. Information about the storage
characteristics of the data base is also requested.

Figure 3-8 illustrates the sequence of operations.

 | |
 | $JOB TDDLDMCL,USER=PC,PROJECT=MCE; |
 | LIB SL INLIB1=MIDS.SLLIB; |
 | DDLPROC COMFILE=*TRACOM |
 | DDLIB1=MIDS.BINLIB; |
 | $INPUT TRACOM; |
 | TRANSLATE SCHEMA DDL |
 | SOURCE IS PERSONNEL-DDL |
 | OBJECT |
 | CHECK FOR COBOL. |
 | TRANSLATE DMCL |
 | SOURCE IS PERSONNEL-DMCL |
 | OBJECT. |
 | PRINT SCHEMA PERSONNEL |
 | STORAGE DESCRIPTION. |
 | $ENDINPUT; |
 | $ENDJOB; |
 |______________________________________|

For the TRANSLATE SCHEMA DDL command, the source PERSONNEL-DDL is
retrieved from MIDS.SLLIB (first and only library in SL search path) and the object
schema PERSONNEL, in "DDL" state, is stored in MIDS.BINLIB (first and only
library in DD search path).

Schema Processing

47 A2 11UD Rev00 3-33

For the TRANSLATE DMCL command, the source PERSONNEL-DMCL is retrieved
from MIDS.SLLIB (first and only library in SL search path). The object schema
PERSONNEL is retrieved from MIDS.BINLIB (first and only library in DD search
path). It is then updated to contain the DMCL and it becomes an object schema in
"DDL-DMCL" state, available for run-time execution.

For the PRINT SCHEMA command, the object schema PERSONNEL, in "DDL-
DMCL" state, is retrieved from MIDS.BINLIB (first and only library in DD search
path).

MIDS. B INL IB L ib ra ryMIDS. SLL IB L ib ra ry

P E R S O N N E L - D D L

P E R S O N N E L - D M C L

T R A N S L A T E

S C H E M A D D L

T R A N S L A T E D M C L

s o u r c e D D L

s o u r c e D M C L

o b j e c t s c h e m a

D D L D M C L

P E R S O N N E L
P R I N T

S C H E M A

Figure 3-8. Processing Schema PERSONNEL

3. Continuing on from the previous example, the user decides to modify the DMCL
parameters, after several runs of the SIMULOAD command of DBUTILITY. He
updates the member PERSONNEL-DMCL using LIBMAINT SL then calls
DDLPROC to translate the new DMCL and update the object schema.

 | |
 | $JOB TNEWDMCL,USER=PC,PROJECT=MCS; |
 | LIB SL INLIB1=MIDS.SLLIB; |
 | DDLPROC COMFILE=*TRACOM |
 | DDLIB1=MIDS.BINLIB; |
 | $INPUT TRACOM; |
 | TRANSLATE DMCL |
 | SOURCE IS PERSONNEL-DMCL |
 | OBJECT REPLACE. |
 | $ENDINPUT; |
 | $ENDJOB; |
 |_______________________________________|

The keyword REPLACE is necessary to overwrite the old DMCL section.

4. Now the user decides to check out his DML programs against a test data base of a
smaller size than that of the production data base.

The schema DDL is exactly the same for the test and production data bases. The
DMCL varies in terms of area sizes.

The user prepares the source of the test DMCL in the library TEST.MIDS.SLLIB
(member PERSONNEL-DMCL). He then moves the production object schema
PERSONNEL from the library MIDS.BINLIB to the library TEST.MIDS.BINLIB and
translates the test DMCL to replace the production DMCL in the copy, giving the
test object schema. Figure 3-9 illustrates the sequence of operations.

Reference Manual IDS/II

3-34 47 A2 11UD Rev00

 | |
 | $JOB TESTDMCL,USER=PC,PROJECT=MCE; |
 | LIB SL INLIB1=MIDS.SLLIB |
 | INLIB2=TEST.MIDS.SLLIB; |
 | DDLPROC DDLIB1=MIDS.BINLIB |
 | DDLIB2=TEST.MIDS.BINLIB |
 | COMMAND=' |
 | MOVE SCHEMA PERSONNEL TO TEST.MIDS.BINLIB. |
 | TRANSLATE DMCL |
 | SOURCE IS PERSONNEL-DMCL OF SLLIB2 |
 | SCHEMA OF DDLIB2 |
 | OBJECT REPLACE. |
 | '; |
 | $ENDJOB; |
 |___|

In the MOVE command, the object schema PERSONNEL is retrieved from
MIDS.BINLIB (first library in DD search path) and moved to TEST.MIDS.BINLIB as
specified by the efn of the TO phrase. In the TRANSLATE command, the source
PERSONNEL-DMCL is retrieved from TEST.MIDS.SLLIB as specified by the
qualifier SLLIB2. The object schema is retrieved from TEST.MIDS.BINLIB as
specified by the qualifier DDLIB2.

MIDS. BINLIB LibraryMIDS. SLLIB Library

PERSONNEL-DDL

PERSONNEL-DMCL

source DMCL

DDL DMCL

PERSONNEL

source DDL
(production, test)

object schema
(production)

MOVE SCHEMA

TEST. MIDS. SLLIB Library TEST. MIDS. SLLIB Library

PERSONNEL-DMCL

source DMCL
(test)

object schema
(test)

DDL DMCL

TRANSLATE
DMCL

(REPLACE)

Figure 3-9. Processing Test Schema PERSONNEL

Schema Processing

47 A2 11UD Rev00 3-35

DDLPROC DEBUGGING

If, during the processing of a command, DDLPROC aborts because of an exception or
issues an "INTERNAL BUG" message, the field engineer (or the user) is advised to:

1. Rerun DDLPROC with the DUMP=DATA parameter in the extended JCL statement
and a command stream composed of the keyword DEBUG, followed by the
command that caused the error, for example:

 $INPUT DDLCOM;
 DEBUG.
 TRANSLATE SCHEMA DDL ...
 $ENDINPUT;

2. Send the resulting trace output listing, together with the DDL and DMCL source
listings, through the STAR system.

Reference Manual IDS/II

3-36 47 A2 11UD Rev00

47 A2 11UD Rev00 4-1

4. Storage Area Preallocation

4.1 PREALLOC UTILITY

The purpose of PREALLOC is to map a storage area, equivalent to a UFAS file, onto
one or more extents of one or more disk volumes. (See Figure 4-1)

S t o r a g e v i e w D e v i c e / m e d i a

S t o r a g e
a r e a

D isk
ex ten t s

M a p p i n g

Figure 4-1. PREALOC Function

PREALLOC must be invoked for each storage area of the data base.

The characteristics of the storage area such as the number of pages, the number of lines
per page, the page size and the CALC interval are retrieved by PREALLOC from the
object schema, which must be in the "DDL-DMCL" state.

The main parameters to be supplied directly to PREALLOC are:

• The external-file-name, which identifies the occurrence of the storage area.

• The disk device type.

• The names of the volumes on which space is to be reserved.

• Optionally, the amount of space to be taken on each volume and the position at which
the allocation is to take place.

Reference Manual IDS/II

4-2 47 A2 11UD Rev00

4.2 SPACE ALLOCATION

1. From the DMCL information (number of pages NUMP, page size) PREALLOC
calculates the total size of the file in terms of tracks for the specified device class.

This calculation is performed automatically. However it is of administrative interest
for the user to know how many tracks will be required.

This calculation is as follows:

- Find the number of pages per track (PPT) using Table 2-4 in Section II.

- Calculate the total number of tracks (NUMT) by:

 NUMT = (NUMP - 1)/PPT +2

2. Space reservation is done with a disk track as unit. Space is allocated as a series of
one or more extents. An extent is a group of one or more contiguous tracks. On any
one volume a file may have up to 16 extents. However, for efficiency purposes, the
user can restrict the number of extents per volume to less than the maximum (16).

3. In the automatic mode of allocation, the user specifies only the list of volumes on
which the area resides.

PREALLOC allocates on the first volume of the list as many extents as required to
accommodate NUMT tracks. If the file fits on this volume, the processing stops and
the other volumes are ignored. If the space available on this volume is less than
NUMT or if the maximum number of extents allowed is reached too soon,
PREALLOC attempts to place the remainder of the file on the next volume of the
list, using the same type of allocation, and so on until the total file size is allocated

For each volume the allocation of extents is done as follows. A list of all the free
space extents available is inspected. The smallest extent of all those which are
greater or equal to the space required is chosen. Thus if the free extents were 20,
23, 25, 60 cylinders and request was for 24 cylinders then the allocation would be
made on the 25 cylinder extent leaving free space extents of 1, 20, 23, 60 cylinders.
If the space requested is larger than the largest free space extent, this extent is
allocated and the remaining space still required is chosen first by searching for the
smallest of the larger free extents or choosing the largest and then searching for
space for the remainder. Thus if a request for 86 cylinders was made with the
above space list then 60 and 25 extents would be allocated and one cylinder would
be used from the 20 cylinders.

4. There is a less automatic mode of allocation, in which the user specifies for each
volume the amount of space to be allocated. The allocation fails if this amount of
space is not available on the volume or if the number of extents required is larger
than permitted.

The user may also specify the cylinder address at which allocation is to occur. In
this case there must be a sufficiently large contiguous free space at the supplied
address to allocate in one extent the amount of space specified.

5. The space allocated is formatted by PREALLOC. For each page, the page header
and a CALC chain OWL record are written. The rest of the page is filled with binary
zeroes.

Storage Area Preallocation

47 A2 11UD Rev00 4-3

6. PREALLOC also creates the standard UFAS labels and specific IDS labels. The
latter contain, the name and DMCL reference date of the schema used for the
preallocation, the storage area name and its DMCL characteristics. This information
will have to match at run-time the corresponding information in the schema loaded
for execution.

Reference Manual IDS/II

4-4 47 A2 11UD Rev00

4.3 PREALLOC EXTENDED JCL STATEMENT

PREALLOC can be invoked using the following extended JCL statement:

PREALLOC external - file - name

 { CAT } }
{FILESTAT = { UNCAT } }
{ { TEMPRY } }
{TEMPRY

 [CATALOG = integer-1] [CATNOW]
 { ddd }]
[EXPDATE = { yy/ddd }]
 { yy/mm/dd }]

[UNIT = {CYL }]
 {TRACK }]

[MAXEXT = { 5 }]
[{ integer-2 }]

{ RESIDENT }
{ DEVCLASS = device-class }
{ { GLOBAL = MEDIA = (volume-name [volume-name]...)) } }
{ { SPLIT = ((volume-name SIZE = integer-3 } }
{ { [CYL = integer-4 [TRACK = integer-5]]) } }
{ { } }
{ { [(volume-name SIZE = integer-6 } }
{ { [CYL = integer-7 [TRACK = integer-8]])]...) } }

 UFAS = (IDS = (AREA = area-name
 SCHEMA = schema-name
 DDLIB1 = (library-description))) ;

4.3.1 PREALLOC Parameter Description

external-file-name The name chosen must be unique within the set of file
names already present on the volume(s) to be used.

FILESTAT This keyword indicates whether the area is permanent
cataloged(CAT), permanent uncataloged (UNCAT) or
temporary (TEMPRY)

TEMPRY This self-identifying keyword is equivalent to
FILESTAT=TEMPRY

CATALOG integer-1 is a one digit integer which must satisfy the
condition:

 1 <= integer-1 <= 5

It indicates the rank in the ATTACH statement of the catalog
where the file is or is to be catalogued. If CATALOG is not
specified when FILESTAT=CAT, the default search rules for
catalogs are used.

CATNOW This keyword indicates that a file description is to be entered
in the catalog specified. If a description already exists,
CATNOW is ignored.

Storage Area Preallocation

47 A2 11UD Rev00 4-5

EXPDATE This keyword gives the expiry date for the file. If no expiry
date is given the default is the current date.

UNIT This keyword is used in conjunction with the SPLIT
parameter. It indicates the unit (cylinder or track) in which
SIZE is expressed.

MAXEXT Integer-2 is a one or two-digit decimal integer which must
satisfy the condition:

 1 <= integer-2 <= 16

It specifies the maximum number of extents to be selected
per volume.

RESIDENT If this keyword is specified then the allocation will take place
on the resident volumes attached to the system.

DEVCLASS If this keyword is specified then non-resident disk space is
allocated. It is followed by a standard disk device class
identification.

GLOBAL This keyword specifies that allocation of extents is to be
performed automatically.

MEDIA This parameter is followed by a list of one or more volume
names to be used in the acquisition of space. The order of
the list is important. The utility will allocate the maximum
number of extents (see MAXEXT above) on the first volume
and proceed to the second an so on.

In the case of a multi-volume allocation it is possible that the
space requirement for the file will be satisfied without all the
volumes being needed. If this occurs then the utility will not
use the last volumes in any way, and they need not be
mentioned in future references to the file.

The volume names given must be in the desired order of
usage. The pages with the lowest page numbers will be
recorded on the first volume and the pages with the highest
page numbers on the last.

SPLIT This keyword specifies that the allocation is to be performed
on a volume by volume basis. It is followed by a parameter
group which lists each volume and the amount of space
required on each.

Optionally the user may specify for each volume the disk
address at which allocation is to occur. It is possible to give
addresses for some of the volumes and not for others.

The volume names given must be in the desired order of
usage. The pages with the lowest page numbers will be
recorded on the first volume and the pages with the highest
page numbers on the last.

Reference Manual IDS/II

4-6 47 A2 11UD Rev00

SIZE This keyword, supplied with each volume name, gives the
amount of space required on the volume. The numeric value
supplied, up to five digits long, is expressed in the unit
specified by UNIT.

CYL/TRACK These optional keywords allow the user to specify the disk
address within volume, at which allocation is to occur. If this
is specified then there is no automatic extent selection.
Instead all the amount of SIZE for the volume is allocated
starting at the supplied address. The user must ensure that
there is a sufficiently large contigous free space at the
supplied address; otherwise the allocation will fail and
terminate abnormally.

The numeric value giving the cylinder address must not be
more than three digits long. A partially used cylinder can be
given as the starting point for allocation.

The numeric value giving the track address must not be
more than two digits long.

If CYL is not specified for a volume then space is reserved
by automatic extent selection.

UFAS This keyword is followed by a parameter group which defines
the file characteristics.

IDS This keyword signifies that the allocation is for an IDS area.

AREA This keyword specifies the DMCL name of the storage area
(up to 30 characters in length).

SCHEMA This keyword specifies the name of the schema where the
storage area is defined.

DDLIB1 This keyword is followed by a parameter group which
identifies the library containing the object schema.

Storage Area Preallocation

47 A2 11UD Rev00 4-7

4.4 EXAMPLES

1. Two storage areas are to be allocated. The related DMCL entries are:

 AREA NAME IS REVISET
 NUMBER-OF-PAGES IS 10000
 PAGE-SIZE IS 1024 BYTES
 LINES-PER-PAGE IS 20.

 AREA NAME IS ADDSET
 NUMBER-OF-PAGES IS 50000
 PAGE-SIZE IS 2048 BYTES
 LINES-PER-PAGE IS 28.

The first area is to be given the external-file-name MIDS.RE and allocated on the MSU
0400 volume BD1023.

The second area is to be given the external-file-name MIDS.LB and allocated on the
MSU 0400 volumes BD1024, BD1025.

Both files are protected by a retention period of 300 days.

The object schema is member TPL in library MIDS. BINLIB which is RESIDENT.

The job description to perform allocation is:

| |
| $JOB DBPREAL USER=MOAN PROJECT=CMSMCETP; |
| PREALLOC MIDS.RE |
| FILESTAT=UNCAT |
| EXPDATE=300 |
| DEVCLASS=MS/M400 GLOBAL=(MEDIA=BD1023) |
| UFAS=(IDS=(AREA=REVISET |
| SCHEMA=TPL |
| DDLIB1=MIDS.BINLIB)); |
| PREALLOC MIDS.LB |
| FILESTAT=UNCAT |
| EXPDATE=300 |
| DEVCLASS=MS/M400 GLOBAL=(MEDIA=(BD1024 BD1025)) |
| UFAS=(IDS=(AREA=ADDSET |
| SCHEMA=TPL |
| DDLIB1=MIDS.BINLIB)); |
| $ENDJOB; |
|___|

The space requirements may be calculated using Table 2-4.

For file MIDS.RE NUMP = 10 000 PPT = 11
 Number of tracks = (10 000 - 1)/11 + 2 = 911 (48 cylinders)

For file MIDS.LB NUMP = 50 000 PPT = 6
 Number of tracks = (50 000 - 1)/6 + 2 = 8335 (439 cylinders)

Reference Manual IDS/II

4-8 47 A2 11UD Rev00

2. A storage area is to be allocated on 3 MSU 0400 volumes VL0015, VL0016,
VL0017. The related DMCL entry is:

 AREA NAME IS PRODUCTS
 NUMBER-OF-PAGES IS 100000
 PAGE-SIZE IS 2048 BYTES
 LINES-PER-PAGE IS 45.

As NUMP = 100 000 and PPT=6, the total number of tracks is (100 000 - 1)/6 + 2 =
16 668 which amounts to 878 cylinders.

Assume that:

- 300 cylinders are allocated on VL0015 starting from cylinder 65.
- 300 cylinders are allocated anywhere on VL0016
- the remainder is allocated anywhere on VL0017.
- the file is already cataloged in the site catalog with the external-file-name

DEPT1.PRODUCTS
- the schema is member INVENTORY of the catalogued library

DEPT1.CONTROL.BINLIB.

The job description to perform allocation is:

| |
| $JOB DBPREAL USER=HOAN PROJECT=CMS; |
| PREALLOC DEPT1.PRODUCTS |
| FILESTAT=CAT |
| DEVCLASS=MS/M400 |
| SPLIT=((VL0015 SIZE=300 CYL=65) |
| (VL0016 SIZE=300) |
| (VL0017 SIZE=300)) |
| UFAS=(IDS=(AREA=PRODUCTS |
| SCHEMA=INVENTORY |
| DDLIB1=DEPT1.CONTROL.BINLIB)); |
| $ENDJOB; |
|___|

The default values for UNIT and MAXEXT are respectively CYL and 5.

Cylinders 65 through 364 must be available on volume VL0015 before the preallocation.

At least 300 cylinders must be available on volume VL0016, in fewer than 6 extents.

The SIZE specified for volume VL0017 is larger than required PREALLOCwill allocate
only the space necessary (277 cylinders).

47 A2 11UD Rev00 5-1

5. COBOL Data Manipulation Language

IDS/II offers a data manipulation facility for accessing a data base described by a
schema, composed of:

1. Communication zones between the user and the DBCS. These include:

- User Working Area (UWA) records, where record occurrences are prepared
before storing or placed after retrieval. The format of UWA records
corresponds to that defined in the schema.

- Special registers through which the DBCS informs the user of normal or
abnormal termination of a function.

- Currency indicators where the DBCS maintains pointers to different records in
the data base. These indicators are implicit input and output parameters of
most manipulation functions.

2. Manipulation functions. These allow the user to store, retrieve and erase records, to
modify the contents and membership of records, and to test various conditions in
the data base.

Reference Manual IDS/II

5-2 47 A2 11UD Rev00

5.1 HOST LANGUAGES

The data base facility is not a stand-alone package. It is considered as a service
available to a program written in a host language.

The program uses the constructs of this host-language to express the sequence of
manipulation functions to be executed, to prepare the contents of UWA records and to
interpret the results of the manipulation functions.

The way in which the data base facility is handled in the host-language itself depends on
the type of language.

5.1.1 Implementation Languages

In this case the data base facility does not add new constructs to the host-language. The
data manipulation functions are invoked by standard procedure calls. The
communication zones and function parameters must be defined by the programmer,
using the declaratives statements of the host-language.

The link with the schema is not under the compiler's responsibility.
Therefore such languages are particularly adapted to interpretative system processors
(QUERY or data base utilities) which must adapt themselves at run-time to any data
base schema.

5.1.2 High Level Languages (COBOL)

In this case the data base facility is assimilated by the host language itself. It introduces
new constructs recognized by the compiler. The data manipulation functions take the
form of new procedural statements in the syntax conventions of the host language. The
communication zones are not defined by the programmer; they are derived automatically
from the schema by the compiler and made available to the program in the form of
declarative statements specific to the host language.

Unlike implementation languages, the program is dedicated to a given schema.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-3

5.2 COBOL DATA MANIPULATION LANGUAGE (DML)

The new constructs introduced by the data base facility in the COBOL language affect
the Data Division and the Procedure Division.

1. In the Data Division, a new section, the Sub-Schema Section, specifies the schema
which is referenced by the program. Communication zones are automatically
derived from this schema.

Only one schema can be referenced from a single compiled program. If a run-unit is
to use more than one schema, then separate compilations are permissible.

2. In the Working-Storage Section and Linkage Section, data items may be defined
with a new USAGE: DB-KEY. These data items will contain data-base-key.

3. In the Procedure Division, new statements are introduced:

- the ACCEPT, CONNECT, DISCONNECT, ERASE, FIND, FINISH, GET,
MODIFY, READY, STORE verbs are imperative statements.

- the IF statement tests data base conditions.

- The USE statement of the DECLARATIVES part allows a centralized data-
base-exception handling.

4. The DDLIST parameter of the COBOL JCL statement provides the programmer
with a DATA BASE RECORDS listing containing all selected records within the
schema with their corresponding items.

5. The PRINT DML command of DDLPROC provides the programmer with the
information required for accessing the data base. This information, given on a
record-type basis, includes:

- the description of the UWA record, in COBOL terms

- the control-fields of the record (CALC-key, sort-keys, no-duplicate-control-
fields)

- the sets in which the record participates

- the location mode of the record and its containing areas. Note that the DDL
term "area" corresponds to the COBOL term "realm"

- the list of manipulation verbs authorized for processing the record, together
with the actions to be taken prior to their invocation.
ACCEPT, FINISH, READY, IF, and USE are not mentioned in this list.

Reference Manual IDS/II

5-4 47 A2 11UD Rev00

5.3 NOTATION

The notation used in all formats and the rules that apply to all formats are as follows:

• The elements that make up a clause consist of upper case words, lower case words,
special symbols, and special characters.

• All underlined upper case words are required when the format is used (keywords).

• Upper case words not underlined are optional words and need not be used.

• Lower case words are generic terms that must be replaced by appropriate names or
values.

• When a portion of a general format is enclosed in square brackets, [], that portion may
be included or omitted at the user's choice. Braces, é è, enclosing a portion of a
general format means selection of one of the options contained within the braces must
be made. A choice indicator, II and II, enclosing a portion of a general format means
that a selection of one or more of the options contained within the choice indicators
must not be chosen more than once in that entry or statement. In all cases, a choice is
indicated by vertically stacking the possibilities.
That portion of a general format contained within brackets or braces may be followed
by an ellipsis (...) to indicate repetition.

Examples:

1. FIND [record-name] DB-KEY IS identifier-1 .

The item record-name may be included or omitted as needed in the program. If
included, this indicates a test is to be performed to ensure that the record found is
of the named record-type.

2. FIND {ANY } record-name
 {DUPLICATE}
A choice must be made between ANY and DUPLICATE.

3. FIND record-selection-expression

[{ MULTIPLE }]
[{ REALM }]
[RETAINING CURRENCY FOR { {SETS } }]
[{ { {set-name} } ... }]
[{ RECORD }]

This example uses the choice indicators II II to allow at least one or many of the listed
forms to be used. The phrase could be:

RETAINING REALM RECORD
RETAINING RECORD
RETAINING REALM set-name-1 set-name-2 set-name-3
RETAINING REALM SETS

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-5

5.4 SYNTAX RULES

5.4.1 COBOL Syntax Conventions

The COBOL-74 rules governing syntax, punctuation, and column alignment apply to all
DML statements.

5.4.2 Reserved Words

The list of COBOL/DML reserved words is to be found in the COBOL Reference Manual.

5.4.3 Record Field Qualification

In the schema DDL
• field-names are unique within a record-type
• different record-types may contain fields with identical names.

When duplicate field-names are used in COBOL-74 verbs, they must be qualified by the
record-name.

Take as an example the following DDL:

RECORD CUSTOMER-1A ...
 02 CUSTOMER-NUMBER TYPE UNPACKED DEC 6.
 02 CUSTOMER-NAME TYPE CHAR 30.
 02 CUSTOMER-ADDRESS TYPE CHAR 40.
RECORD CUSTOMER-2A...
 02 CUSTOMER-NUMBER TYPE UNPACKED DEC 6.
 02 CUSTOMER-NAME TYPE CHAR 30.
 02 CUSTOMER-ADDRESS TYPE CHAR 40 OCCURS 2.
SET CUST-OF-DISTRICT ...
 MEMBER CUSTOMER-1A ...
 MEMBER CUSTOMER-2A ...

In the DML statement:
FIND CUSTOMER-1A WITHIN CUST-OF-DISTRICT USING CUSTOMER-NUMBER OF
CUSTOMER-1A.
CUSTOMER-NUMBER must be qualified even though CUSTOMER-1A is already
specified.

In the DML statement:
GET CUSTOMER-ADDRESS OF CUSTOMER-1A CUSTOMER-NAME OF
CUSTOMER-1A.
All fields are qualified in order to identify CUSTOMER-1A.

Reference Manual IDS/II

5-6 47 A2 11UD Rev00

Qualification precedes the subscripts in COBOL while the subscripts precede the
qualification in DDL:

COBOL: CUSTOMER-ADDRESS OF CUSTOMER-2A (2)
DDL: CUSTOMER-ADDRESS (2) OF CUSTOMER-2A

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-7

5.5 SUB-SCHEMA SECTION IN DATA DIVISION

The Sub-Schema Section, which must be the first section of the Data Division, contains
only one entry, the sub schema (DB) entry. It specifies the data base schema description
to be accessed by the program.
Only one DB entry can appear in a given program.

General Format

DATA DIVISION .

SUB - SCHEMA SECTION .

DB schema - name .

[{WORKING - STORAGE }
[DB - DESCRIPTIONS IN { }
[{ LINKAGE } SECTION .]

[{ {ALL } }]
[{RECORDS ARE { } }]
[{ {[NOT] {record-name}... } }]
[{ }]
[{ }]
[{ {ALL } } .]
[{REALMS ARE { } }]
[{ {[NOT] {realm-name}... } }]

Rules

1. The schema referenced by schema-name must be made available to the program
during execution (see Section VII).

2. The DB-DESCRIPTIONS clause specifies where the data base record-descriptions
and DBCS control structures are to be placed when the program is compiled.

3. If the program is a main (not called by another) program of a batch step or of a TDS
transaction processing routine, the DB-DESCRIPTIONS clause must specify
WORKING-STORAGE. If the entire clause is omitted, WORKING-STORAGE is the
default value.

4. If the program is a secondary (called by another) program, the DB-DESCRIPTIONS
clause must specify LINKAGE SECTION. A secondary program may call another
secondary program.

5. In the programs that make up a single batch step or a single TDS TPR, there must
be, for a given schema, only one program with DB-DESCRIPTIONS IN WORKING-
STORAGE.

6. Any batch step program (main or secondary) may contain READY and FINISH
statements. A TPR program does not usually contain READY or FINISH
statements; if it does, they are ignored at execution time.

Reference Manual IDS/II

5-8 47 A2 11UD Rev00

7. Each call to a secondary program must contain, in the USING phrase of the CALL
statement, arguments concerning the data-base identifiers that will be used in the
execution of the secondary program.

In the secondary program the USING phrase of the PROCEDURE statement must
contain similar arguments in the same order.

It is the user's responsibility to provide the argument list.
The argument list must be defined as follows:

 USING{ua} ... DB-REGISTERS DB-CXT [DB-PARAMETERS] {rn} ...

where:

- ua ... are the user's data arguments that are being passed between programs.

- DB-REGISTERS, DB-CXT and DB-PARAMETERS pass the necessary control
structures to permit the execution of all DML functions.

DB-PARAMETERS must not be specified if the schema does not contain any
data-base-parameters.

- rn ... is a list of the record-names referenced in the called program. The
record-names must be the same as those recorded in the schema. If a record-
type has no fields, it must not be specified in the list.

8. The RECORDS clause allows the user to declare that the program references only
records of specified types. Only information concerning these record-types is kept in
the program.

9. If the word NOT prefixes the list of record-names, all the records, except those
declared, are available.

10. If RECORDS ARE ALL is coded, the entire data base defined by the schema may
be referenced.

11. As an alternative to RECORDS ARE the user may code REALMS ARE which limits
the scope of program reference to the record types defined in the selected areas.
This clause is a more convenient way of writing a lengthy list of records.

12. If the word NOT prefixes the list of realm-names, the record-types defined in all
areas, except those declared, are available.

13. The effect of REALMS ARE ALL is the same as that of RECORDS ARE ALL.

14. If neither RECORDS nor REALMS is specified then all the record-types of the data
base are made available.

15. The use of the RECORDS/REALMS clause reduces the size of the UWA, or
LINKAGE area description, that the program will require.

5.5.1 Inter-Program Linkage Example

A master program, PM, makes ready a single area, AREA-X, of a schema SDB-L and
calls two programs, P1 and P2, which reference the same schema as PM.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-9

The program P1 references two record-types, RT-A and RT-B, while the program P2
references three record-types, RT-A and RT-D and RT-G.

The structure of the programs is shown on next page.

 __
| IDENTIFICATION DIVISION. |
| PROGRAM-ID. PM. |
| ... |
| DATA DIVISION. |
| SUB-SCHEMA SECTION. |
| DB SDB-L. |
| RECORDS ARE RT-A RT-B RT-D RT-G. |
| ... |
| READY AREA-X ... |
| ... |
| CALL P1 USING MYARG DB-REGISTERS DB-CXT DB-PARAMETERS |
| RT-A RT-B. |
| ... |
| CALL P2 USING MAX MAY DB-REGISTERS DB-CXT DB-PARAMETERS |
| RT-A RT-D RT-G. |
| ... |
| FINISH AREA-X. |
| ... |
| STOP RUN. |
|__|
| IDENTIFICATION DIVISION. |
| PROGRAM-ID. P1. |
| ... |
| DATA DIVISION. |
| SUB-SCHEMA SECTION. |
| DB SDB-L. |
| DB-DESCRIPTIONS IN LINKAGE SECTION. |
| RECORDS ARE RT-A RT-B. |
| ... |
| PROCEDURE DIVISION USING FUNCX DB-REGISTERS DB-CXT |
| DB-PARAMETERS RT-A RT-B. |
| ... |
| FIND RT-A ... |
| ... |
| EXIT PROGRAM. |
|__|

Reference Manual IDS/II

5-10 47 A2 11UD Rev00

 __
| IDENTIFICATION DIVISION. |
| PROGRAM-ID. P2. |
| ... |
| DATA DIVISION. |
| SUB-SCHEMA SECTION. |
| DB SDB-L. |
| DB-DESCRIPTIONS IN LINKAGE SECTION. |
| RECORDS ARE RT-A RT-D RT-G. |
| ... |
| PROCEDURE DIVISION USING ARA ARB DB-REGISTERS DB-CXT |
| DB-PARAMETERS RT-A RT-D RT-G. |
| ... |
| FIND RT-D ... |
| ... |
| ACCEPT MID FROM RT-A CURRENCY. |
| ... |
| ERASE RT-G. |
| ... |
| EXIT PROGRAM. |
|__|

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-11

5.6 DB-KEY DATA ITEMS

In the WORKING-STORAGE or LINKAGE SECTION, data items containing data-base-
keys are defined with the type USAGE IS DB-KEY:

level-number identifier USAGE IS DB-KEY .

This type of data description is required for the "identifier" of the following DML
statements:

ACCEPT identifier FROM ...CURRENCY
ACCEPT...FROM identifier REALM-NAME

 {NEXT }
ACCEPT identifier FROM...{PRIOR}
 {OWNER}

ACCEPT identifier FROM...MINIMUM-DB-KEY
FIND...DB-KEY IS identifier .

USAGE DB-KEY is equivalent to USAGE COMP-2 when these data items are used in
COBOL-74 statements.

Reference Manual IDS/II

5-12 47 A2 11UD Rev00

5.7 DATA BASE SPECIAL REGISTERS

Data base special registers are used to communicate data base information between the
program and the Data Base Control System (DBCS). The program can read the contents
of the registers, but it cannot alter the contents.
The registers are:

DB-STATUS

The reserved word, DB-STATUS, returns the status of every DML statement at the
conclusion of the statement. The implicit description is that of an alphanumeric data item
of seven characters. If no exceptions are encountered during the execution of the
statement, DB-STATUS is set to zero. If an exception is encountered, DB-STATUS is set
to the appropriate value. See Data Base Status Indicators.

DB-REALM-NAME

The reserved word, DB-REALM-NAME, returns the name of a realm at the conclusion of
certain DML statements. The implicit description is that of an alphanumeric data item of
30 characters. A successful statement other than FIND or STORE leaves this register
unchanged.
Each successful FIND and STORE statement updates DB-REALM-NAME with the
appropriate realm-name. An unsuccessful function may supply a realm-name in the
register in addition to the data-base-exception code supplied in DB-STATUS. If a realm-
name is not relevant to the unsuccessful function, the register is set to blanks.

DB-RECORD-NAME

The reserved word, DB-RECORD-NAME, returns the name of a record at the conclusion
of certain DML statements. The implicit description is that of an alphanumeric data item
of 30 characters. A successful statement other than FIND or STORE leaves this register
unchanged.
Each successful FIND and STORE statement updates DB-RECORD-NAME with the
appropriate record-name. An unsuccessful function may supply a record-name in the
register, in addition to the data-base-exception code supplied in DB-STATUS. If a record-
name is not relevant to the unsuccessful function, the register is set to blanks.

DB-SET-NAME

The reserved word, DB-SET-NAME, returns the name of a set at the conclusion of
certain DML statements. The implicit description is that of an alphanumeric data item of
30 characters. A successful statement leaves this register unchanged. An unsuccessful
statement may supply a set-name in the register, in addition to the data-base-exception
code supplied in DB-STATUS. If a set-name is not relevant to the unsuccessful function,
the register is set to blanks.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-13

DB-DETAILED-STATUS

The reserved word, DB-DETAILED-STATUS, returns an explanatory message upon the
abnormal conclusion of certain DML statements.

The implicit description is the following:

01 DB-DETAILED-STATUS.
 02 DB-MESSAGE-LENGTH USAGE COMP-1.
 02 DB-MESSAGE-TEXT PIC LX(256)
 DEPENDING ON DB-MESSAGE-LENGTH.

If no message is present DB-MESSAGE-LENGTH is set to 0.

Reference Manual IDS/II

5-14 47 A2 11UD Rev00

5.8 DATA BASE STATUS INDICATORS

The execution of any data base manipulation statement gives a value in the special
register, DB-STATUS. This value, known as a "data base status indicator", consists of a
statement code in the leftmost two character positions and a status code in the rightmost
five character positions.
If the execution of any data base manipulation statement results in a data-base-
exception, the statement code indicates which type of manipulation statement caused
the exception. If the execution of a data base manipulation statement does not result in a
data-base-exception condition, both the statement code and the status code are set to
zero.

5.8.1 Statement Code and Status Code

The leftmost two characters of the data base status indicator contain the statement code.
See Table 5-1 for statement codes.

The rightmost five characters of the data base status indicator contain the status code
that indicates a specific data-base-exception condition.
See Table 5-2 for data base status codes.

5.8.2 Statement Code and Status Code Combinations

The valid permissible combinations of statement code and status code are shown in
Table 5.3, Statement and Status Code Combinations. An X at an intersection indicates a
permissible conbination. This table relates to generic DML functions. For more detailed
information about the variations of these functions reference should be made to the
description of each DML statement.

5.8.3 Use of Special Registers for Data-base-exception Conditions

When the DBCS recognizes certain data-base-exception conditions, it places values into
the special registers DB-REALM-NAME, DB-RECORD-NAME, and DB-DETAILED-
STATUS, DB-SET-NAME, when relevant.

DB-REALM-NAME

During the execution of a data base manipulation statement that is not successfully
completed, the realm-name of a realm associated with the data-base-exception condition
is placed in DB-REALM-NAME.
For example: FIND NEXT WITHIN realm-1 can return and "End of Realm" exception. In
this case the realm-name will be placed in DB-REALM-NAME.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-15

DB-RECORD-NAME

During the execution of a data base manipulation statement that is not successfully
completed, the record-name of a record-type associated with the data-base-exception
condition is placed in DB-RECORD-NAME.

DB-SET-NAME

During the execution of a data base manipulation statement that is not successfully
completed, the set name of a set-type associated with the data-base-exception condition
is placed in the special register, in DB-SET-NAME. For example, FIND NEXT WITHIN
set-name-1 can return an "End of Set" exception. In this case, the set-name is placed in
DB-SET-NAME.

DB-DETAILED-STATUS

During the execution of a data base manipulation statement that is not successfully
completed, there may be in DB-DETAILED-STATUS an explanatory message
complementing the DB-STATUS value. For example, a STORE may return a message
indicating which field did not satisfy the validity checks.

Table 5-1. Statement Codes

Statement Statement Code
ACCEPT 01
CONNECT 02
DISCONNECT 03
ERASE 04
FIND 05
FINISH 06
GET 08
DB Condition (IF) 09
MODIFY 11
READY 13
STORE 15

Reference Manual IDS/II

5-16 47 A2 11UD Rev00

Table 5-2. Data Base Status Codes

Status Code Data-base-exception Condition
DATA BASE RETRIEVAL EXCEPTION CONDITIONS

02100 End of a set or realm has been reached.
02300 No set can be located to satisfy the set selection criteria.
02400 No record can be located to satisfy the record-selection-

expression.
CURRENCY INDICATOR EXCEPTION CONDITIONS

03100 Current record of realm, set-type, or record-type is null (or
virtual).

03200 Current record of the run-unit is null.
03300 Current record of the run-unit, realm, or set-type is not of correct

record-type.
NAME SPECIFICATION EXCEPTION CONDITIONS

04100 Data-base-key value is inconsistent with realm name.
04300 Realm-name is invalid (not known to the schema or inconsistent

with record-type).
DATA ITEM VALUE EXCEPTION CONDITIONS

05100 Contents of data items are duplicated in the data base.
05200 Contents of data items do not satisfy validity checks.
DELETED RECORD EXCEPTION CONDITIONS
07200 Deletion of a non-empty set (ERASE).

MEMBERSHIP EXCEPTION CONDITIONS
08100 Object record is already connected to the set. (CONNECT)
08300 Object recodr is not currently connected to the set.

(DISCONNECT OR MODIFY)
READY MODE EXCEPTION CONDITIONS

09100 Realm or data base not in ready state.
09200 Realm not in update mode.
09300 Realm already in ready state.
GCOS 7 SPECIFIC

73630 Ordinal null in FIND identifier WITHIN set or realm.
73640 CALC-key modification cannot be performed without migration.
73650 Set membership violates AREA OF OWNER clause (MODIFY

or CONNECT).
73660 UWA record-description missing

RESOURCE ALLOCATION EXCEPTION CONDITIONS
80200 Space in realm is exhausted.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-17

Table 5-3. Statement and Status Code Combinations

STATUS CODE STAT EMENT CODE CONDITION
01
ACC

02
CON

03
DISC

04
ER
A

05
FIND

06
FINIS

08
GET

09 IF
(DB
Cond)

11
MODI

13
REA

15
STO

02100 X End of realm or set has been reached.
02300 X X X X No set found to satisfy set selection criteria.
02400 X No record found to satisfy record selection.
03100 X X X Current record of realm, set-type or record-type is

null.
03200 X X X X X X X X Current record of run-unit is null.
03300 X X X X X X X Current record of run-unit, realm or set-type is not

correct type.
04100 X X X Data-base-key is inconsistent with realm-name.
04300 X X Realm-name is invalid.
05100 X X X Contents of data items duplicated on data base.
05200 X X X Contents of data items do not satisfy validity checks.
07200 X Deletion of non-empty set specified.
08100 X Object record is already connected to the set.
08300 X X Object record not currently connected to the set.
09100 X X X X X X X X X X Realm or data base not ready.
09200 X X X X X Realm not in update mode.
09300 X Realm already in ready state.
73630 X Ordinal null in FIND identifier WITHIN set or realm.
73640 X CALC-key modification cannot be performed without

migration.
73650 X X Set membership violates "AREA OF OWNER"

clause.
73660 X X UWA record-description missing.
80200 X Space in realm exhausted.

Reference Manual IDS/II

5-18 47 A2 11UD Rev00

5.9 DATA BASE CURRENCY INDICATORS

In the environment of a data base, the user must be able to access records that are a
part of more than one logical relationship. Unlike sequential files, many records can
logically follow a given record, depending upon the structure of the data base and the
search criteria in use. Thus, there can be several simultaneous "current records" during
the execution of a run-unit, and several simultaneous "current record pointers". These
simultaneous current record pointers are known as "currency indicators". The following
currency indicators are maintained during the execution of a program:

• The current record of the run-unit.

• The current record of each set-type.

• The current record of each realm.

• The current record of each record-type.

The DBCS maintains a pointer to each of these record occurrences. Any of these
pointers may be NULL; that is, they may specify no record if there is no current record of
that type. The current record of a set-type or a realm may be "virtual" if it identifies a
position in the set or realm that is between two records. This can happen because of a
DISCONNECT or ERASE statement. A currency indicator of this type is valid for all DML
statements except "FIND CURRENT WITHIN set-name or realm-name", "FIND
DUPLICATE WITHIN set-name ...", "ACCEPT ... FROM set-name or realm-name
CURRENCY or REALM-NAME", and "Data Base Condition (IF)".

5.9.1 Current Record of the Run-unit

The pointer for each run-unit is maintained to identify the object record for certain data
manipulation statements that do not specify a particular record. The execution of some
types of statements causes the DBCS to update its pointer to a different record, while the
execution of other types of statements does not affect the pointer to the current record of
the run-unit.

5.9.2 Current Record of a Set-type

For each Set Description entry the DBCS maintains a separate pointer.
The pointer for each set-type is maintained by the DBCS to identify the record in that set-
type that was last referenced by a successfully executed statement. A single record,
when accessed, sets the currency indicators for all sets of which it is an owner or
member, unless a RETAINING phrase was specified in the DML statement. A
DISCONNECT or ERASE statement may set the currency indicators to the position
between two records that the current record occupied.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-19

5.9.3 Current Record of a Realm

For each Realm Description entry the DBCS maintains a separate pointer.
The pointer for each realm is maintained by the DBCS to identify the record in that realm
that was last referenced by a successfully executed statement, unless a RETAINING
phrase was specified in the DML statement.
An ERASE statement may set the currency indicator to the position between two records
that the current record occupied.

5.9.4 Current Record of a Record-type

For each Record Description entry the DBCS maintains a separate pointer. The pointer
for each record-type is maintained by the DBCS to identify the record of that type that
was last referenced by a successfully executed statement, unless a RETAINING phrase
was specified in the DML statement.

5.9.5 Currency Values

In addition to the currency indicators, the user can keep the data-base-key value for any
record or set accessed. A statement such as

ACCEPT SAVE-RECORD-03-DBK FROM RECORD-03 CURRENCY.

would allow the manual retention of the location for the current record of that type. In
some complex structures it may be advisable to keep needed currency values within the
control of the program, since many DML functions can change the currency indicators.
When the record in the example is needed later, a statement such as

FIND RECORD-03 DB-KEY IS SAVE-RECORD-03-DBK.

would re-establish the saved record as current of run-unit and reset all appropriate
currency indicators for the record.

Reference Manual IDS/II

5-20 47 A2 11UD Rev00

5.9.6 Currency Indicators and DML Statements

Table 5-4 treats each DML statement with respect to each of the four types of currency
indicator. It indicates the currencies used as implicit input parameters and the currencies
updated on successful completion.

A statement of the form "FIND FIRST WITHIN realm-1" establishes currency for the run-
unit, the realm, the record-type, and any set-types of which the found record is an owner
or member. The record located first within the realm establishes currency for the
appropriate sets. Thus, if the statement "FIND NEXT WITHIN set-name-1" is issued,
then the currency indicators for run-unit, realm, record-type, and set-types are all
updated to reflect the first record found in that set. If the set is empty then an "End of
Set" exception condition is returned and the currency indicators for run-unit, realm,
record-type, and set-types are not updated.

When a new record is added to the data base (STORE), currency indicators for run-unit,
realm and record-type are affected. Any set-types of which the new record-type is an
owner or member are also affected.

When a record is removed from the data base (ERASE), currency indicators are
affected. Current of run-unit is set to null. Current of record-type is set to null if the record
erased is the current record of the record-type. Current of set-type and realm are set to
virtual if the record erased is the current of set-type and/or realm respectively. Even
though the current record of set-type or realm is not available, the currency indicator
identifies the position between two records that the current record occupied.

When an unsuccessful DML statement is executed, the currency indicators are not
updated. For example, if the statement "FIND NEXT WITHIN set-name-1" returns an
"end of set" status, the currency indicator for set-name-1 will still identify the last record
in the set occurrence. If the set was empty the currency indicator will identify the owner
record since that is what it identified before the FIND statement was executed.
Note that the special registers DB-REALM-NAME, DB-RECORD-NAME, and DB-SET-
NAME are updated by an unsuccessful DML statement.

There are some instances when the automatic updating of currency indicators is not
desired. The RETAINING CURRENCY FOR phrase can be used with a FIND, STORE,
MODIFY or CONNECT statement to inhibit updating of the specified indicators. For
example, in a complex network structure (as diagrammed below) involving a PART
record and a RELATIONSHIP record used to generate a parts explosion, it may not be
desired to affect the currency for the CALL-OUT type when listing out all the parts
involved in an assembly.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-21

5.9.7 Example

P A R T

C A L L - O U T W H E R E - U S E D

R E L A T I O N S H I P

A specific PART is located by a FIND ANY PART statement that establishes that record
as being the current of the CALL-OUT and WHERE-USED sets.
When traversing the CALL-OUT set to determine all the components of the PART, it is
necessary to preserve the set currency when going from each RELATIONSHIP record up
to the owner PART record. The operation would be coded as:

 FIND ANY PART.
LOOP-ON-COMPONENTS.
 FIND NEXT RELATIONSHIP WITHIN CALL-OUT.
 IF DB-STATUS EQUAL "0502100" GO TO LAST-COMPONENT.
 FIND OWNER PART WITHIN WHERE-USED
 RETAINING CURRENCY FOR CALL-OUT.
 GET.
 .
 .
 .
 GO TO LOOP-ON-COMPONENTS.

If the RETAINING CURRENCY FOR CALL-OUT phrase was omitted, then each
subordinate PART record found would reset the currency for that set and probably send
the reporting program down the wrong path.

Reference Manual IDS/II

5-22 47 A2 11UD Rev00

Table 5-4. Currency Usage and Update (1/3)

STATEMENT CURRENCIES USED IN INPUT CURRENCIES UPDATED
ON SUCCESSFUL
COMPLETION

ACCEPT...FROM CURRENCY current-of-run-unit
ACCEPT...FROM realm-name
CURRENCY

current-of-realm specified

ACCEPT...FROM record-name
CURRENCY

currend-of-record-type specified

ACCEPT...FROM set-name
CURRENCY

current-of-set-type specified

ACCEPT...FROM REALM-NAME current-of-run-unit
ACCEPT...FROM record-name
REALM-NAME

current-of-record-type specified

ACCEPT...FROM set-name
REALM-NAME

current-of-set-type specified

ACCEPT...FROM set-name
NEXT/PRIOR/OWNER

current-of-set-type specified

CONNECT...TO set-name .current-of-run-unit, as object
record
.if First level of set selection path
is identified by APPLICATION,
the corresponding current-of-set-
type is used. In addition, if the set
selection path has only one level
and if ORDER is NEXT or
PRIOR, the current-of-set-type
identifies the insertion point

current-of-set-type
specified, if not retained

DISCONNECT...FROM set-name current-of-run-unit, as object
record

current-of-set-type specified
is made "virtual" if the
object record was the
current of this set

ERASE... [ALL MEMBERS] current-of-run-unit, as object
record

.current-of-run-unit is nulled

.current-of-realm is made
"virtual" if an erased record
was current of its realm
.current-of-record-type is
nulled if an erased record
was current of its record-
type
.current-of-set-type of the
sets in which an erased
record was an owner is
nulled if this record was the
current of set.
.current-of-set-type of the
sets in which an erased
record was an actual
member is made "virtual" if
this record was the current
of set.

FIND...DB-KEY IS... .current-of-run-unit
.current-of-realm, if not
retained

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-23

Table 5-4. Currency Usage and Update (2/3)

FIND ANY record-name .current-of-record-type, if
not retained

FIND DUPLICATE record-name current-of-run-unit, to identify
CALC record-type and position in
"synonym"chain

.current-of-set-type, if not
retained, of all the sets in
which the record is an owner
or an AUTOMATIC-
MANDATORY member or a
MANUAL-OPTIONAL
member currently
connected.

FIND FIRST/LAST/ ordinal...
WITHIN realm-name

.current-of-run-unit

.current-of-realm, if not
retained

FIND NEXT/PRIOR... WITHIN
realm-name

current-of-realm specified, to
identify position in realm

.current-of-record-type, if
not retained

FIND FIRST/LAST/
ordinal...WITHIN set-name

current-of-set-type specified, to
identify set occurrence

.current-of-set-type, if not
retained, of all the sets in
which the record is an owner
or an AUTOMATIC-
MANDATORY member or a
MANUAL-OPTIONAL
member currently
connected

FIND NEXT/PRIOR ...WITHIN set-
name

current-of-set-type specified, to
identify set occurrence and
position in set occurrence

FIND OWNER WITHIN set-name current-of-set-type specified, to
identify set occurrence

FIND CURRENT current-of-run-unit
FIND CURRENT record-name current-of-record-type specified
FIND CURRENT... WITHIN realm-
name

current-of-realm specified

FIND CURRENT... WITHIN set-
name

current-of-set-type specified

FIND record-name WITHIN set-
name CURRENT [USING...]

current-of-set-type specified, to
identify set occurrence

FINDrecord-name WITHIN set-
name [USING...]

if first level of set selection path is
by APPLICATION, the
corresponding current-of-set-type
is used

FIND DUPLICATE WITHIN set-
name

currend-of-set-type specified, to
identify record-type, set
occurrence and position in set
occurrence

GET current-of-run-unit, as object
record

OWNER/MEMBER/TENANT
CONDITION

current-of-run-unit

set-name EMPTY CONDITION current-of-set-type specified, to
identify set occurrence

MODIFY... (no membership) current-of-run-unit, as object
record

Reference Manual IDS/II

5-24 47 A2 11UD Rev00

Table 5-4. Currency Usage and Update (3/3)

MODIFY... MEMBERSHIP .current-of-run-unit, as object
record
.if first level of set selection path
of a new set occurrence is
identified by APPLICATION, the
corresponding current-of-set-type
is used. Also, if the set selection
path has only one level and if
ORDER is NEXT or PRIOR, the
current-of-set-type identifies the
insertion point.

.current-of-realm, if not
retained
.current-of-record-type, if
not retained
.current-of-set-type, if not
retained, of all the sets in
which the record is an owner
or an AUTOMATIC-
MANDATORY member or a
MANUAL-OPTIONAL
member currently
connected

READY...
STORE record-name if first level of a set selection path

is identified by APPLICATION,
the corresponding current-of-set-
type is used. In addition, if the set
selection path has only one level
and if ORDER is NEXT or
PRIOR, the current-of-sey-type
identifies the insertion point

.current-of-run-unit

.current-of-realm, if not
retained
.current-of-record-type, if
not retained
.current-of-set-type, if not
retained, of all the sets in
which the record is an owner
or an AUTOMATIC-
MANDATORY member or a
MANUAL-OPTIONAL
member currently
connected.

IDS session initial conditions all currencies are nulled

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-25

5.10 DATA MANIPULATION LANGUAGE STATEMENTS

The Data Manipulation Language consists of the following statements:

ACCEPT Obtain the data-base-keys or realm-names held within the
DBCS currency indicators, or obtain DMCL information from
the object schema.

CONNECT Insert a new record occurrence into a set in which the record
has been defined to be a MANUAL OPTIONAL member.

DISCONNECT Remove a record from a set in which it resides as a
MANUAL OPTIONAL member.

ERASE Remove a record from the data base, provided it has no
members.

FIND Locate any record in the data base subject to a variety of
record-selection-expression options.

FINISH Make a realm unavailable for further accesses.

GET Obtain the contents of a current record.

DB Condition (IF) Test data base conditions.

MODIFY Alter the contents of data items on the data base and/or the
set relationships of a record.

READY Make the contents of a realm available for processing.

STORE Add a new record occurrence to the data base.

USE Define a DB-EXCEPTION procedure to be automatically
invoked when needed.

Each DML statement are described in detail below. The tables showing the DB-STATUS
values are interpreted as follows:

A "_" in the columns REALM, RECORD or SET indicates that the corresponding register
DB-REALM-NAME, DB-RECORD-NAME or DB-SET-NAME is left unchanged by the
DBCS.

A blank in the columns REALM, RECORD or SET indicates that the corresponding
register is filled with blanks by the DBCS.

An "X" in the columns REALM, RECORD or SET indicates that the corresponding
register is filled by the DBCS with the name of a realm, record or set. If "X" is enclosed in
parentheses, the register is filled with either a name or blanks, depending on the error.

The order in which the error conditions are presented for a given DML statement reflects,
in most cases, the sequence of tests performed by the DBCS during the execution of the
DML function.

Reference Manual IDS/II

5-26 47 A2 11UD Rev00

5.10.1 ACCEPT

Function

Causes the contents of the specified currency indicators to be made available to the
program, provides a means for deriving the realm name that corresponds to a data-base-
key value, supplies the data-base-keys of the NEXT, PRIOR, OWNER of a record within
a set and reads DMCL information from the object schema.

General Format

Format 1

 [record-name]
ACCEPT identifier-1 FROM [set-name] CURRENCY
 [realm-name]

Format 2

 [record-name]
ACCEPT identifier-2 FROM [set-name] REALM-NAME
 [identifier-3]

Format 3

 {NEXT }
ACCEPT identifier-4 FROM set-name {PRIOR }
 {OWNER }

Format 4

ACCEPT identifier-5 FROM realm-name LINES-PER-PAGE

Format 5

ACCEPT identifier-6 FROM realm-name MINIMUM-DB-KEY
 [OF record-name]

Format 6

ACCEPT identifier-7 FROM realm-name NUMBER-OF-PAGES
 [OF record-name]

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-27

Syntax Rules

1. Identifier-1, identifier-3, identifier-4 and identifier-6 must be DB-KEY items.

2. Identifier-2 must be an alphanumeric elementary item. It must be large enough to
handle any REALM-NAME. The minimum size is 30 (PIC X(30)).

3. Identifier-5 must be an elementary integer item with a range at least equal to the
range of a COMP-1 item.

4. Identifier-7 must be an elementary integer item with a range at least equal to the
range of a COMP-2 item.

General Rules

Format 1

1. If record-name, set-name or realm-name is specified, the data-base-key value for
the current record of record-name, set-name or realm-name respectively is placed
in the data item referenced by identifier-1.

2. If a record-name, set-name or realm-name is not specified, the data-base-key value
for the current record of the run-unit is placed in the data item referenced by
identifier-1.

3. The currency indicator involved must be neither NULL nor virtual.

Format 2

1. The realm-name that is derived from the data-base-key value in the data item
referenced by identifier-3 or from the specified currency indicator is placed in the
data item referenced by identifier-2, according to the rules for an alphanumeric
elementary move.

2. If identifier-3 or a record-name or a set-name is not specified, the name of the
realm that is associated with the current record of the run-unit is placed in the data
item referenced by identifier-2, according to the rules for an alphanumeric
elementary move.

3. If a currency indicator is involved, it must be neither NULL nor virtual.

Format 3

1. The currency indicator of set-name must point to a record (owner or member) or
indicate a position (virtual).

2. The data-base-key of the NEXT or PRIOR or OWNER record within set-name of
this record or position is placed in identifier-4.

The NEXT or PRIOR record may be the owner itself. (There is no "end-of-set"
condition). The set may be empty.

Reference Manual IDS/II

5-28 47 A2 11UD Rev00

Format 4

1. The number of lines per page of realm-name is moved into the user defined item
identifier-5.

Format 5

1. The lowest (first) data-base-key value of realm-name is placed in identifier-6. If the
optional record-name is present in the clause then the value supplied is the lowest
(first) data-base-key in the realm for the range of this record-type.

Format 6

1. The number of pages of realm-name is placed in identifier-7. If the optional record-
name is present then the size, in pages, of the record range within realm-name, is
placed in identifier-7.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-
REGISTERS

CATEGORY DB-STATUS REALM RECORD SET
None 0000000 - - -
Data base not open 0109100

ACCEPT
...CURRENCY

CRU null 0103200

Current-of-area null or
virtual

0103100 X

Current-of-record-type null 0103100 X
Current-of-set-type null or
virtual

0103100 X

ACCEPT CRU null 0103200
...REALM-NAME Current-of-record-type null 0103100 X

Current-of-set-type null or
virtual

0103100 X

Data-base-key inconsistent 0104100
ACCEPT ... Inconsistent 0104100
NEXT/PRIOR/
OWNER

Current-of-set-type null 0103100 X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-29

5.10.2 CONNECT

Function

Causes a record stored in the data base to become an actual member of a named set in
which the record has been declared to be a MANUAL OPTIONAL member. The current
record of the run-unit is the object of the statement.

General Format

CONNECT [record-name] TO set-name
 [RETAINING CURRENCY FOR {SETS }]
 [{set-name }]

Syntax Rules

1. Record-name is not required. If specified, record-name must be the name of the
current record of the run-unit.

2. The current record of the run-unit must be defined to be a MANUAL OPTIONAL
member of the set-type specified in the CONNECT statement.

General Rules

1. Execution of the CONNECT statement causes the current record of the run-unit to
become an actual member of the specified set-type provided that it is not currently
connected to an occurrence of this set-type.

2. The set occurrence to which the current record of the run-unit is to be connected is
determined by the set selection criteria. The record is connected to the set
occurrence in accordance with the set ordering criteria of the set-type.

3. The realms in which the current record of the run-unit is stored and in which the
records of the affected set are stored must be open in update.

4. If the RETAINING phrase is not specified, the current record of the run-unit
becomes the current record of the set-type into which the record has been
connected. Other currency indicators are not affected.

5. If the RETAINING phrase is specified, no currency indicator is affected.

NOTES: 1. The set selection process uses the field or db-parameter values of
the UWA. The set insertion process uses the sort-key and no-
duplicate-control-field values of the record on the data base.

2. If a data-base-exception occurs during the execution of a
CONNECT statement, the data base is restored to the state it was
in before the statement was executed (this is performed without
using the journals). No currency indicators are affected by an
unsuccessful statement.

Reference Manual IDS/II

5-30 47 A2 11UD Rev00

Example

The EMPLOYEE record is a MANUAL OPTIONAL member of the STAFF-TO set, with a
set selection path consisting of only 1 level identified by CALC-KEY.

EMPLOYEE

STAFF-TO

WORKS-FOR

DIVISION-RECORD

ORGANIZATION
-UNIT

C

C

The DML sequence connecting an EMPLOYEE to a DIVISION-RECORD is the following:

MOVE "mmm" TO EMPLOYEE-NUMBER.
FIND ANY EMPLOYEE. Establish current-of run-unit
MOVE "nnnn" TO DIVISION-NUMBER. Prepare set selection path
CONNECT EMPLOYEE TO STAFF-TO. Connect

FUNCTION ERROR CONDITION DB-
REGISTERS

CATEGORY DB-STATUS REALM RECORD SET
None record connected 0000000 - - -
Data base not open 0209100
CRU null 0203200
CRU not of correct type (when
specified) or not declared as
OPTIONAL member of the set

0203300 X (cru) (X)

CRU is an OPTIONAL
member of the set but is
currently connected

0208100 X X

Area not in ready state 0209100 X X (X)
Area not in update mode 0209200 X X (X)
Owner of new set occurrence
does not respect the "AREA
OF OWNER" condition

0273650 X
(owner)

X X

Set selection failed 0202300 X X
Duplicate not allowed (sort-key
or other control field)

0205100 X X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-31

5.10.3 DISCONNECT

Function

Logically removes a record from a specified set if the record is a MANUAL OPTIONAL
member of the set. The current record of the run-unit is the object of the statement.

General Format

 | |
 | DISCONNECT [record-name] FROM set-name |
 |___|

Syntax Rules

1. Record-name is not required. If specified, record-name must be the name of the
current record of the run-unit.

2. The current record of the run-unit must be defined to be a MANUAL OPTIONAL
member of the set-type specified in the DISCONNECT statement.

General Rules

1. Execution of the DISCONNECT statement causes the current record of the run-unit
to be removed from membership in the specified set-type provided that it is
currently connected to an occurrence of this set-type.

2. The realms in which the current record of the run unit is stored and in which the
records of the affected set are stored must be open in update.

3. If the current record of the run-unit is the current of the set-type specified, the
currency indicator for the set-type is updated to identify the position between the
two records that the disconnected record occupied. If the current record of the run-
unit is not the current record of the set-type specified, the currency indicator is not
affected. Other currency indicators are not affected.

NOTES: 1. The current record of the specified set-type may become
unavailable, as described in General Rule 3. However, the NEXT,
PRIOR, and OWNER records are available. This means that the
currency indicator is valid for all subsequent DML statements
which use a set position rather than a particular record. For
example, the following sequence is valid:

 DISCONNECT FROM set-name-1.
 FIND NEXT WITHIN set-name-1.

2. If a data-base-exception occurs during the execution of a
DISCONNECT statement, the data base is restored to the state it
was in before the statement was executed (without using the
journals). In addition, no currency indicators are affected by an
unsuccessful statement.

Reference Manual IDS/II

5-32 47 A2 11UD Rev00

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET

None; record connected 0000000 - - -
Data base not open 0309100
CRU null 0303200
CRU not of correct type (when
specified) or not declared as
OPTIONAL member of the set

0303300 X (cru) (X)

CRU is an OPTIONAL
member of the set but
currently not connected

0308300 X X

Area not in ready state 0309100 X X
Area not in update mode 0309200 X X

5.10.4 ERASE

Function

Removes one or more records from the data base. The current record of the run-unit is
the object of the statement.

General Format

 | |
 | ERASE [record-name] [ALL MEMBERS] |
 |_____________________________________|

Syntax Rule

Record-name is not required. If specified, record-name must be the name of the current
record of the run-unit.

General Rules

1. Execution of the ERASE statement causes one or more records to be removed
from the data base.

2. If ALL is not specified and the current record of the run-unit is not the owner of a set
that currently has members, the record is disconnected from the sets to which it is
currently connected, if any, and then removed from the data base.

3. If ALL is not specified and the current record of the run-unit is the owner of a set
that currently has members, an exception condition results.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-33

4. If ALL is specified, and the current record of the run-unit is the owner of a set that
currently has members, then the removal of the current record of the run-unit is
executed as explained in General Rule 2 and is followed by the removal of all of
these member records. Any record so removed is treated as though it were the
object record of an ERASE...ALL statement.

The process is repeated until all hierarchically related records have been removed
from the data base.
Note: Therefore ALL must always be used WITH CARE.

5. If ALL is specified, and the current record of the run-unit is not the owner of a set
that currently has members, execution proceeds as if ALL had not been specified.

6. The realms in which the current record of the run-unit is stored and in which the
records of the affected sets are stored must be open in update.

7. Currency indicators are affected as follows:

- The current record of the run-unit is nulled.

- If any record removed from the data base is the current record of its record-
type, the currency indicator for the record-type is nulled.

- If any record removed from the data base is the current record of a set-type of
which it is the owner, the currency indicator for the set-type is nulled.

- If any record removed from the data base is the current record of a set-type to
which it is connected, the currency indicator for the set-type is updated to
identify the position between the two records that the removed record
occupied.

- If any record removed from the data base is the current record of its realm, the
currency indicator for the realm is updated to identify the position that the
removed record occupied.

Reference Manual IDS/II

5-34 47 A2 11UD Rev00

NOTES: 1. As specified in General Rules 2 and 4, each object record is
disconnected from any sets to which it is currently connected. This
means no special consideration need be made for MANUAL
OPTIONAL sets. If an object record is currently connected to a
MANUAL OPTIONAL set, it will be disconnected before the record
is removed from the data base. If an object record is currently
disconnected from a MANUAL OPTIONAL set, no error will result
and the record will be removed from the data base.

2. The current record of a set-type may become unavailable as
described in General Rule 7d; however, the NEXT, PRIOR, and
OWNER records are available. This means the currency indicator
is valid for subsequent DML statements referencing a position
within the set rather than a particular record of the set. For
example, the following sequence is valid:

 ERASE B.
 FIND NEXT WITHIN A-B.

where the B record is a member of the A-B set.

3. The current record of a realm may become unavailable as
described in General Rule 7e; however, the NEXT and PRIOR
records are available. This means that the currency indicator is
valid for subsequent DML statements referencing a position within
the realm rather than a particular record of the realm.

4. a) If a data-base-exception occurs during the execution of an
ERASE statement without member deletion, the data-base is
restored to the state it was in before the statement was executed
(without using the journals). The currency indicators are not
affected and the control is given back to the calling program with
the appropriate DB-STATUS value.

b) If a data-base-exception occurs during the execution of an
ERASE statement with member deletion, but before the updating
of the data-base has actually begun, then the DBCS proceeds as
described above.

c) If a data-base-exception occurs during the execution of an
ERASE statement with member deletion, but after the updating of
the data base has actually begun (an area is not in ready state or
not in update mode), then the processing depends on the
protection level of the data base:
- If the data base is protected by the BEFORE journal, in BATCH,
IOF or TDS environment, the data base is restored to the state
that it was in before the statement, the currency indicators are not
affected and the control returns to the calling program with the
appropriate DB-STATUS value.
- If the data base is not protected by the BEFORE journal in
BATCH or IOF environment, the data base is left in an
inconsistent state and the step is aborted. The data base must be
restored by FILREST or VOLREST.
- If the data base is protected by the AFTER journal and deferred
updates in TDS environment, the data base is restored to the state
it was in at the last commitment point, then the TPR is aborted and
not restarted.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-35

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET
General None; record(s) erased 0000000 - - -

Data base not open 0403100
CRU null 0403200
CRU not of correct type
(when specified)

0403300 X (cru)

Area not in ready state 0409100 X X
Area not in update mode 0409200 X X

ERASE
[record-name]

Record is owner of a non-
empty set occurrence

0407200 X X X

5.10.5 FIND

Function

Establishes a specific record occurrence in the data base as the object of subsequent
statements.

General Format

FIND record-selection-expression

 [{ MULTIPLE }]
 [{ REALM }]
 [RETAINING CURRENCY FOR { {SETS } }]
 [{ { {set-name}...} }]
 [{ RECORD }]

General Rules

1. The FIND statement causes the record referenced by the record-selection-
expression to become the current record of the run-unit. The realm-name for the
record found is placed in the special register DB-REALM-NAME and the name of
the record found is placed in DB-RECORD-NAME.

2. If the RETAINING phrase is not specified, the record referenced by the record-
selection-expression becomes the current of its realm, the current record of its
record-type, and the current record of all set-types in which it is a tenant.

3. If the RETAINING phrase with the optional word REALM is specified, the realm
currency indicator is not changed.

4. If the RETAINING phrase with the optional word RECORD is specified, the record-
type currency indicator is not changed.

5. If the RETAINING phrase with the optional word SETS is specified, no set-type
currency indicators are changed.

Reference Manual IDS/II

5-36 47 A2 11UD Rev00

6. If the RETAINING phrase with the optional set-name, etc. is specified, the set
currency indicators for the named set-types are not changed.

7. If the RETAINING phrase with the optional word MULTIPLE is specified then the
realm, record-type and set-type currency indicators are not changed.

NOTES: 1. The execution of a FIND statement does not make the selected
record contents available to the program; it merely identifies the
record for use in subsequent statements. To obtain the contents of
data items within the record, a GET statement must be issued.

2. If an exception condition is encountered, no currency indicators
are changed. However, the special registers DB-REALM-NAME,
DB-RECORD-NAME, and DB-SET-NAME are updated.

3. The currency indicators for a MANUAL OPTIONAL set will not be
updated if the record found is not currently connected to the set.
The currency indicators will be updated if the record found is
currently connected to the set.

Format 1

 __
 | |
 | FIND [record-name-1] DB-KEY IS identifier-1 |
 |__|

Rules

1. Identifier-1 must be defined as a DB-KEY item.

2. The record identified is the record whose data-base-key value is equal to the value
of the data item referenced by identifier-1.

3. Record-name-1 is not required. If specified, the record found must be of the record-
type specified by record-name-1.

4. The value in identifier-1 must be a complete data-base-key and not an area-key.
ACCEPT statements can be used to obtain data-base-key values.

Format 2

FIND {ANY } record-name-2
 {DUPLICATE}

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-37

Rules

1. The record referenced by record-name-2 must have a CALC location mode.

2. For FIND ANY, a realm is selected, if there is a choice. The schema-supplied area
identification parameter is used (WITHIN clause in DDL).

3. For FIND ANY, the CALC-key value for the record named by record-name-2 is used
to calculate the data-base-key value for the identified record. The value must be
moved into the CALC-key fields in the UWA before the FIND statement is issued.

4. For FIND DUPLICATE, the DBCS searches the CALC chain beginning with the
current record of the run-unit, looking for the next record of the same type whose
CALC-key is equal to that of the current of run-unit. The FIND DUPLICATE
statement assumes that the current of run-unit is already one of the duplicates. The
LOCATION MODE CALC declaration in the schema must have DUPLICATES ARE
ALLOWED.

NOTE: The value of the CALC-key used during the execution of a FIND DUPLICATE
statement is the one found in the record on the data base. The value in the
UWA is not used during this execution.

Format 3

| |
| FIND DUPLICATE WITHIN set-name-1 USING {identifier-2} ... |
|___|

Rules

1. Identifier-2, ... must be defined in the record entry for the current record of the set-
type referenced by set-name-1.

2. The record identified:

- is a member of the set occurrence identified by the currency indicator for set-
name-1.

- has a record-type equal to the current record of the set type referenced.

- has the contents of the data items referenced by identifier-2, ... equal to those
in the current record of the set-type referenced.

3. The DBCS begins its search at the next record in the forward direction.

NOTES: 1. The values of identifier-2, ... used in the search are those in the
record on the data base. The values in the UWA are not used
during the execution of the FIND DUPLICATE statement.

2. If the owner record is encountered before a duplicate record is
found, a "record-not-found" (02400) exception condition results. If
the duplicate record exists between the first and the current record
of the set, it will not be found.

Reference Manual IDS/II

5-38 47 A2 11UD Rev00

Format 4

 {NEXT }
 {PRIOR }
 {FIRST } {set-name-2 }
FIND { } [record-name-3]WITHIN { }
 {LAST } {realm-name-1 }
 {integer-1 }
 {identifier-4 }

Rules

1. Integer-1 may be signed. This allows a relative forward or backward reference.

2. The data item referenced by identifier-4 must be a signed elementary integer, and
must have a non-null value.

3. If record-name-3 is not specified, all record-types defined in the schema are
considered in evaluating the record-selection-expression.

4. If record-name is specified, only the record-type of the record referenced by record-
name-3 is considered in evaluation of the record-selection-expression. All other
record-types are ignored.

5. If the NEXT phrase and realm-name are specified, the record identified is the one
whose data-base-key value is the next higher, relative to the data-base-key value of
the current record of the referenced realm.

6. If the PRIOR phrase and realm-name are specified, the record identified is the one
whose data-base-key value is the next lower, relative to the data-base-key value of
the current record of the referenced realm.

7. If the FIRST phrase and realm-name are specified, the record identified is the one
whose data-base-key value is the lowest, relative to all records stored in the
referenced realm.

8. In the LAST phrase and realm-name specified, the record identified is the one
whose data-base-key value is the highest, relative to all records stored in the
referenced realm.

9. If integer-1 or identifier-4 is specified, and realm-name is specified, the record
identified is the one whose ordinal position in the realm is equal to the value of
integer-1 or the contents of the data item referenced by identifier-4. If the specified
value is positive, the ordinal position is relative to the record whose data-base-key
value is the lowest in the referenced realm. If negative, the ordinal position is
relative to the record whose data-base-key value is the highest in the referenced
realm.

10. If the NEXT phrase and set-name are specified, the record identified is the next
record in the set relative to the current record of the set, according to the
conventional set order.

11. If the PRIOR phrase and set-name are specified, the record identified is the prior
record in the set, relative to the current record of the set, according to the
conventional set order.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-39

12. If the FIRST phrase and set-name are specified, the record identified is the first
member of the set in which the current record of the set is a member, according to
the conventional set order.

13. If the LAST phrase and set-name are specified, the record identified is the last
member of the set in which the current record of the set is a member, according to
the conventional set order.

14. If an integer-1 or identifier-4 is specified, and set-name is specified, the record
identified is the one whose ordinal position in the set in which the current record of
the set is a member is equal to the value of integer-1 or the contents of the data
item referenced by identifier-4. If the value specified is positive, the ordinal position
is relative to the first member of the set, according to the conventional set order. If
negative, the ordinal position is relative to the last member of the set, according to
the conventional set order.

Format 5

 [{realm-name-2}]
FIND CURRENT [record-name-4] [WITHIN { }]
 [{set-name-3 }]

Rules

1. If set-name-3 is specified, the record identified is the current record of the set-type
indicated.

2. If realm-name-2 is specified, the record identified is the current record of the realm
indicated.

3. If record-name-4 and set-name-3 are specified, then record-name-4 must be the
current record of the set-type indicated.

4. If record-name-4 and realm-name-3 are specified, then record-name-4 must be the
current record of the realm indicated.

5. If record-name-4 is specified and the WITHIN clause is omitted, the record
identified is the current record of the record-type indicated.

6. If neither realm-name-2, set-name-3, nor record-name-4 are specified, the record
identified by the statement is the current record of the run-unit.

Format 6

 | |
 | FIND OWNER WITHIN set-name-4 |
 |_______________________________|

Reference Manual IDS/II

5-40 47 A2 11UD Rev00

Rules

1. The record is the owner of the set occurrence identified by the currency indicator for
set-name-4.

2. In some complex network structures it is advisable to use the optional RETAINING
CURRENCY FOR... clause to insure that other set currencies are not altered by the
execution of the FIND. When the owner record is found, it is made the current
record of all set-types in which it is a tenant. For example, in a network structure for
an organization chart application:

O R G A N I Z A T I O N - U N I T

S U P E R I O R S U B O R D I N A T E

R E L A T I O N S H I P

When traversing the SUPERIOR set to locate all other ORGANIZATION-UNITs
which are subordinate to the current ORGANIZATION-UNIT record, the FIND
OWNER WITHIN SUBORDINATE statement is issued after each RELATIONSHIP
record has been found. The new ORGANIZATION-UNIT record will reset the
current of set-type indicator for the SUPERIOR set, thereby terminating the initial
retrieval. If, instead, the statement were written: FIND OWNER WITHIN
SUBORDINATE RETAINING CURRENCY FOR SETS., then when the new owner
ORGANIZATION-UNIT record is found, the current record of SUPERIOR set is
unchanged, allowing the next RELATIONSHIP record to be found.

Format 7

| |
| FIND record-name-5 WITHIN set-name-5 [CURRENT] |
| |
| [USING {identifier-5}...] |
|___|

Rules

1. Identifier-5, ... must be defined in the record entry for the record-type record-name-
5.

2. Record-name-5 must be defined in the schema DDL as a member of the set-type
set-name-5.

3. The record identified has a type equal to that of the record referenced by record-
name-5.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-41

4. If USING is specified the record identified has the contents of the data items
referenced by identifier-5, ... equal to these data items in the UWA. If USING is not
specified, the record identified is the first record in the set occurrence.

5. The DBCS proceeds in its search as follows:

- If CURRENT is not specified the correct set occurrence is selected according
to the set selection rules specified in the schema DDL.

The entry point record is selected by one of three methods: by APPLICATION
(currency indicator for set-type); CALC-KEY (randomize a specified control
field); or DATA-BASE-KEY (data-base-key of record supplied by program).

Each intervening set is searched based on the keys defined in the schema
DDL. Each set searched corresponds to a THEN THRU clause in the set entry
of the schema DDL.

The last set searched identifies the set occurrence in which the identified
record is a member. If there are no THEN THRU clauses in the schema DDL,
the entry point record identifies the set occurrence in which the identified
record is a member.

- If CURRENT is specified, the set occurrence is identified by the current of the
set-type.

- The set occurrence identified as described above, is searched in the forward
direction to locate, if USING is specified, the record in which the contents of
identifier-5 ... are equal to the contents of those data items in the UWA. If
USING is not specified, the first record is selected. Only the records of the type
referenced by record-name-5 are considered in this search.
Other record-types are ignored.

NOTES: 1. If the entry point record as described in Rule 5a.- is identified by
CALC-KEY and the record can reside in more than one realm,
realm selection will be invoked. The schema-supplied area
identification parameter is used. The CALC-key for this record
must be initialized in the UWA before executing the FIND
statement.

2. If the entry point record as described in Rule 5a.- is identified by
APPLICATION, the current record of the set type specified in the
schema DDL must be established before executing the FIND
statement.
This set-type is the one referenced by the first THRU phrase of the
SELECTION clause of the MEMBER subentry in the schema DDL.
The record identified may be either an owner or member of the
set-type.

3. If the entry point record as described in Rule 5a.- is identified by
DATA-BASE-KEY, the data-base-parameter specified in the
schema DDL must be set to the correct value before executing the
FIND statement. The record identified must be the owner of the
set.

4. The set-selection-keys (if any) as described in Rule 5a.- must be
set to the correct values in the UWA before executing the FIND
statement.

Reference Manual IDS/II

5-42 47 A2 11UD Rev00

5. If a set occurrence is not found which satisfies the set selection
criteria as described in Rule 5a, the exception condition "set
selection not satisfied" (02300) is returned. This can occur during
any of the steps described in Rule 5a.

6. If the correct set occurrence is found, but a record cannot be found
that satisfies the record-selection-expression as described in Rule
5b, the exception condition "record-selection expression not
satisfied" (02400) is returned.

7. The search of the occurrence as described by Rule 5b will search
the entire set occurrence, beginning at the first record of that type
in the set occurrence.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET
General None; record found 0000000 X X -

Data base not open 0509100
Area not in ready state 0509100 X X

FIND DB-KEY IS... Data-base-key inconsistent or does not
correspond to record-type range

0504100

Valid data-base-key but no record found or record
found or record found has not the correct type
(when specified)

0502400 X (X)

FIND ANY... (CALC) Area-name supplied in AREA-ID is unknown or
does not correspond to record-type

0504300

Illegal decimal data in UWA CALC-key 0505200 X
No record found with this CALc-key 0502400 X X
UWA record-description missing 0573660 X

FIND DUPLICATE... CRU null 0503200
(CALC) CRU not of correct type 0503300 X (cru)

No duplicate found 0502400 X X
FIND relative within area Current-of-area null (NEXT,PRIOR) 0503100 X

Ordinal= 0 0573630
Record not found (end of realm) 0502100 X (X)

FIND relative within set Current-of-set null 0503100 X
Ordinal= 0 0573630
Record not fount (end of set) 0502100 (X) X

FIND OWNER within set Current-of-set null 0503100 X
FIND CURRENT CRU null 0503200
FIND CURRENT
record-name

Current-of-record-type null 0503100 X

FIND CURRENT [record- Current-of-area null or virtual 0503100 X
name] WITHIN area Current-of-area not of correct type

(when specified)
0503300 X

FIND CURRENT [record- Current-of-set null or virtual 0503100 X
name] WITHIN set Current-of-set not of correct type (when

specified)
0503300 X

FIND record-name
WITHIN

Current-of-set null 0503100 X

set [CURRENT] Set selection failed 0502300 X X
[USSING] UWA illegal decimal data 0505200 X

Record not found within occurrence selected 0502400 X X
UWA record-description missing 0573660 X

FIND DUPLICATE Current-of-set null or virtual 0503100 X
WITHIN set USING... Current-of-set is the owner or is not of correct

type
0503300 X

No duplicate found 0502400 X X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-43

5.10.6 FINISH

Function

Ends the availability of one or more realms to the program.

General Format

 | |
 | FINISH [realm-name-1] ... |
 |_____________________________|

General Rules

1. Execution of the FINISH statement ends the availability of the realm(s).

2. If realm-name-1,... is specified, the ready state of the realms indicated is
terminated. Realm-name-1 may appear only once in a specific FINISH statement.

3. If realm-name-1,... is not specified, the ready state of all the realms defined in the
schema is terminated.

4. At the completion of the execution of a FINISH statement, all currency indicators
that identify records stored in the affected realms are made null.

5. All affected realms must be in ready state at the beginning of execution of a FINISH
statement.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET

None 0000000 - - -
Data base not open 0609100
Area not in ready state 0609100 X

Reference Manual IDS/II

5-44 47 A2 11UD Rev00

5.10.7 GET

Function

Makes some or all the fields in a data base record available to the program. The object
of the statement is the current record of the run-unit.

General Format

 | |
Format 1 | GET [record-name] |
 |_______________________|

 | |
Format 2 | GET {identifier-1} ...|
 |_______________________|

Syntax Rules

1. In Format 1, record-name must be the name of the current record of the run-unit.

2. In Format 2, identifier-1 ... must reference elementary items defined in the record
entry for the current record of the run-unit.

General Rules

1. Execution of a GET statement places all or part of the current record of the run-unit
in the associated UWA record.

2. In Format 1, the entire contents of the current record are moved to the UWA.

3. In Format 2, only those data items listed will be moved to the UWA record
associated with the current record of the run-unit. All other UWA fields will be
unchanged.

4. No currency indicator is affected by the GET statement.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET

None 0000000 - - -
Data base not open 0809100
CRU null 0803200
CRU not of correct type
(when specified)

0803300 X (cru)

CRU UWA record-
description missing

0873660 X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-45

5.10.8 DATA BASE CONDITION (IF)

Function

Enables the program to make decisions depending upon the value of a test involving a
current record and/or its set memberships. There are two data base conditions:

1. Tenancy condition: status of a record with respect to one or several set
occurrences.

2. Membership condition: status of a set occurrence.

NOTE: The "Data-Base Condition" will be referenced, in the rest of the document and
statistics/trace/run-time options, as the IF DML function.

General Format

 {OWNER }
Tenancy : [set-name] {MEMBER}
 {TENANT}

Membership : set-name IS [NOT] EMPTY

Syntax Rules

The Data Base Condition is a simple condition from a COBOL point of view; as such, it
may appear anywhere a simple condition may be used.

The Data Base Condition has a truth value of 'true' or 'false'. This condition cannot be
tested when a data-base-exception occurs.

General Rules for the Tenancy Condition

1. The tenancy condition indicates whether or not the current record of the run-unit is
presently:

- the owner of a non-empty occurrence of a specified set-type (or of at least one
set-type)

- or an actual member of a specified set-type (or of at least one set-type)

- or both.

2. Set-name OWNER is true when the "current-of-run-unit" is the owner of a non-
empty occurrence of the set-type specified by "set-name".
The record-type of the "current-of-run-unit" must be declared in the schema as the
owner type of this set-type, otherwise a data-base-exception occurs.

3. OWNER is true when the "current-of-run-unit" is the owner of a non-empty
occurrence of at least one set-type. The record-type of the "current-of-run-unit"
must appear in the schema as the owner type of at least one set-type, otherwise a
data-base-exception occurs.

Reference Manual IDS/II

5-46 47 A2 11UD Rev00

4. Set-name MEMBER is true when the "current-of-run-unit" is an actual member of an
occurrence of the set-type specified by "set-name".
The record-type of the "current-of-run-unit" must be declared in the schema as a
MANUAL OPTIONAL member of this set-type, otherwise a data-base-exception
occurs.

5. MEMBER is true when the "current-of-run-unit" is an actual member of an
occurrence of at least one set-type. The set-types considered are those for which
the record-type of the "current-of-run-unit" is declared in the schema as a MANUAL
OPTIONAL member. If no such set-type exists, a data-base-exception occurs.

6. Set-name TENANT is equivalent to:

- "Set-name OWNER" if the record-type of the "current-of-run-unit" is declared
in the schema as owner-type of this set-type.

- "Set-name MEMBER" if the record-type of the "current-of-run-unit" is declared
in the schema as a MANUAL OPTIONAL member-type of this set-type.

If the record-type of the "current-of-run-unit" is not declared as the
owner-type or a MANUAL OPTIONAL member-type of this set-type, a data-
base-exception occurs.

7. TENANT is the logical "OR" of "OWNER" and "MEMBER". There must be in the
schema set-types for which the record-type of the "current-of-run-unit" is the owner
type and/or set-types for which the record-type of the "current-of-run-unit" is a
MANUAL OPTIONAL member-type. Otherwise a data-base-exception occurs.

NOTE: The tenancy condition cannot be used to interrogate the "type" data structure
described in the schema. It only deals with "occurrences" of the elements of the
data structure. For instance the purpose of "IF OWNER" is not to test if the
record-type of the "current-of-run-unit" appears in the schema as the owner-
type of some set-types; its purpose is to test if the "current-of-run-unit" is
currently the owner of at least one non-empty set occurrence.

General Rules for the Membership Condition

1. The membership condition indicates whether or not the occurrence of the specified
set-type identified by its current of set-type currently has no members.

2. The current of set-type identifying the set occurrence must not be null or virtual (as
a result of an ERASE statement), otherwise a data base exception occurs.

3. Set-name IS EMPTY is true if the set occurrence has no members.

4. When NOT is specified, the result of the test is reversed.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-47

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET

None condition true 0000000 - - -
None condition false 0000000 - - -
Data base not open 0909100

Tenancy condition CRU null 0903200
CRU type is irrelevant to the
condition tested (not owner or
OPTIONAL member of the sets)

0903300 X (cru)

Membership condition Current-of-set null 0903100 X

5.10.9 MODIFY

Function

Alters the contents of one or more data items in a record and/or changes the set
membership of the record. The object of the statement is the current record of the run-
unit.

General Format

Format 1

 {[record-name] }
MODIFY { } [RETAINING-phrase]
 {{identifier-1}...}

Format 2

 {ALL }
MODIFY [record-name] ONLY { } MEMBERSHIP
 { {set-name-1}...}
 [RETAINING-phrase]

Format 3

 {[record-name] } {ALL }
MODIFY { } INCLUDING { } MEMBERSHIP
 {{identifier-1}...} {{set-name-1}...}
 [RETAINING-phrase]

RETAINING-phrase Format

 {MULTIPLE }
 { REALM }
RETAINING CURRENCY FOR { RECORD }
 { { SETS } }
 { { { set-name }...} }

Reference Manual IDS/II

5-48 47 A2 11UD Rev00

Syntax Rules

1. Record name, if specified, must be the name of the current record of the run-unit.

2. Identifier-1, ... must reference data items contained within the current record of the
run-unit.

3. The current record of the run-unit must be defined in the schema DDL as a member
of the set-types referenced by set-name, ..., if any.

General Rules

All Formats

1. If the RETAINING phrase is not specified, the object record becomes, on successful
completion, the current record of its realm, the current record of its record-type, and
the current record of all set-types in which it is a tenant.

2. If the RETAINING phrase with the optional word REALM is specified, the realm
currency indicator is not changed.

3. If the RETAINING phrase with the optional word RECORD is specified, the record-
type currency indicator is not changed.

4. If the RETAINING phrase with the optional word SETS is specified, no set-type
currency indicators are changed.

5. If the RETAINING phrase with the optional set-name, ... is specified, the set
currency indicators for the named set-types are not changed.

6. If the RETAINING phrase with the optional word MULTIPLE is specified then the
realm, record-type and set-type currency indicators are not changed.

7. The realm in which the current record of the run-unit is stored must be open in
update. Records of sets in which membership is affected by the execution of the
MODIFY statement must be stored in realms that are open in update.

8. Records of sets referenced by the set selection criteria must be stored in realms
that are in ready state.

Format 1

1. This format replaces the contents of one or more items in the current record of the
run-unit.

2. If record-name is omitted, the DBCS replaces the contents of all the items of the
current record of the run-unit with the contents of the corresponding items in the
UWA.

3. If record-name is specified, the DBCS checks that the current record of the run-unit
is of this record-type and performs the action described in rule 2.

4. If identifier-1, ... is specified, the DBCS replaces the contents of the data items
specified with the contents of the corresponding items in the UWA.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-49

5. If the data items modified do not satisfy the validity checks defined in the schema
DDL for this record-type, the modification is denied and a data-base-exception
occurs.

6. If CALC-key items are modified and the MIGRATION IS ALLOWED clause is not
specified in the DMCL for this record-type, the record keeps its data-base-key and is
logically inserted in the CALC chain corresponding the new CALC-key value.

If an overflow-link record (OWL) corresponding to the new CALC chain has to be
created in the page of the record and if there is no room left to do so, the
modification is denied and a data-base-exception occurs.

7. If CALC-key items are modified and the MIGRATION IS ALLOWED clause is
specified, the record is moved to the bucket corresponding to the new CALC-key
value. The record cannot change areas as a result of a migration.

Set pointers and currency indicators referencing the moved record are updated to
reflect the new position.

8. If modified items are sort-key items in a set (including the DATA-BASE-KEY in case
of migration), the set is reordered according to its set ordering criteria.

9. If modified items do not satisfy the no-duplicate controls (CALC-KEY, sort-key, no-
duplicate-control-fields), the modification is denied and a data-base-exception
occurs.

Format 2

1. Format 2 changes the set membership of the current record of the run-unit for
specified set-types.

2. If record-name is specified, the DBCS checks that the current record of the run-unit
is of this record-type.

3. If ALL is specified, the affected set-types are those in which the record is an
AUTOMATIC MANDATORY member or a MANUAL OPTIONAL member currently
connected.

4. If set-name, ... is specified, the affected set-types are those of the list. If the record
is defined as a MANUAL OPTIONAL member of one of these set-types, it must be
currently connected to this set.

5. For each affected set-type, the set membership is changed as follows:

- The current record of the run-unit is disconnected from the set occurrence to
which it belongs.

- A new occurrence is selected according to the set selection criteria specified in
the schema DDL.

- The current record of the run-unit is connected to the occurrence selected
above. This is done according to the set ordering criteria specified in the
schema DDL.

6. If the current record of the run-unit has a LOCATION mode defined as "VIA set-
name WITHIN AREA OF OWNER" a modification of the membership in this set will
be denied if the new owner in not in the same area as the current record of the run-
unit.

Reference Manual IDS/II

5-50 47 A2 11UD Rev00

7. If data items in the current record of the run-unit do not satisfy the no-duplicate
controls (sort-key, no-duplicate-control-fields) in the new set occurrences, the
modification is denied and a data-base-exception occurs.

Format 3

1. Format 3 replaces the contents of one or more items in the current record of the
run-unit and changes its set membership in one or more sets.

2. The actions performed by the DBCS are the combination of those described for
format 1 and format 2.

NOTES: 1. MANUAL OPTIONAL set membership can be changed with a
MODIFY statement. If the current record of the run-unit is currently
connected to the set, it is treated exactly as an AUTOMATIC
MANDATORY set. It is not possible to obtain the effect of a
CONNECT with a MODIFY statement. If the record is connected
to a set before the MODIFY statement, it will be connected
afterwards. If the record is disconnected from a set before the
MODIFY statement, it will be disconnected afterwards.

2. If one of several control-fields is to be changed, the one specified
will be obtained from the UWA. The others required to execute the
function will be obtained from the current record of run-unit on the
data base. This means it is possible to change any combination of
data items in a record.

3. a) If a data-base-exception occurs during the execution of a
MODIFY statement without migration, the data base is restored to
the state that it was in before the statement was executed (without
using the journals). The currency indicators are not affected and
the control returns to the calling program with the appropriate DB-
STATUS value.

b) If a data-base-exception occurs during the execution of a
MODIFY statement with migration, but before the updating of the
data base has actually begun, then the DBCS proceeds as
described above.

c) If a data-base-exception occurs during the execution of a
MODIFY statement with migration, but after the updating of the
data base has actually begun, then the processing depends on the
protection level of the data base:

- If the data base is protected by the BEFORE journal, in BATCH,
IOF or TDS environment, the data base is restored to the state
that it was in before the statement was executed and control
returns to the calling program with the appropriate DB-STATUS
value.

- If the data base is not protected by the BEFORE journal, in a
BATCH or IOF environment, the data base is left in an
inconsistent state and the step is aborted. The data base must be
restored by FILREST or VOLREST.

- If the data base is protected by the AFTER journal and deferred
updates in TDS environment, the data base is restored to the state

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-51

that is was in at the last commitment point, then the TPR is
aborted and not restarted.

Examples

A -B

A

B

RECORD A ...
 LOCATION MODE CALC USING A-1 DUP NOT ...
RECORD B ...
 LOCATION MODE CALC USING B-1 DUP NOT ...
SET A-B ...
 ORDER ... SORTED BY DEFINED KEYS ...
...
 KEY IS ASCENDING B-2
 SET SELECTION IS THRU A-B
 OWNER IDENTIFIED BY CALC-KEY

1. Modify CALC-key field in record A.

 MOVE key-1 TO A-1.
 FIND ANY A.
 MOVE new-data TO A-1.
 MODIFY A-1.

2. Modify sort-key in record B without changing occurrences.

 MOVE key-2 TO B-1.
 FIND ANY B.
 MOVE new-sort-key TO B-2.
 MODIFY B-2.

3. Put a B record under a new A record without changing any fields in the B record.

 MOVE key-1 TO B-1.
 FIND ANY B.
 MOVE new-owner-key TO A-1. (selection path for new occurrence)
 MODIFY B ONLY A-B.

4. Put a B record under a new A record and change the sort-key in the B record.

 MOVE key-1 TO B-1.
 FIND ANY B.
 MOVE new-owner-key TO A-1. (selection path for new occurrence)
 MOVE new-sort-key TO B-2.
 MODIFY B-2 INCLUDING A-B.

Reference Manual IDS/II

5-52 47 A2 11UD Rev00

C-D

C

D

RECORD C ...
 LOCATION MODE CALC USING C-1 DUP NOT ...
RECORD D ...
 LOCATION MODE CALC USING D-1 DUP NOT ...
SET C-D ...
 SET SELECTION IS THRU C-D
 OWNER IDENTIFIED BY
 APPLICATION

5. Put a D record under a new C record.

 MOVE new-owner-key TO C-1. (set selection path for new occurrence)
 FIND ANY C.
 MOVE key-1 TO D-1.
 FIND ANY D RETAINING CURRENCY C-D.
 MODIFY D ONLY C-D.
 DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET
General None modification 0000000 - - -

Data base not open 1109100
CRU null 1103200
CRU not of correct type (when
specified) or cannot be member
of the set specified

1103300 X (cru)

Area not ready 1109100 X X (X)
Area not in update 1109200 X X (X
Duplicate data items not
allowed (CALC-key or sort-key
or other control-field)

1105100 (X) X (X)

Data
modification

CRU UWA record-description
missing

1173660 X

Data items do not satisfy the
validity checks

1150200 X

CALC-key modification cannot
be performed without migration

1173640 X

Area space exhausted
(migration)

1180200 X X

Membership
modification

Attempt to modify the
membership of an OPTIONAL
member not currently
connected

1108300 X X

Set selection failed 1102300 X X
Owner of new set occurrence
does not respect the AREA OF
OWNER condition

1173650 X (owner) X X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-53

5.10.10 READY

Function

Prepares one or more realms for processing.

General Format

 { {EXCLUSIVE {RETRIEVAL } }}
 { { {UPDATE } }}
READY { [realm-name-1]...USAGE-MODE IS {SHARED RETRIEVAL ' }}...
 { { {RETRIEVAL} }}
 { {[MONITORED] {UPDATE } }}

General Rules

1. Execution of any READY statement affects entire realms, regardless of the specific
format of the statement.

2. At the beginning of the execution of a READY statement, no realm affected by that
READY statement may be in ready state.

3. If realm-name-1,... is specified, each realm referenced is prepared for access and
placed in ready state. Realm-name-1 may appear only once in a specific READY
statement.

4. If realm-name-1,... is not specified, all realms in the data base are prepared for
access and placed in ready state.

5. The USAGE-MODE phrase establishes a usage mode for the affected realms and
thereby specifies the type of operations permitted. Usage modes remain in
effect for the affected realms until a FINISH statement for the affected realms is
executed, or until the run-unit that executed the READY statement terminates.

6. The RETRIEVAL phrase permits access to inspect and read the contents of the
affected realms.

7. The UPDATE permits both access to, and modification of, the contents of the
affected realms.

8. The EXCLUSIVE phrase specifies that the affected realms cannot be affected by
concurrent run-units.

9. The SHARED phrase specifies that the affected realms can be read by concurrent
run-units using the same usage-mode. The sharing is at the file level in
RETRIEVAL mode only.

10. The MONITORED phrase specifies that the affected realms can be read or
modified by concurrent run-units using the MONITORED (use of GAC) usage
mode. Sharing is at the page level.

Reference Manual IDS/II

5-54 47 A2 11UD Rev00

11. The JCL ASSIGN/DEFINE statements must be consistent with the USAGE-MODE
defined in the program. Overriding rules allow the user to specify in JCL a sharing
mode more restrictive than that specified in the program. For further details see
Section VII.

12. When USAGE-MODE IS EXCLUSIVE UPDATE and the BEFORE journal is not
used for protection, the realm is placed in the transient state.
It remains in this state until the execution of a successful FINISH statement.

If the job step fails before the FINISH execution then the realm will be left in the
transient state. The next time the realm is referenced by a READY statement the
job step will fail unless the user has asked that this state be ignored (See run-time
commands in Section VII).

If the transient state is ignored, the DBCS records in the IDS labels the time and
date of the last time this is done.

The normal course of action when a job step fails, leaving a realm in the transient
state, is to use a restore utility such as FILREST to restore the realm to its original
condition.

The transient state flag can also be reset using the PATCH LABEL command of
DBUTILITY.

13. READY statements coded in a TPR are ignored at run-time.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-
REGISTERS

CATEGORY DB-STATUS REALM RECORD SET
None 0000000 - - -
Area already in ready state 1309300 X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-55

5.10.11 STORE

Function

Causes a record to be stored in the data-base. This statement establishes the current
record of the run-unit.

General Format

 [{ MULTIPLE }]
 [{ REALM }]
STORE record-name [RETAINING CURRENCY FOR { {SETS } }]
 [{ { {set-name}...} }]
 [{ RECORD }]

General Rules

1. The fields of the UWA record referenced by record-name are moved to the record
in the data base. Schema-defined validity checks are carried out.

2. The record referenced by record-name becomes a member of each set-type for
which it is an AUTOMATIC member. The sets to which the record is connected are
determined by the set selection criteria. The record is connected in accordance with
the set ordering criteria of each set-type.

3. The referenced record is established as the owner of an empty set for each set-type
in which it is an owner.

4. The STORE statement causes the referenced record to become the current record
of the run-unit. The realm-name and record-name of the record are placed in the
special registers DB-REALM-NAME and DB-RECORD-NAME respectively.

5. If the RETAINING phrase is not specified, the referenced record becomes the
current record of its realm, the current record of its record-type, and the current
record of all set-types in which it has been declared to be an owner or AUTOMATIC
member.

6. If the RETAINING phrase with the optional word REALM is specified, the realm
currency indicator is not changed.

7. If the RETAINING phrase with the optional word RECORD is specified, the record-
type currency indicator is not changed.

8. If the RETAINING phrase with the optional word SETS is specified, no set-type
currency indicators are changed.

9. If the RETAINING phrase and set-name, ... are specified, the currency indicators of
set-name, ... are not changed.

10. If the RETAINING phrase with the optional word MULTIPLE is specified then the
realm, record-type and set-type currencies are not changed.

11. The realm in which the record is stored must be open in update. Records of sets of
which the stored record is an AUTOMATIC member must be stored in realms that
are open in update.

Reference Manual IDS/II

5-56 47 A2 11UD Rev00

12. Records of sets referenced by the set selection criteria must be stored in realms
that are in ready state.

13. The record referenced by record-name remains available to the program in the
UWA.

Record Placement

The DBCS assigns a unique data-base-key to the record placed in the database as a
result of the execution of the STORE statement. The schema definition and COBOL
programmer can specify certain constraints on the assignment of a data-base-key. These
constraints depend on the location mode specified for the record and are listed below for
the three possible location modes.

DIRECT

If the record has a DIRECT location mode, the contents of the specified data item are
used to assign a data-base-key to the new record. The dataitem must contain an area-
key or a data-base-key. In the latter case, thearea code is not involved in the area
selection and is ignored.

1. A realm is selected, if there is a choice, by means of the schema-specified area
identification parameter.

2. If the supplied area-key is within the record range and is not assigned to an existing
record, the DBCS will assign it to the new record.

3. If the supplied area-key is within the record range and is already assigned to an
existing record, the DBCS searches forward to find an available data-base-key. The
first one found is assigned to the new record. If the end of the range is encountered,
the search is resumed at the beginning of the range.

4. If the supplied data-base-key is not within the record range, the DBCS returns an
exception status.

NOTE: The DIRECT location mode should be avoided as much as possible since it
does not lend itself to automatic reorganization by a standard utility.

CALC

If the record has a CALC location mode, the contents of the specified UWA data items
are used to assign a data-base-key.

1. A unique realm is selected, if there is a choice, by means of the schema-specified
area identification parameter.

2. The location mode data items are used to determine the CALC "bucket" where the
record is to be stored. The record is placed in the first page of the bucket or in a
subsequent page.

VIA SET

If the record has a VIA SET location mode, the DBCS assigns a data-base-key based on
the data-base-key of the owner record occurrence of the set-type specified for the

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-57

location mode. During the process of assigning a data-base-key and physical location for
a VIA SET record, the procedure below is followed:

1. The set selection criteria for the specified set are used to locate the owner record
occurrence for the set. This may involve many levels of paths to be traversed
before the required owner is found.

2. A realm is selected, if there is a choice, by means of the schema-specified area
identification parameter.

3. If the owner record-type of the specified set and the new record-type are in different
ranges of the same area, or are in different areas, the new record is placed in its
range proportional to the owner occurrence in its range. If both records are in the
same range, the new record is placed as near as possible to the owner occurrence

If the set selection path consists of only one level identified by APPLICATION and if
the set order is NEXT or PRIOR, the search for a free data-base-key starts from the
position of the current-of-set and not from the position defined above. This
optimizes processing time when the set occurrence represents a volatile sequential
file spreading over many pages.

NOTES: 1. Since the record stored is not connected to any MANUAL sets, the
currency indicators will not be updated for any MANUAL sets. This
is true regardless of the presence or absence of any RETAINING
phrase.

2. If the location mode is VIA SET and the record to be stored is a
MANUAL member of the specified set, the new record is physically
placed as if it was going to become a member of the set. Set
selection is executed for the set to locate the correct owner
occurrence, but the new record is not connected to the set.

3. When a realm is selected for a record, the schema-specified
parameter is used. The program executing the STORE statement
must put the name of the correct realm in the parameter before
executing the STORE statement.

4. Set selection rules for the AUTOMATIC sets and for the set
specified in the VIA phrase may require a realm to be selected to
locate the entry point record. This occurs when the entry point
record is a CALC record that is present in more than one realm.
The COBOL program must move the correct realm-name to the
AREA-ID parameter before executing the STORE statement.

5. Since there is no guarantee that a DIRECT record was assigned
the data-base-key supplied by the program, it is advisable to check
this if it is important. The data-base-key actually assigned can be
obtained with an ACCEPT statement. This can then be compared
to the data-base-key supplied. The data item containing the data-
base-key is not altered by the STORE statement, even if the
record stored is not assigned the data-base-key supplied.

Reference Manual IDS/II

5-58 47 A2 11UD Rev00

6. If a data-base-exception occurs during the execution of a STORE
statement, the data base is restored to the state it was in before
the statement was executed (without using the journals). In
addition, currency indicators are not affected by an unsuccessful
statement.

DB-STATUS Values

FUNCTION ERROR CONDITION DB-REGISTERS
CATEGORY DB-STATUS REALM RECORD SET

None record stored 0000000 X X -
Data base not open 1509100
Data items do not satisfy the
validity checks

1505200 X

Area-name supplied in AREA-ID is
unknown or does not correspond to
record-type

1504300 X

Area not ready 1509100 X X (X)
Area not in update mode 1509200 X X (X)
Area-key is inconsistent 1504100 X X
Area space exhausted 1580200 (X) X
Duplicate item not allowed (CALC-
key or sort-key or other field)

1505100 (X) X (X)

Set selection failed 1502300 X X
UWA record-description missing 1573660 X

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-59

5.10.12 USE

Function

Specifies procedures to be executed when the execution of a DML statement results in a
data-base-exception condition.

General Format

 | |
 | USE FOR DB-EXCEPTION . |
 |________________________|

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in the
DECLARATIVES part of the PROCEDURE DIVISION and must be followed by a
period. The remainder of the section must consist of one or more procedural
paragraphs that define the procedure to be used.

2. Only one USE FOR DB-EXCEPTION statement may appear in the
DECLARATIVES part.

3. Within a USE procedure, there must be no reference to any non-declarative
procedure.

General Rules

1. Appropriate values are placed in the special registers DB-STATUS, DB-REALM-
NAME, DB-RECORD-NAME, DB-SET-NAME and DB-DETAILED-STATUS before
the execution of a data base exception section.

2. The data-base-exception section is executed whenever the execution of a
statement results in a data base exception condition. At the end of the execution of
a data base exception section, control is returned to the statement following the
statement that caused the exception, unless a STOP RUN is executed in the
DECLARATIVES section.

Reference Manual IDS/II

5-60 47 A2 11UD Rev00

Examples

1. In the absence of any USE FOR DB-EXCEPTION statement, the program must test
the contents of DB-STATUS for a non-zero value after each DML function.
Successfully completed functions return a zero status code, while unsuccessful
functions return a value according to the action taken and the exception
experienced. A typical sequence of statements would be:

 MOVE "value" TO CALC-CONTROL-ITEM.
 FIND ANY CALC-REC RECORD.
 IF DB-STATUS IS EQUAL TO "0502400" GO TO MISSING-RECORD
 ELSE IF DB-STATUS IS NOT EQUAL TO ZERO GO TO OTHER-ERROR.

2. A single USE FOR DB-EXCEPTION statement can be used to process all exception
conditions. This procedure must distinguish between normal exceptions, such as
"End of Set" or "No Record Found To Satisfy Record Selection", and those
exceptions that are errors. The procedure has available all the data base special
registers, many of which are updated for error conditions, and all data items in the
DATA DIVISION of the program. Status flags can be set depending on the type of
exception and the identity of records, sets, or realms involved. For example:

 77 STATUS-FLAG PIC 9 VALUE 0.
 88 END-OF-PATH VALUE 1.
 88 MISSING-REC VALUE 2.
 88 BAD-ERROR VALUE 3.
 PROCEDURE DIVISION.
 DECLARATIVES.
 ERROR-PROCESSING SECTION.
 USE FOR DB-EXCEPTION.
 ERROR-PROCESSING-PARAGRAPH.
 IF DB-STATUS IS EQUAL TO "0502100" GO TO SET
 END-FLAG.
 IF DB-STATUS IS EQUAL TO "0502400" GO TO SET
 MISSING-REC.
 MOVE 3 TO STATUS-FLAG.
 GO TO EXIT-EXIT.
 SET-END-FLAG.
 MOVE 1 TO STATUS-FLAG.
 GO TO EXIT-EXIT.
 SET-MISSING-REC.
 MOVE 2 TO STATUS-FLAG.
 GO TO EXIT-EXIT.
 .
 EXIT-EXIT. EXIT.
 END DECLARATIVES.
 .
 FIND NEXT WANTED-RECORD WITHIN THIS-SET.
 IF END-OF-PATH GO TO DONE-WITH-IT.
 .

In this example, each data-base-exception causes the USE FOR DB-EXCEPTION
section to be invoked. This procedure only checks the status code for certain values and
sets condition indicators for reference by the program. It is the program's responsibility to
subsequently test for the acceptable, or error, conditions. The USE procedure itself could
have detected an error status and caused the program to abort or terminate abnormally.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-61

5.11 SYSTEM FUNCTIONS DEFINING CHECK-POINTS AND COMMITMENT-
POINTS

These functions involve the entire step or transaction and not only the data base. Though
they are provided by the system rather than by the DBCS, they are mentioned here
because of their close connection with the USAGE-MODE specified in READY
statements.

5.11.1 Comparison of Check-Points and Commitment-Points

• The concepts of check-point and commitment-point are similar in the sense that they
define a run-unit and data base state to which it is possible to return if the next check-
point or commitment-unit is not reached succesfully.

• The concepts differ as far as data base sharing is concerned.

The check-point applies to the case where the data base is reserved for the run-unit
from the start (USAGE-MODE EXCLUSIVE) and is not made available to other run-
units at each check-point but only at the end of the run-unit. The incidents that may
prevent the run-unit from reaching the next check-point are not resource conflicts but
only program or system failures. In a well-tested environment these incidents are very
unlikely.

The commitment-point applies to the case where the data base is shared between run-
units (USAGE-MODE MONITORED). Data base pages are reserved during the
execution of the commitment-unit and released at the next commitment-point. As
opposed to program or system failures, conflicts for data base pages are likely and
may cause either a temporary wait or a deadlock (for example, deadlocks may be
caused by programs in RETRIEVAL mode). Deadlocks are resolved by returning to
the last commitment-point and releasing the pages already reserved.

The interval between two check-points may be of the order of an hour, while the
interval between two commitment-points may be of the order of a few seconds.

• The commitment-unit was first introduced in TDS. It has been extended to BATCH or
IOF programs which are to access the data base concurrently with each other or with
TDS.

These programs must be split into commitment-units by regular calls to a system
function (H_GAC_UCOMIT) which takes a snapshot of the program state and releases
the data base pages previously held in exclusive or shared mode.

If TDS is running concurrently, the frequency of commitment-points in BATCH
programs must be high enough to not disturb the response time of the TDS
transactions. If only BATCH programs are concurrent, the frequency may be lower but
the risk of a wait or deadlock increases with the number of pages locked by a
commitment-unit.

The logic of the commitment-unit itself is not affected by the fact that the usage mode
is MONITORED or EXCLUSIVE since it reserves all the data pages required to ensure
the consistency of the actions taken during the commitment-unit.

Reference Manual IDS/II

5-62 47 A2 11UD Rev00

The logic of the BATCH program as a whole, on the contrary, must take into account
the fact that a commitment-unit cannot rely on the data base modifications of the
previous commitment-unit, since concurrent run-units may have made subsequent
modifications in the meantime.

• BATCH programs written in view of concurrent access may sometimes be run in
EXCLUSIVE mode. ASSIGN/DEFINE statements allow the user to override the
READY options and to suppress the concurrent access at the page level. In this case
the system function H_GAC_UCOMIT becomes automatically ineffective, unless a
parameter indicates that a check-point is to be taken.

The latter facility replaces the call to the system function H_CK_UCHKPT. It may be
used with every n'th commitment-unit so as to obtain the same frequency as if
H_CK_UCHKPT had been coded.

Program calls to H_CK_UCHKPT are ineffective if they occur when the step is
accessing the data base in MONITORED mode.

5.11.2 System Function Defining a Check-Point

A program running in BATCH/IOF environment invokes this function by using:

 __
| |
| CALL "H_CK_UCHKPT" USING CKMODE CKINF |
|__|

The parameters (which must be defined by the user) are:

01 CKMODE USAGE COMP-2. (output)
01 CKINF PIC X(32). (output)

For further details, see the System Management Guide.

In TDS there is no check-point.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-63

5.11.3 System Function Declaring a Commitment-Point

A program running in BATCH/IOF environment calls this function by using:

| |
| CALL "H_GAC_UCOMIT" USING CKMODE CKINF NUMLOCK NOCHKPT|
|___|

The parameters are:

01 CKMODE USAGE COMP-2. (output)
01 CKINF PIC X (32). (output)
01 NUMLOCK COMP-1. (input)
01 NOCHKPT PIC X. (input)

CKMODE and CKINF have the same meaning and values as for H_CK_UCHKPT.

NUMLOCK defines the maximum number of entries in the lock tableassociated with the
starting commitment-unit.
NUMLOCK = -1 requests the system to choose the default value (50).

NOCHKPT specifies whether a check-point is to be taken in the case where no file is in
MONITORED mode.
NOCHKPT = " ": the check-point is taken.
NOCHKPT = "Y": no check-point is taken.

In TDS environment, the corresponding function is invoked (when it is not implicit) by the
following calling sequence:

 | |
 | CALL "H_DFCMIT" |
 |___________________|

For further details, see the TDS COBOL Programmer's Guide.

Reference Manual IDS/II

5-64 47 A2 11UD Rev00

5.12 ACCESS TO THE IDSTRACE FILE

The programmer may call the DBCS function H_IA_UCTRACE to perform the following
operations on the IDSTRACE file:

• Write program information onto the IDSTRACE file.

• Open, close the IDSTRACE file.

• Disable, enable the program and/or DBCS write operations onto the IDSTRACE file.

1. The H_IA_UCTRACE write function allows the user to interleave program and
DBCS trace data on the same file.

2. The IDSTRACE file is opened by the DBCS at the beginning of a session and
closed by the DBCS at the end of the session.

The H_IA_UCTRACE open, close functions allow the user to open the IDSTRACE
file before the first READY of an IDS session and to close it after the last FINISH. In
this case the IDSTRACE open and close requests submitted by the DBCS are
ignored.

Figure 5-1 shows a DML program responsible for opening and closing the
IDSTRACE file and writing program information interleaved with DBCS trace data.

A run-unit accessing 2 data bases can collect program and DBCS trace information
concerning both data bases on the same IDSTRACE file. The trace-ifn must be the
same for the program and the 2 data bases. The IDSTRACE file is opened by the
first open request (submitted by the program or one of the 2 IDS sessions) and
closed by the last close request.

Figure 5-2 illustrates a COBOL program PO driving 2 DML program P1, P2, each
accessing a different data base. PO is responsible for opening and closing the
IDSTRACE file. PO, P1, P2 write program information interleaved with DBCS trace
data.

3. The H_IA_UCTRACE disable, enable functions allow the programmer to focus the
trace action on a given portion of the program and to apply selection criteria more
specific than those available in the TRACE command of the run-unit command
language.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-65

DML program IDSTRACE FILE

IDS procedures

CALL

O P E N
W R I T E
CLOSE

P R O G R A M
TRACE DATA

DBCS

TRACE DATA

(

(

CALL

(DML verb)

H _ IA_U C TR AC E

Figure 5-1. User Access to IDSTRACE File (one program)

IDS procedures

CALL

P R O G R A M
TRACE DATA

DBCS

(OPEN,WRITE,CLOSE)

CALL

CALL

(DML)

DML FOR
 DB1

P O

CALL

CALL

(DML)

TRACE DATA
(DB1, DB2)

(WRITE)
(WRITE)

CALL
CALL

P1

P2

IDSTRACE f i le

DML FOR
 DB2

H _ IA _U C TR A C E

Figure 5-2. User Access to IDSTRACE File (several programs)

Format of Call

 __
| |

Reference Manual IDS/II

5-66 47 A2 11UD Rev00

| CALL "H_IA_UCTRACE" USING TRACEPARAM TRACEIFN |
|__|

Parameters

01 TRACEPARAM.

 02 TRACEFUNCTION COMP-1. (input)
 02 TRACERETCODE COMP-1. (output)
 02 TRACELENGTH COMP-1. (input)
 02 TRACEDATA PIC X(n). (input)

01 TRACEIFN PIC X(8). (input)

Parameter Descriptions

TRACEFUNCTION: function code.

Values are shown below in decimal.

VALUE FUNCTION
1 Disable progrm write operations onto IDSTRACE file
2 Disable DBCS write operations onto IDSTRACE file
3 Disable program and DBCS write operations onto IDSTRACE file
4 Enable program write operations onto IDSTRACE file
5 Enable DBCS write operations onto IDSTRACE file
6 Enable program and DBCS write operations onto IDSTRACE file
16 Write onto IDSTRACE file
17 Open IDSTRACE file in OUTPUT mode
18 Open IDSTRACE file in EXTEND mode
19 Close IDSTRACE file
TRACERETCODE: return code.

VALUE MEANING
0 The function has been successfully executed or rendered dummy by a

previous "disable" function (write)
1 The function has not been executed because of incorrect parameters or

abnormal conditions
TRACELENGTH: number of characters (n) of TRACEDATA.

TRACEDATA: program data to be written to the IDSTRACE file

NOTE: TRACELENGTH and TRACEDATA are only required when
TRACEFUNCTION = 16. They are meaningless otherwise.

TRACEIFN: internal-file-name of the IDSTRACE file.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-67

Rules

1. The disable, enable, write and close functions are not executed if the IDSTRACE
file is not currently opened.

2. The open function is not executed if the IDSTRACE file is not currently closed.

3. When the IDSTRACE file is opened, write operations are implicitly enabled.

4. In TDS environment, only the write function is available. Other functions are not
executed.

Reference Manual IDS/II

5-68 47 A2 11UD Rev00

5.13 SIMULATION OF THE CALC HASHING ALGORITHM

This function determines the relative page number within a range where a CALC record
will randomize, assuming no page overflow.

Format of Call

 __
| |
| CALL "H_IA_UCHASH" USING HASHFUNC HASHRANGEDESC |
| HASHKEYDESC HASHDATA |
|__|

Parameters

01 HASHFUNC.

 02 HASHRETCODE COMP-1. (output)
 02 HASHPAGENUMBER COMP-2. (output)

01 HASHRANGEDESC. (input)

 02 HASHNUMPAGE COMP-2.
 02 HASHCALCINTERVAL COMP-1.
 02 HASHINTERVALUNIT COMP-1 VALUE O.

01 HASHKEYDESC. (input)

 02 HASHNUMITEM COMP-1 VALUE n.
 02 HASHITEMDESC OCCURS n.

 03 HASHITEMTYPE COMP-1.
 03 HASHITEMLENGTH COMP-2.
 03 HASHITEMSCALE COMP-1.
 03 HASHITEMPTR COMP-2.

01 HASHDATA. (input)

 Key items within record

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-69

Parameter Descriptions

Numeric values are given in decimal.

HASHRETCODE: return code

VALUE MEANING
0 Simulation done
1 Incorrect parameter, which may be:

- HASHNUMPAGE = 0
- HASHCALCINTERVAL = 0 or > 255
- HASHINTERVALUNIT < > 0
- HASHNUMPAGE not multiple of HASHCALCINRERVAL
- HASHNUMITEM = 0 or > 256
- total key length > 256
- invalid HASHITEMTYPE or HASHITEMLENGTH
- HASHITEMPTR = 0

2 Illegal decimal data in a CALC-key item
HASHPAGENUMBER: relative page number within the range resulting from the

randomization (0 <= HASHPAGENUMBER <=
HASHNUMPAGE - 1).

This is calculated as follows: the number of pages of the
range HASHNUMPAGE IS DIVIDED BY
HASHCALCINTERVAL giving the number of buckets as
quotient. The CALC-key items described by
HASHKEYDESC are retrieved from HASHDATA,
concatenated and hashed by the HASH instruction, giving a
32-bit binary value. The latter is extended to 64 bits with zero
fill and divided by the number of buckets. The remainder is
multiplied by HASHCALCINTERVAL giving
HASHPAGENUMBER.

HASHNUMPAGE: number of pages of the range. It must be a multiple of
HASHCALCINTERVAL.

HASHCALCINTERVAL: number of pages of the CALC INTERVAL.

HASHINTERVALUNIT: must be zero

HASHNUMITEM: number of CALC-key items

HASHITEMDESC: repeating group occuring HASHNUMITEM times and
describing each key item.

HASHITEMTYPE,
HASHITEMLENGTH: type and length of the key item.

Reference Manual IDS/II

5-70 47 A2 11UD Rev00

Data type HASHITEMTYPE HASHITEMLENGTH
UNSIGNED UNPACKED DECIMAL 9 Number of decimal digits (sign
UNSIGNED PACKED DECIMAL 57 excluded)
UNSIGNED PACKED-2 DECIMAL 25 1
SIGNED UNPACKED DECIMAL 1
SIGNED PACKED DECIMAL 17
SIGNED BINARY 3 Number of binary digits (sign

excluded)
15 or 31

CHARACTER 0 Number of characters
1

HASHITEMSCALE: scale of the key item.

0 for a binary or character item
+p for a decimal item.
The scale is not currently used in the hashing algorithm

HASHITEMPTR: character position (starting at 1) within HASHDATA where
the key item begins.

HASHDATA: record containing the CALC-key items and possibly other
items.

Example

Consider a range of 101 pages, a CALC interval of 1 page and a CALC-key composed of
3 items PIC XX, PIC 999, PIC X located at position 8, 10, 13 in the CALC record.

The last three parameters of H_IA_UCHASH are as follows:

01 HASHRANGEDESC.

 02 HASHNUMPAGE COMP-2 VALUE 101.
 02 HASHCALCINTERVAL COMP-1 VALUE 1.
 02 HASHINTERVALUNIT COMP-1 VALUE 0.

01 HASHKEYDESC.

 02 HASHNUMITEM COMP-1 VALUE 3.
 02 HASHITEMDESC1.
 03 HASHITEMTYPE1 COMP-1 VALUE 0.
 03 HASHITEMLENGTH1 COMP-2 VALUE 2.
 03 HASHITEMSCALE1 COMP-1 VALUE 0.
 03 HASHITEMPTR1 COMP-2 VALUE 8.
 02 HASHITEMDESC2.
 03 HASHITEMTYPE2 COMP-1 VALUE 9.
 03 HASHITEMLENGTH2 COMP-2 VALUE 3.
 03 HASHITEMSCALE2 COMP-1 VALUE 0.
 03 HASHITEMPTR2 COMP-2 VALUE 10.
 02 HASHITEMDESC3.
 03 HASHITEMTYPE3 COMP-1 VALUE 0.
 03 HASHITEMLENGTH3 COMP-2 VALUE 1.
 03 HASHITEMSCALE3 COMP-1 VALUE 0.
 03 HASHITEMPTR3 COMP-2 VALUE 13.

01 HASHDATA.

COBOL Data Manipulation Language

47 A2 11UD Rev00 5-71

 02 RO1-IDENT PIC X(7).
 02 RO1-CALC.
 03 RO1-CALC1 PIC XX.
 03 RO1-CALC2 PIC 999.
 03 RO1-CALC3 PIC X.
 02 RO1-NUMBER PIC 9(4).

Reference Manual IDS/II

5-72 47 A2 11UD Rev00

47 A2 11UD Rev00 6-1

6. COBOL/DML Compiling and Linking

6.1 SL AND DD OBJECT USAGE

1. COBOL handles two types of object:

- SL (Source Language) objects corresponding to the COBOL/DML input source
and the COBOL output source

- DD (Data Description) objects corresponding to the object schema used in the
DML processing

2. The COBOL/DML input source can be in:

- an input-enclosure with the TYPE option COBOL or DATASSF

- a member of an SL library. The TYPE option of the member must be COBOL,
COBOLX or DATASSF.

3. The object schema is a member of a BIN library.

4. Libraries containing the object schema must be assigned statically using the
keywords/ifn's DDLIB1, DDLIB2, DDLIB3.

The member containing the schema whose name is referenced in the SUB-
SCHEMA section, is searched in the libraries assigned, in the sequence defined by
DDLIB1, DDLIB2, DDLIB3.

5. The object schema used by COBOL may be in the "DDL" state or in the "DDL-
DMCL" state.

6. The compiled program is stamped with the name and DDL reference date of the
schema used in the processing.

These name and date will have to match at run-time the name and DDL reference
date of the schema loaded for execution.

Reference Manual IDS/II

6-2 47 A2 11UD Rev00

6.2 COBOL EXTENDED JCL STATEMENT

COBOL can be called using the following specific options of its extended JCL statement
to compile a COBOL program with DML statements.

COBOL

 DDLIB1=(library-description)
 [DDLIB2=(library-description)]
 [DDLIB3=(library-description)]
 [{NDDLIST }]
 [{DDLIST }] ;

6.2.1 COBOL Specific Parameter Description

DDLIBi These keywords define the libraries containing the object
schema and their search path.

DDLIST
NDDLIST This parameter indicates whether the user wants a listing of

the description of all used records. The default value is
NDDLIST, meaning no description listing.

COBOL/DML Compiling and Linking

47 A2 11UD Rev00 6-3

6.3 COBOL COMPILATION

Compilation of the COBOL source is performed by the COBOL compiler (COBOL).
There are no special IDS/II considerations except that the keyword LEVEL=L64 must be
specified in the COBOL JCL statement.

Except for the specific options described above, the COBOL extended JCL statement is
unchanged. For further details, consult the COBOL User Guide.

6.4 LINKING

After the successful compilation of the COBOL/DML program, the user must execute
LINKER to produce a load-module. This linking procedure is covered for the general
case in the LINKER manual, but linkage of programs containing DML may require that a
command statement stream is provided to the linkage editor.

The LINKER statement contains the parameter groups

 {COMFILE= {*input-enclosure-name }
 { {(sequential-input-file-description)}
 {COMMAND=' {command}...' }

through which LINKER commands are supplied.

The LINKER commands that may be necessary are:

 __
| |
| SEMPOOL=(NUMSN = +p), |
| STACK1=(INITSIZE = 3K, MAXSIZE = 16K), |
|__|

The first command is necessary if the number of semaphores required by UFAS is
greater than that reserved by default by LINKER. The user is informed of this situation by
a message on the JOR at execution of a READY STATEMENT (TASKM, ENTRYOV).
The value p should be set to 7 + 4 * number-of-areas. The + sign is mandatory and does
not have the same meaning as a space. In order to avoid any computation, the
SEMPOOL command may be written as follows:

SEMPOOL=(NUMSN = 225),

which takes the maximum possible number of semaphores.

The second command is related to the number of stack overflows occurring at execution
time. This number must be checked in the JOR, especially when the data base is opened
in update. If its value is higher than 200, the STACK1 command must be included to
increase to initial size of the stack of ring 1 (default value 2K). If 3K is not sufficient,
higher values can be chosen.

Reference Manual IDS/II

6-4 47 A2 11UD Rev00

6.5 EXAMPLE

An object schema INVENTORY exists in member INVENTORY of library MIDS.BINLIB.

The user wishes to compile a COBOL/DML program named CONTROL17 against this
schema. The program has the following outline:

 | |
 | IDENTIFICATION DIVISION. |
 | PROGRAM-ID. CONTROL17. |
 | ... |
 | DATA DIVISION. |
 | SUB-SCHEMA SECTION. |
 | DB INVENTORY. |
 | ... |
 | PROCEDURE DIVISION. |
 | ... |
 | READY |
 | ... |
 | FINISH |
 | ... |
 | END COBOL. |
 |______________________________|

The input source is in member CONTROL17 of library MIDS.SLLIB. The compile unit
produced will be in library MIDS.CULIB. All the libraries are assumed to be cataloged.

 __
| |
| $JOB DMLCOB USER = MURIEL PROJECT = LONGEOT; |
| LIB SL INLIB1=MIDS.SLLIB; |
| |
| COBOL SOURCE=CONTROL17 |
| DDLIB1=MIDS.BINLIB |
| CULIB=MIDS.CULIB |
| LEVEL=L64 MAP XREF DDLIST; |
| $ENDJOB; |
|__|

The user now prepares a load-module, without special options, in the library
MIDS.LMLIB.

| |
| $JOB LINK USER=MURIEL PROJECT=LONGEOT; |
| LIB CU INLIB1=MIDS.CULIB; |
| LINKER CONTROL17 |
| OUTLIB=MIDS.LMLIB; |
| $ENDJOB; |
|___|

After certain runs of the load-module, the JOR indicates that the number of stack
overflows is excessively high. The user corrects the situation by relinking with the
STACK1 command.

COBOL/DML Compiling and Linking

47 A2 11UD Rev00 6-5

| |
| $JOB RELINK USER=MURIEL PROJECT=LONGEOT; |
| LIB CU INLIB1=MIDS.CULIB; |
| LINKER CONTROL17 |
| OUTLIB=MIDS.LMLIB |
| COMMAND='STACK1=(INITSIZE=3K, MAXSIZE=16K) '; |
| $ENDJOB; |
|___|

Reference Manual IDS/II

6-6 47 A2 11UD Rev00

47 A2 11UD Rev00 7-1

7. User Program Execution

7.1 RUN-TIME ENVIRONMENT

7.1.1 Prerequisites

The following operations are prerequisites to the execution of DML programs.

• The schema DDL and DMCL have been translated into an object schema.

• The storage areas have been preallocated against this schema.

• The DML programs have been compiled against this schema and linked.

In order to ensure that the schema referenced at execution is the same as the schema
referenced at preallocation and compilation, a certain number of consistency checks are
performed at run-time:

• On the first READY that triggers the IDS session, the schema name and DDL
reference date recorded in each program by COBOL are compared with the schema
name and DDL reference date of the object schema used at execution.

• On each READY, the schema name and DMCL reference date recorded in the label of
each area by PREALLOC are compared with the schema name and DMCL reference
date of the object schema used at execution.

Reference Manual IDS/II

7-2 47 A2 11UD Rev00

7.1.2 Execution Modes

The DML programs may be executed in BATCH, IOF and TDS:

• The BATCH environment includes the jobs that either do not activate the
telecommunication lines or activate them indirectly through the input and output
queues of MCS.

• The IOF environment corresponds to the jobs connected to a terminal under the
supervision of the Interactive Operation Facility.

• The TDS environment corresponds to the steps running under the supervision of the
Transaction Driven System.

NOTE: The data base utility DBUTILITY is considered as a user step launched by the
same type of basic JCL and able to run in either a batch or interactive (IOF)
environment.

User Program Execution

47 A2 11UD Rev00 7-3

7.2 OBJECTS REFERENCED AT RUN-TIME

As far as IDS/II is concerned, a user step references four types ofobject:

• Data base object schemas.

• Data base storage areas.

• An optional IDSOPT file containing the run-time commands.

• Optional IDSTRACE files collecting program and DBCS trace information.

Data base object schemas reside in libraries of type BIN. These libraries must be
assigned statically using the reserved ifn's DDLIB1, DDLIB2, DDLIB3.

If a schema name recorded in a program of the step is not qualified in the run-time
commands, the object schema is searched for loading in the libraries assigned, in the
sequence defined by DDLIB1, DDLIB2, DDLIB3.

If a schema name is qualified in a run-time SCHEMA command by the efn of a library or
any of the keywords DDLIB1, DDLIB2, DDLIB3, the object schema is searched in the
library specified.

If two schemas with identical names are used in the step, they must be stored in two
different libraries and at least one must be qualified in the run-time commands.

Object schemas required at execution must be in the "DDL-DMCL" state.

Data base storage areas must be assigned statically using the ifn's defined in the DMCL
or redefined in the run-time commands. Only the areas to be READYed need be
assigned. If several data bases are referenced in the step, all area ifn's must be different.

• The run-time command file may be:

- An input-enclosure with the TYPE option DATA or DATASSF.

- A member of an SL library. The TYPE option of the member must be DATASSF.

- A sequential file.

The run-time command file, when present, must be assigned statically using the
reserved ifn IDSOPT.

The absence of the run-time command file is indicated in the JCL by the absence of an
ASSIGN IDSOPT statement. In this case the run-time default options apply.

If several data bases are involved at execution, the group of run-time commands related
to a given data base is identified by the first command which must be a SCHEMA
command.

Reference Manual IDS/II

7-4 47 A2 11UD Rev00

• The IDS trace files are standard or permanent SYSOUT files. They are used only
when TRACE commands are specified in the run-time command language or when
the DML programs call the DBCS function H_IA_UCTRACE.

The ifn used to reference a trace file can be:

- The default ifn IDSTRACE if it is not redefined in the TRACE command.

- The ifn specified in the IDSTRACE clause of the TRACE command.

- The ifn specified in the second parameter of H_IA_UCTRACE.

A static ASSIGN is only needed when the TRACE output is not directed to the standard
SYSOUT

In the case of several data bases, the TRACE output can be directed to different
SYSOUT files if the ifn's are different or to the same SYSOUT file if the ifn's are
identical.

• In a TDS environment:

- Only one data base is accessible to the TDS step.

- Any output directed to an IDS trace ifn is automatically redirected to a member of
the library assigned to the TDS reserved ifn DBUGFILE.

- Only secondary programs with DB-DESCRIPTIONS IN LINKAGE can be subject
to the "USE procedure" option at TDS generation time.

• The previous considerations are illustrated in Figure 7-1.

User Program Execution

47 A2 11UD Rev00 7-5

DDLIB1

DDLIB2

DDLIB3

reserved

Search
rules

ASSIGN

internal-fi le-names external-fi le-names

area-ifn

area-ifn

area-ifn

...

...

defined in DMCL
or redefined in
INTERNAL FILE NAME
command

IDSOPT

reserved

default or redefined
in TRACE command

IDSTRACE

trace-ifn

Run-t ime
command
file

Run-t ime
Trace
Files

Data base
storage
areas

STEP

PROGRAMS

Libraries
of type BIN
containing
object schemas

Figure 7-1. Objects Referenced at Run-time

Reference Manual IDS/II

7-6 47 A2 11UD Rev00

7.3 USER STEP BASIC JCL

A step starting IDS programs uses the basic JCL:

STEP user-load-module {step-parameter}...[REPEAT] ;
 [SIZE...;]
 ASSIGN DDLIB1 library-description ;
 [ASSIGN DDLIB2 library-description ;]
 [ASSIGN DDLIB3 library-description ;]
 { ASSIGN area-ifn area-efn assign-parameters ; }
 { [DEFINE area-ifn define-parameters ;] }...
 [ASSIGN IDSOPT {*input-enclosure-name } ;]
 {input-file-description }]
 [ASSIGN idstrace-ifn simple-file-description ;]...
 [other statement for non-IDS file ;]...
ENDSTEP ;

7.3.1 Parameter Description

REPEAT This parameter is mandatory if the step runs in concurrent
access environment (GAC) or if it activates the checkpoint
function.

SIZE NBBUF(total number of buffers) and POOLSIZE (total size
of UFAS pool) must be specified if default values are
insufficient.

DDLIBi These reserved ifn's reference the libraries containing the
object schemas and define their search path.

area-ifn Internal-file-name of a storage area, as defined in the DMCL.

An ASSIGN statement is required for each area involved in
the processing. It specifies the area usage mode (SHARE,
ACCESS parameters) to confirm or override the usage mode
specified in the READY.

A DEFINE statement may be necessary to specify the
JOURNAL and READLOCK parameters.

Under TDS the READLOCK parameter must not be
specified.

IDSOPT This reserved ifn references the file containing the run-time
commands, if any.

idstrace-ifn This ifn references a SYSOUT file onto which trace
information is written.
The default ifn is IDSTRACE. It can be redefined in the
TRACE command of the run-time command language.
Under TDS the trace ifn must not be DBUGFILE.
The ASSIGN statement is only required if the trace file is not
the standard SYSOUT.

User Program Execution

47 A2 11UD Rev00 7-7

7.3.2 Example

A schema has the following DMCL entries:

SCHEMA NAME IS MRK-TECH-PUB ...
AREA NAME IS SOFTWARE-MANUALS
 AREA INTERNAL FILE NAME IS SOFTPBS ...
AREA NAME IS HARDWARE-MANUALS
 AREA INTERNAL FILE NAME IS HARDPBS ...

The schema library and the two areas are catalogued with the external-file-names
DB.BINLIB, DB.SOFT, DB.HARD respectively.

Run-time statistics are required and the DBCS has to trace onto the standard SYSOUT
the STORE statements that involve at least 10 input-output transfers between the buffers
and the data base.

If the areas are used in MONITORED mode and protected by the BEFORE and AFTER
journals, the step enclosure may be coded as follows:

 __
| |
| STEP ...REPEAT; |
| ASSIGN DDLIB1 DB.BINLIB; |
| ASSIGN SOFTPBS DB.SOFT SHARE = MONITOR ACCESS = WRITE; |
| DEFINE SOFTPBS JOURNAL = BOTH; |
| ASSIGN HARDPBS DB.HARD SHARE = MONITOR ACCESS = WRITE; |
| DEFINE HARDPBS JOURNAL = BOTH; |
| ASSIGN IDSOPT *RUNCOM; |
| ENDSTEP; |
| |
| $INPUT RUNCOM; |
| SCHEMA NAME IS MRK-TECH-PUB. |
| STATISTICS WITH TIMING. |
| TRACE STORE |
| THRESHOLD IS 10 I-O |
| PRINT CURRENT FIELDS STATISTICS TIMING. |
| $ENDINPUT; |
|__|

Reference Manual IDS/II

7-8 47 A2 11UD Rev00

7.4 CONCURRENT ACCESS AND AREA PROTECTION

7.4.1 Data Base Sharing

• Three main concepts are involved in the sharing of a data base:

- The resource to be shared: this is the data base area at a global level or the area
page at a lower level.

- The user of a resource: this is the BATCH/IOF step or the TDS transaction.

- The time period during with a user is granted access to a resource: is the time
frame delimited by the ASSIGN-DEASSIGN functions at the file level, or a part of
a commitment-unit at the page level.

• A data base is composed of several areas. If different users access different areas at
the same time, they are not considered as sharing the data base in the context of the
following discussion.

• Three sharing modes are available at file level:

- EXCLUSIVE: the area is dedicated to one user who can perform RETRIEVAL or
UPDATE operations.

- SHARED: the area is shared by several users who perform only RETRIEVAL
operations.

- MONITORED: the area is shared by several users who perform RETRIEVAL or
UPDATE operations. For these users, access control takes place at the page level.

When a user is granted access to an area, he remains a tenant of thisresource until
DEASSIGN.

• Three sharing modes are available at the page level (when the sharing mode is
MONITORED at file level):

- EXCLUSIVE: the page is dedicated to only one user who can perform RETRIEVAL
or UPDATE operations.

- SHARED: the page is shared by several users who perform only RETRIEVAL
operations.

- STATISTICAL: access control is disabled; a copy of the disk page is made
available to any user as soon as his request is issued. Only RETRIEVAL
operations are allowed in this mode.

When a user is granted access to a page, he remains a tenant of this resource until the
end of the commitment-unit.

User Program Execution

47 A2 11UD Rev00 7-9

7.4.2 Area Usage Modes

• In the preceding paragraph, the sharing has been considered from the data base point
of view. In this paragraph, it is considered from the user point of view.

When a user requests access to an area, he indicates the usage intended for this area.
The usage includes the sharing mode at file level (EXCLUSIVE, SHARED,
MONITORED) and the access mode (RETRIEVAL, UPDATE).
When sharing at the file level is MONITORED, the usage mode includes the sharing and
access at page level.

• Figure 7-2 illustrates the various possible usages and the different places in the
system where they can be specified.

• The first column lists the generic usage modes as defined above.

• The second column relates to the specification of the usage mode in the DML
program. It can be seen that only the sharing and access modes at the file level can
be specified in the READY statement.

The logic of the program must be adapted to the usage mode selected (splitting into
commitment-units in MONITORED mode).

• The third column relates to the specification of the usage mode in the JCL of
BATH/IOF step.

The SHARE, ACCESS parameters of the ASSIGN statement define the sharing and
access modes at the file level. The READLOCK parameter of the DEFINE statement
defines the sharing mode of pages accessed for retrieval; pages accessed for update are
always reserved in EXCLUSIVE mode.

File Management takes into account the ASSIGN statement (and not the READY
statement) when evaluating the condition for granting access to the area. Therefore, the
ASSIGN statement must indicate either the same usage mode as that of the READY
statement or a more restrictive usage mode: EXCLUSIVE instead of SHARED or
MONITORED, SHARED instead of MONITORED, UPDATE instead of RETRIEVAL. The
overriding rules are dealt with in the next paragraph.

Reference Manual IDS/II

7-10 47 A2 11UD Rev00

GENERIC DML TERMINOLOGY BATCH/IOF TERMINOLOGY TDS TERMINOLOGY
USAGE-MODE READY (FILE) JCL ASSIGN (FILE) JCL ASSIGN (FILE)

JCL DEFINE (PAGE) TDS GENERATION
(PAGE)

FILE LEVEL PAGE LEVEL FILE LEVEL PAGE LEVEL FILE LEVEL PAGE LEVEL FILE LEVEL PAGE LEVEL
EXCLUSIVE
RETRIEVAL

EXCLUSIVE
RETRIEVAL

SHARE=NORMAL
ACCESS=SPREAD

EXCLUSIVE
UPDATE

EXCLUSIVE
UPDATE

SHARE=NORMAL
ACCESS=WRITE

SHARED
RETRIEVAL

SHARED
RETRIEVAL

SHARED=NORMAL
ACCESS=READ

MONITORED
RETRIEVAL

EXCLUSIVE
RETRIEVAL

MONITORED
RETRIEVAL

cannot be
specified

SHARE=MONITOR
ACCESS=READ

READLOCK=EXCL SHARE=MONITOR
ACCESS=READ

default
EXCLUSIVE
RETRIEVAL

SHARED
RETRIEVAL

cannot be
specified

READLOCK=
NORMAL

 SPREAD
 ALLREAD

TRANSACTION
...
SHARED READ

STATISTICAL
RETRIEVAL

cannot be
specified

READLOCK=STAT TRANSACTION
SUPPRESS
CONCURRENT
CONTROL

MONITORED
UPDATE

EXCLUSIVE
RETRIEVAL

MONITORED
UPDATE

cannot be
specified

SHARE=MONITOR
ACCESS=WRITE

READLOCK=EXCL SHARE=MONITOR
ACCESS= WRITE

default
EXCLUSIVE

 SPWRITE RETRIEVAL
EXCLUSIVE always always always
UPDATE EXCLUSIVE EXCLUSIVE EXCLUSIVE

UPDATE UPDATE UPDATE
SHARED
RETRIEVAL

cannot be
specified

READLOCK=
NORMAL

TRANSACTION
...
SHARED READ

Figure 7-2. Area Usage-mode Designation in Various Contexts

The necessity to specify the usage mode at the JCL level has the advantages:

• Job Management is able to avoid deadlocks at the file level.

• Information concerning the usage mode at the page level can be supplied.

• The EXCLUSIVE mode at the file level may be defined in the JCL for a program
whose logic corresponds to the MONITORED mode. This avoids the overhead of the
access control at the page level each time the program may run in this EXCLUSIVE
mode.

The necessity of specifying the usage mode at the JCL level has the disadvantages:

• The user is led to supply the same information twice, when the usage mode is the
same in the program and in the JCL.

• The ASSIGN/DEASSIGN time period may comprise several READY/FINISH sessions
with different usage modes. The ASSIGN, DEFINE statements must specify the most
restrictive of these usage modes.

The fourth column relates to the specification of the usage mode in a TDS
environment. An added complexity is due to the fact that:

• the TDS step as a whole is a user with respect to the other BATCH/IOF/TDS steps.

• the TDS step corresponds to several users represented by the transactions in
progress.

The usage mode at the file level is defined in the JCL of the TDS step and applies to all
transactions.

The EXCLUSIVE mode is not relevant since transactions are normally concurrent.

The SHARED mode is not supported for TDS-controlled files.

User Program Execution

47 A2 11UD Rev00 7-11

For the MONITORED mode, it is possible to specify that an area:

• is reserved in exclusive mode with respect to other steps but is shared by the
transactions. Strangely enough, this refinement of the sharing mode is indicated by
the ACCESS parameter (SPREAD, SPWRITE)

• is shared by other steps as well as by the transactions (READ, WRITE).

The usage mode at the page level is defined in the TDS generation phase and may be
different between transactions. The READLOCK parameter of the DEFINE statement
must not be specified.

7.4.3 ASSIGN/READY Usage Mode Overriding Rules

The JCL ASSIGN statement can override the program READY statement. The overriding
rules are enforced by both File Management and the DBCS.

Figure 7-3 shows the JCL ASSIGN SHARE and ACCESS parameters that can be
specified depending on the READY USAGE-MODE parameter.

When the combination of parameters is not allowed, the intersection of a row and a
column contains a hyphen.

When the combination of parameters is allowed, the intersection contains the usage that
is finally retained.

SPREAD, ALLREAD and SPWRITE are not mentioned in the chart for the sake of
clarity.

If the EXCLUSIVE RETRIEVAL mode defined in READY is actually desired, the ASSIGN
must specify

SHARE=NORMAL and ACCESS= {WRITE }
 {SPREAD}

PROGRAM USAGE MODE
READY EXCLUSIVE SHARED MONITORED
JCL RETRIEVAL UPDATE RETRIEVAL RETRIEVAL UPDATE
ASSIGN
NORMAL READ - - SHARED SHARED -

RETRIEVAL RETRIEVAL
WRITE EXCLUSIVE EXCLUSIVE EXCLUSIVE EXCLUSIVE EXCLUSIVE

RETRIEVAL UPDATE RETRIEVAL RETRIEVAL UPDATE
MONITOR READ - - - MONITORED -

RETRIEVAL
WRITE - - - MONITORED MONITORED

RETRIEVAL UPDATE
ONEWRITE READ - - - SHARED -

RETRIEVAL
WRITE EXCLUSIVE EXCLUSIVE SHARED SHARED EXCLUSIVE

RETRIEVAL UPDATE RETRIEVAL RETRIEVAL UPDATE
FREE READ

WRITE

Figure 7-3. Area Final Usage-Mode (File level) After Overriding of DML READY by
JCL ASSIGN

Reference Manual IDS/II

7-12 47 A2 11UD Rev00

7.4.4 Area Protection by Journals

• Two modes of protection are provided to restore a data base area, or part of it, to a
known stable state corresponding to a consistency-point: beginning of step, check-
point, commitment-point, end of step.

The consistency-point is termed local if it relates to a given user;other users may still be
working on other parts of the area.

The consistency-point is termed global if it relates to all users; everyuser has reached a
local consistency-point and the data base area isinactive.

• The area protection is based on the assumption that the pages modified by a user
between two consistency-points are held in exclusive mode.

• The BEFORE JOURNAL, by recording the state of the pages before their
modification, allows the system to restore these pages to the state they were in at a
previous consistency-point.

This method is used to recover from program or system failures or to solve deadlock
situations.

• The AFTER JOURNAL, by recording the state of the pages after their modification,
allows the system to restart from a save copy of the area, corresponding to a global
consistency-point, and to re-apply all the modifications that occurred until a
subsequent consistency-point.

This method is used to recover from hardware errors causing the physical destruction of
the data base area. It is therefore recommended that the AFTER journal not reside on
the same volumes as those of the data base.

In TDS environment, the AFTER journal may also be used in conjunction with the
DEFERRED UPDATES mechanism to replace the BEFORE journal protection, insofar
as there are enough buffers to accommodate all the pages modified during the
commitment-unit.

• The use of the BEFORE or AFTER journal is optional or mandatory depending on the
area usage mode and the environment.

If the access mode is RETRIEVAL, journals are not used.

If the usage is EXCLUSIVE UPDATE in BATCH/IOF steps, both journals are optional.

If the usage mode is MONITORED UPDATE in BATCH/IOF steps, the BEFORE journal
is mandatory and the AFTER journal optional.

If the usage mode is MONITORED UPDATE in a TDS step, either the BEFORE journal
or the AFTER journal with DEFERRED UPDATES must be activated.
When the BEFORE journal is used, the AFTER journal is optional.

If several steps update the same data base, whether sequentially or concurrently, is is
recommended that they activate the area protection in a consistent way. This is
particularly true for the AFTER journal when it serves for the protection against media
errors.

The DBA has the possibility to impose a uniform and permanent protection level by
specifying JOURNAL options in the catalog.

User Program Execution

47 A2 11UD Rev00 7-13

7.4.5 Consistency of Area Protection Levels for the Same BATCH/IOF User

If it is important that a given area be accessed with the same protection level by several
users, it is also important that a given user access the different areas of the data base
with consistent protection levels.

The system itself performs no consistency check on the protection levels of different
files. In IDS/II the areas are part of the same logical structure and the DBCS checks at
least that, if a return to a consistency point is required, it is possible to rollback all the
areas currently opened.

Figure 7-4 illustrates the constraints on the usage of the different areas opened for
update by the same user in the BATCH/IOF environment. In the TDS environment, the
areas are mandatorily in MONITORED mode.

In any event, the DBA may enforce the consistency of protection levels between areas
by specifying the same JOURNAL options in the catalog.

Areas Already
in READY

EXCLUSIVE UPDATE MONITORED
UPDATE

State
READY
request for no BEFORE BEFORE always BEFORE
new area
EXCLUSIVE no BEFORE Y -
UPDATE (ROLLBACK impossible)

BEFORE - Y
MONITORED
UPDATE

always BEFORE (ROLLBACK possible)

Figure 7-4. Consistency of Area Protection Levels for the Same User In BATCH/IOF
Environment

Reference Manual IDS/II

7-14 47 A2 11UD Rev00

7.5 RUN-TIME COMMAND LANGUAGE

The syntax rules and descriptive notations are those described in Section III for the
DDLPROC command language.

7.5.1 Reserved words

ABNORMAL MODLAB
ACCEPT NAME (NAMES)
ALL NO
ANY NON-NULL
ARE (IS) NOT
AREA (REALM) NUMBER
AT OCCURRENCE
BUFFER (BUFFERS) OF
CANCEL OPEN
CHECK OUTPUT
CLEANPOINT PAGE
COMMITMENT POINTERS
CONNECT POOL
CURRENCIES PRINT
CURRENT PROGRAM
DB-REGISTERS PUTPAGE
DB-STATUS READY
DDLIB1 REALM (AREA)
DDLIB2 RECORD
DDLIB3 RELPAGE
DISCONNECT RESTART
DUMP ROLLBACK
ERASE SAVE
EXCEPT SCHEMA
EXTEND SEGMENT (SEGMENTS)
FIELDS SET
FILE SOURCE
FIND STARTDBS
FINISH STATE
FOR STATEMENT (STATEMENTS)
GET TATISTICS
GETLAB STORE
GETPAGE STRUCTURE
GETPTR SWITCH
HEXADECIMAL (HEXA) SYNCHRO
IAC SYSTEM
IDSTRACE TERMDBS
IF THRESHOLD
IGNORE THROUGH (THRU)
IN (OF) TIMING
INCONSISTENT TRACE
INPUT TRANSIENT
INTERNAL UNLOAD
IS (ARE) WARNING
I-O WHEN
LINE WITH
MODIFY

User Program Execution

47 A2 11UD Rev00 7-15

7.5.2 Types of Command

There are eleven types of command. The group of commands that correspond to a given
schema is identified by the first command, which must be a SCHEMA command.

The run-time command language format is as follows.

[SCHEMA command]
[]
[[IGNORE TRANSIENT command]]
[]
[[POOL command]]
[]
[[BUFFERS command]]
[]
[[SAVE CURRENCIES command]]
[]
[[SYNCHRO command]] ...
[]
[[NO WARNING command]]
[]
[[STATISTISC command]]
[]
[[TRACE command]]
[]
[[CHECK PAGE command]]
[]
[[INTERNAL FILE NAME command]]

The commands will be describe in detail.

Reference Manual IDS/II

7-16 47 A2 11UD Rev00

7.5.3 SCHEMA Command

Function

To identify the schema to which subsequent commands apply and to provide information
for the loading of this schema.

Format

 [{library-efn}]
SCHEMA NAME IS schema-name [{IN} {DDLIB1 }]
 [{OF} {DDLIB2 }]
 [{DDLIB3 }]
 [FOR PROGRAM program-name]
 [NUMBER OF SEGMENTS IS integer] .

Rules

1. ach time a main program starts an IDS session, the DBCS searches the run-time
command file, looking for a SCHEMA command whose schema-name corresponds
to that recorded in the program.

2. If the PROGRAM clause is not specified, the search for the SCHEMA command
stops as soon as it identifies the right schema-name.

3. If the PROGRAM clause is specified, the DBCS further checks that "program-
name" corresponds to the name of the program starting the IDS session. The
search continues if the names do not match.

This option is required to differentiate 2 schemas with identical names used by 2
different programs of the step.

4. If the search for the SCHEMA command fails, all default options are applied.

5. If the library qualification is absent, the schema is searched for loading in the
libraries assigned, in the sequence defined by DDLIB1, DDLIB2, DDLIB3.

6. If the library qualification is present, the schema is loaded from the library specified.

7. If the SEGMENTS clause is not specified, the schema is loaded in the number of
segments indicated in the PRINT STORAGE DESCRIPTION report of DDLPROC.

8. If the SEGMENTS clause is specified, the schema is loaded in the number of
segments specified, provided that it is less than the default number indicated by
DDLPROC.

This option is useful if the segment vacant entries of the step are a limited resource.
In TDS environment, it is recommended that 1 segment be specified.

User Program Execution

47 A2 11UD Rev00 7-17

7.5.4 IGNORE TRANSIENT Command

Function

To ignore the transient or inconsistent state of some realms when they are readied.

Format

 TRANSIENT
IGNORE STATE OF {realm-name}... .
 INCONSISTENT

Rules

1. If TRANSIENT is specified, the realms of the list are made available to the program
even if they are in the TRANSIENT state at READY time.

The TRANSIENT condition occurs when a previous step updating the realms in
exclusive mode without the BEFORE journal protection has terminated normally or
abnormally without finishing these realms.

The TRANSIENT condition indicates that a part of the data base is presumably
inconsistent. The check of this condition at READY time is a safeguard against the
further use of the realms.

The normal way to recover from this situation is to restore the realms from save
copies. Another way is to run DBUTILITY to ascertain that the data base is
consistent, to patch local inconsistencies if any, and to use the RESET TRANSIENT
clause of the PATCH LABEL command.

However, if the user is certain that the faulty step left the realms in a consistent
state, as regards both IDS pointers and user data, he may use the IGNORE
TRANSIENT command. The fact that the TRANSIENT state is ignored is recorded
in the IDS label.

2. If INCONSISTENT is specified, the realms of the list are made available to the
program even if they are found in the INCONSISTENT state at READY time.

The INCONSISTENT condition occurs when a previous IDS session has detected
and recorded in the IDS label a data base inconsistency. The inconsistency is
recorded even if the realms are open in retrieval mode (except when
SHARE=MONITOR and READLOCK=STAT, in which case the inconsistency may
be only apparent). The check of this condition at READY time is a safeguard
against the further use of the realms.

The normal way to recover from this situation is to restore the realms from
consistent save copies. Another way is to patch the inconsistent part of the data
base by using the PATCH command of DBUTILITY after analysis of the DBCS error
message reporting the inconsistency, to validate the patch and if the validation is
successful, to use the RESET INCONSISTENT clause of the PATCH LABEL
command.

Reference Manual IDS/II

7-18 47 A2 11UD Rev00

However, if the user is certain that the program to be run will not be working on the
part of the data base that is inconsistent, he may use the IGNORE INCONSISTENT
command. The fact that the INCONSISTENT state is ignored is recorded in the IDS
label.

3. If the IGNORE command is omitted, then the program is aborted if it attempts to
ready realms which are either in the TRANSIENT or INCONSISTENT state.

4. If the IGNORE command is present, the TRANSIENT and/or INCONSISTENT state
of the involved areas will be ignored but not reset.

User Program Execution

47 A2 11UD Rev00 7-19

7.5.5 BUFFER POOL Command

Function

To specify whether the areas of the data base share a buffer pool.

Format

 | |
 | BUFFER POOL NAME IS buffer-pool-name. |
 |___|

Syntax rules

1. The buffer-pool-name must be at most four characters long.

2. If the blank name is used then it must be in the form ' ' (that is, blanks enclosed by
apostrophes).

3. Non-blank names may contain letters, digits, the minus sign and the underscore.
They must be delimited by apostrophes if they do not conform to the rules for the
formation of DDL names.

General rules

1. If the POOL command is absent, then the default name is that specified in the
DMCL. If the POOL command is present, it overrides the DMCL.

2. If the blank name is specified, there is no buffer pool and the NUMBER OF
BUFFERS command gives the number of buffers reserved for each area (that is,
each area has its own set of buffers).

3. If a non-blank name is specified, there is a buffer pool and the NUMBER OF
BUFFERS command gives the total number of buffers that will be shared by all
areas.

4. The purpose of the pool of buffers is to reduce the total buffer space requirements
when several areas are in the READY state. When a DML program accesses one
area for a certain length of time:

- If there is no buffer pool, it cannot use more buffer space than that reserved
for this area. The space reserved for the other areas is not available.

- If there is a buffer pool, the total pool space may be used for this area. When
the program starts working on a different area, the pool space is assigned to
the buffers of the new area.

5. In a TDS environment, this command is ignored.

Reference Manual IDS/II

7-20 47 A2 11UD Rev00

7.5.6 NUMBER OF BUFFERS Command

Function

To specify the number of buffers reserved for each area or for the buffer pool.

Format

| |
| NUMBER OF BUFFERS IS integer . |
|________________________________|

Rules

1. If the BUFFERS command is absent, the default number of buffers is that specified
in the DMCL. If the BUFFERS command is present, it overrides the DMCL.

2. The minimum value that can be specified is 3.

3. If there is a non-blank buffer-pool-name then the value specified is the number of
buffers to be shared amongst all areas. In the case where different areas have
different page sizes, the largest value will be chosen as the buffer size.

4. If there is a blank buffer-pool-name then the value specified is the number of
buffers to be reserved for each area.

5. The number of buffers to choose at run-time is a compromise between the buffer
space requirements and the performance requirements.

If a program works for a certain time on a limited set of pages (cluster) the number
of buffers can be chosen to accommodate all these pages.

If a program accesses pages in a completely random manner, then increasing the
number of buffers will not improve the total performance.

6. In TDS environment, this command is ignored.

User Program Execution

47 A2 11UD Rev00 7-21

7.5.7 SAVE CURRENCIES Command

Function

To request that currency indicators be not nulled across commitment-points in a
BATCH/IOF environment.

Format

| |
| SAVE CURRENCIES AT COMMITMENT . |
|__________________________________|

Rules

1. If the SAVE CURRENCIES command is omitted, the currency indicators are nulled
at each commitment-point and the data base pages to which they correspond are
unlocked by the run-unit.

2. If the SAVE CURRENCIES command is specified, the currency indicators keep
their values across commitments, but the data base pages to which they correspond
are unlocked by the run-unit at the commitment-point.

This option should be used only if conventions exist between applications, which
ensure that the records referenced by the currency indicators of a run unit are not
erased or replaced by concurrent run-units.

If this condition is not met, the DBCS may abort the run-unit on encountering an
inconsistency between the data base and the currency indicators.

3. In TDS environment this command is ignored. The currency indicators are always
nulled and the pages unlocked at the commitment-point.

If a record data-base-key is to be kept across commitments, it must be saved by an
ACCEPT statement in the TRANSACTION STORAGE before the end of a
commitment unit, and restored by a FIND DB-KEY statement in the next
commitment unit.

4. This command does not apply to check-points. In non-concurrent access
environment, currencies are left unchanged across check-points.

Reference Manual IDS/II

7-22 47 A2 11UD Rev00

7.5.8 SYNCHRO Command

Function

To disable the asynchronous page reading occurring during the sequential search of an
area.

Format

| |
| SYNCHRO . |
|___________|

Rules

1. If this command is omitted, each FIND ... WITHIN realm-name triggers the look-
ahead mechanism which initiates the transfer of the page following (or preceding)
the page currently needed. The transfer can occur asynchronously while the DBCS
or the program is processing the current page, thus reducing the total elapsed time.

2. If this command is specified, the look-ahead mechanism is disabled.

3. This command may be useful in the case where the extra buffer needed for the
asynchronous read must be freed before the page it contains is actually used.

For example, if a program, using a pool of 4 buffers, searches an area sequentially
and, for each record found, searches a set occurrence spreading over 3 pages in
another area, then the total number of pages involved in the processing of the
occurrence is 5 (4 for the owner and members and 1 for the page read in advance).
As there are only 4 buffers, the page read in advance for the owner will be released
during the processing of the members and will have to be read again for the next
occurrence, thus degrading the performance. In this case it is recommended to use
the SYNCHRO command or to augment the number of buffers or to suppress the
pool in order to insulate the buffers of the two areas.

User Program Execution

47 A2 11UD Rev00 7-23

7.5.9 NO WARNING Command

Function

To prevent the DBCS from sending warning messages to the JOR.

Format

| |
| NO WARNING . |
|_______________|

Rules

1. If the NO WARNING command is omitted, the warning messages prepared by the
DBCS in the DB-DETAILED-STATUS register are sent to the JOR (Job Occurence
Report).

2. If the NO WARNING command is specified, the warning messages are not sent to
the JOR.

7.5.10 STATISTICS Command

Function

To request the DBCS to gather statistical and timing information during the IDS/II
session.

Format

| |
| STATISTICS [WITH TIMING] . |
|____________________________|

Reference Manual IDS/II

7-24 47 A2 11UD Rev00

Rules

1. If the STATISTICS command is specified without the TIMING option, the
information is reported in the JOR (Job Occurrence Report) at IDS/II session end:

- The number of buffers used for the pool or for each area.

- The number of program calls to each category of DBCS function: ACCEPT,
CONNECT, ...

- The average number of SYSTEM functions called by each category of DBCS
function. The SYSTEM functions in question are limited to UFAS (Unified File
Access System) and GAC (General Access Control).

- The average number of page transfers performed by each category of DBCS
function (I/O on journals are not included).

- The number of calls to each category of DBCS sub-function. The sub-functions
are DIRECT PLACEMENT (for the storage of a DIRECT or VIA record), CALC
PLACEMENT, SET SELECTION, and SET INSERTION.

- The average number of SYSTEM functions called by each category of DBCS
sub-function.

- The average number of page transfers performed by each category of DBCS
sub-function.

- The number of calls to each category of SYSTEM function.

- The average number of page transfers performed by each category of
SYSTEM function.

- The total number of calls to DBCS functions.

- The total number of calls to SYSTEM functions.

- The total number of page transfers.

2. If the STATISTICS command is specified with th TIMING option, the information is
also reported:

- The average elapsed time for each category of DBCS function.

- The average processor time for each category of DBCS function. This time
includes the processor time spent in the operating system functions called.

- The total DBCS elapsed time.

- The total DBCS processor time.

3. If the STATISTICS command is omitted, no statistical information is collected
during the IDS session.

4. Figure 7-5 shows an example of the run-time session statistics with the TIMING
option.

NOTES: 1. Non-integral values are rounded to the closest printable value. For
example, an average number of I-0s reported as "0.02" means
that the actual value v is such that 0.015 < v < = 0.025.

User Program Execution

47 A2 11UD Rev00 7-25

2. The total number of I-Os reported by the DBCS may differ slightly
from the number of I-0 CONNECT displayed on the JOR; this is
because OPEN and CLOSE I-0 are not available to the DBCS.

3. The SYSTEM statistics are intended for the field engineers in case
performance problems require investigation.

4. For the interpretation of the statistics,see the related paragraph at
the end of this section.

Reference Manual IDS/II

7-26 47 A2 11UD Rev00

__
| **** STATISTICS * V40.0 * PROGRAM:TG02 * SCHEMA:TG02-SH **** |
| BUFFER POOL:YES * NUMBER OF BUFFERS:4 |
| DBCS STATISTICS: |
| *** |
| * DBCS FUNCTION * NUMBER *AVERAGE NB OF* AVERAGE NB * AV. ELAPSED* AV. |
| * * PROCESS * * * * |
| * CATEGORY * OF CALLS *SYSTEM CALLS * OF I/O * TIME (MS) * TIME|
| * * (MS) * * * * |
| *-------------------*------------*-------------*-------------*------------*-----|
| * ACCEPT * 431 * 0.00 * 0.00 * 0.1 * |
| * * 0.1 * * * * |
| * FIND DIRECT * 184 * 0.82 * 0.16 * 21.3 * |
| * * 1.5 * * * * |
| * FIND CURRENT * 26 * 0.31 * 0.00 * 10.9 * |
| * * 0.8 * * * * |
| * FIND F/L/I AREA * 2 * 58.00 * 20.00 * 533.5 * |
| * * 94.6 * * * * |
| * FIND N/P SET * 396 * 0.76 * 0.14 * 20.9 * |
| * * 1.7 * * * * |
| * FIND SELECT USING * 33 * 2.18 * 0.64 * 71.2 * |
| * * 5.3 * * * * |
| * FINISH * 1 * 1.00 * -.-- * 948.0 * |
| * * 47.1 * * * * |
| * GET * 264 * 0.00 * 0.00 * 0.2 * |
| * * 0.2 * * * * |
| * MODIFY MEMBERSHIP * 33 * 8.30 * 1.00 * 143.1 * |
| * * 11.1 * * * * |
| * READY * 1 * 0.00 * -.-- * 2165.3 * |
| * * 234.9 * * * * |
| * STORE * 155 * 6.34 * 1.23 * 128.2 * |
| * * 10.3 * * * * |
| *** |
| ** |
| * DBCS SUBFUNCTION * NUMBER *AVERAGE NB OF* AVERAGE NB * |
| * CATEGORY * OF CALLS *SYSTEM CALLS * OF I/O * |
| *-------------------*------------*-------------*-------------* |
| * SET SELECTION * 200 * 1.53 * 0.29 * |
| * SET INSERTION * 167 * 2.29 * 0.20 * |
| * DIRECT PLACEMENT * 125 * 2.00 * 0.64 * |
| * CALC PLACEMENT * 30 * 2.70 * 1.63 * |
| ** |
| SYSTEM STATISTICS: |
| ** |
| * SYSTEM FUNCTION * NUMBER * AVERAGE NB * |
| * CATEGORY * OF CALLS * OF I/O * |
| *-------------------*------------*-------------* |
| * CHECKCI * 36 * 0.00 * |
| * FREECI * 734 * 0.00 * |
| * GETCI * 734 * 0.51 * |
| * SETCI * 401 * 0.00 * |
| ** |
| TOTAL NUMBER OF DBCS CALLS : 1526 |
| TOTAL NUMBER OF SYSTEM CALLS : 1905 |
| TOTAL NUMBER OF I-C : 371 |
| TOTAL DBCS ELAPSED TIME (MN) : 0.729 |
| TOTAL DBCS PROCESS TIME (MN) : 0.062 |
|__|

Figure 7-5. Run-time Session Statistics.

User Program Execution

47 A2 11UD Rev00 7-27

7.5.11 TRACE Command

Function

To activate the tracing of DML statements.

The trace function includes:

• an "external" trace, intended to help the end user follow the execution of a DML
program. He can select the types of DML function to be traced, restrict their tracing to
certain conditions and choose the amount of information to be printed.

• an "internal" trace, intended to help Field Engineering to check the IDS-UFAS-GAC
interface or investigate performance problems. The user need not be concerned with
the internal trace.

General Format

 | |
 | TRACE clause |
 | |
 | [WHEN RECORD clause] |
 | |
 | [WHEN AREA clause] |
 | |
 | [WHEN DB-STATUS clause] |
 | |
 | [WHEN THRESHOLD clause] |
 | |
 | [WHEN PROGRAM clause] ... |
 | |
 | [PRINT clause] |
 | |
 | [IDSTRACE clause] |
 | |
 | [OPEN clause] |
 | |
 | [IAC clause] . |
 |________________________________|

Rules

1. Each clause will be described separately .

Reference Manual IDS/II

7-28 47 A2 11UD Rev00

2. When the "internal" trace is not activated, the tracing condition is:

 TRACE-function-list-condition

 AND RECORD-condition

 AND REALM-condition

 AND DB-STATUS-condition

 AND THRESHOLD-condition

 AND (PROGRAM-1-condition [OR PROGRAM-2 condition]...)

3. When the "internal" trace is activated, the tracing condition becomes:

 TRACE-function-list-condition

 AND (PROGRAM-1-condition [OR PROGRAM-2-condition] ...) since
 the other conditions cannot be evaluated before the end of the
 DML function.

7.5.11.1 TRACE Clause

Function

To specify the DML functions to be traced.

Format

 ALL

 { ACCEPT }
 { CONNECT }
 { DISCONNECT }
 { ERASE }
 { FIND }
TRACE { [{ANY EXCEPT}] GET } STATEMENTS
 { [{NOT }] IF }
 { MODIFY }
 { READY }
 { STARTDBS }
 { STORE }
 { TERMDBS }

User Program Execution

47 A2 11UD Rev00 7-29

Rules

1. If ALL is specified then all DML functions are traced. These include the DML
statements proper and two other functions:

- STARTDBS (START Data Base Session) is the initialization function triggered
by the first READY of an IDS session.

- TERMDBS (TERMINATE Data Base Session) is the termination function
triggered by the last FINISH of an IDS session.

2. The IF DML function is the IDS/II generic name for the "Data Base Condition"
function.

3. If a list of DML functions is specified and NOT (or ANY EXCEPT) is not coded, then
only the functions of the list are traced.

4. If a list of DML functions is specified and NOT (or ANY EXCEPT) is coded, then all
functions except those in the list are traced.

7.5.11.2 WHEN RECORD Clause

Function

To restrict the trace action to operations at the completion of which thecurrent record of
the run-unit belongs to a list of record-types.

Format

| |
| WHEN RECORD NAME IS [NOT] {record-name} ... |
|___|

Rules

1. If NOT is absent, the list is made up of the record-types specified.

2. If NOT is present, the list is made up of all the record types of the schema except
those specified.

3. If this clause is omitted, then operations are traced whatever the type of the current
record of the run-unit.

7.5.11.3 WHEN AREA Clause

Function

To restrict the trace action to operations at the completion of which the area of the
current record of the run-unit belongs to a list of areas.

Reference Manual IDS/II

7-30 47 A2 11UD Rev00

Format

 {AREA }
WHEN { } NAME IS [NOT] {area-name}...
 {REALM}

Rules

1. If NOT is absent, the list is made up of the areas specified.

2. If NOT is present, the list is made up of all the areas of the schema except those
specified.

3. If this clause is not specified, then operations are traced whatever the area of the
current record of the run-unit.

7.5.11.4 WHEN DB-STATUS Clause

Function

To restrict the trace action to operations at the completion of which DB-STATUS
contains certain non-null values.

Format

WHEN DB-STATUS IS {NON-NULL }
 {ABNORMAL}

Rules

1. If NON-NULL is specified, then the DB-STATUS values are all those different from
"0000000".

2. If ABNORMAL is specified, then the DB-STATUS values are all those different from
"0000000" "0502100" (end of set or end of realm) and "0502400" (record not found).

3. If this clause is omitted, then operations are traced independently of the DB-
STATUS value.

7.5.11.5 WHEN THRESHOLD Clause

Function

To restrict the trace action to operations which incur a user-defined minimum number of
physical I/O operations (page transfers).

User Program Execution

47 A2 11UD Rev00 7-31

Format

| |
| WHEN THRESHOLD IS integer I-O |
|_________________________________|

Rules

1. "Integer" specifies the minimum number of I/O operations.

2. If this clause is omitted then the trace action is independent of the number of I/O
operations incurred by the DML function being traced.

7.5.11.6 WHEN PROGRAM Clause

Function

To restrict the trace action to specified occurrences of DML statements coded at
specified source line numbers in specified programs.

Format

WHEN PROGRAM NAME IS program-name

 [SOURCE LINE NUMBER IS integer-1 [THRU integer-2]]
 [{OCCURRENCE IS integer-3 [THRU integer-4]]]...

1. When specified, "integer-1" must be less than "integer-2" and "integer-3" must be
less than "integer-4".

2. The specified line numbers ("integer-1", "integer-2") refer to the internal line
numbers affected by the COBOL compiler when compiling the specified program.

3. If the SOURCE LINE phrase is not specified, the trace action takes place when the
DML function is coded in the program whose name is referenced.

Reference Manual IDS/II

7-32 47 A2 11UD Rev00

4. If the SOURCE LINE phrase is specified without the OCCURRENCE option, the
trace action takes place when the DML function is coded, in the program specified,
at a source line whose number:

- Equals integer-1, when the THRU phrase is absent.

- Belongs to the range defined by integer-1 and integer-2, when the THRU
phrase is present.

5. If the SOURCE LINE phrase is specified with the OCCURRENCE option, the trace
action is limited to:

- The n'th occurrence (n=integer-3) of a DML function within the specified line
range, if the THRU phrase is absent.

- The n'th through p'th occurrences (n=integer-3, p=integer-4) of a DML function
within the specified line range, if the THRU phrase is present.

The occurrence counter related to a line range is set to 0 at the beginning of an IDS
session (BATCH/IOF environment) or at the beginning of a TPR (TDS
environment). It is incremented by 1 each time all other trace conditions (TRACE-
function-list, RECORD, ...,PROGRAM, SOURCE LINE) are satisfied. In particular, if
different DML functions satisfying the conditions are executed sequentially within
the same line range, the occurrence counter is incremented for each of them.

6. If several SOURCE LINE phrases are coded, the line ranges must not overlap.

7. If several PROGRAM clauses are specified, they must reference different program-
names.

8. If no PROGRAM clause is specified, then operations are traced whatever the
program where they are coded.

7.5.11.7 PRINT Clause

Function

To specify the amount of information to be printed for each function traced.

Format

 [[FIELDS [IN HEXADECIMAL]]]
 [CURRENT []]
 [[SYSTEM POINTERS]]
 []
 [[{AREA }]]
 [[{REALM}]]
 [[] CURRENCIES]
PRINT [[RECORD]]
 [[SET]]
 [DB-REGISTERS]
 [STATISTICS]
 [TIMING]

User Program Execution

47 A2 11UD Rev00 7-33

Rules

1. If CURRENT is specified, information on the current record of the run-unit at the
completion of the traced function is displayed:

- If FIELDS is specified, the data fields of the record are displayed in
accordance with their schema attributes, or in hexadecimal if HEXADECIMAL
is coded.

- If POINTERS is specified, the set pointers of the record are displayed.

- If neither FIELDS nor POINTERS is specified, both data fields and set pointers
are displayed.

2. If CURRENCIES is specified, the contents of currency indicators at the completion
of the traced function are displayed:

- If AREA/REALM is coded, the area currency indicators are displayed.

- If RECORD is coded, the record-type currency indicators are displayed.

- If SET is coded, the set-type currency indicators are displayed.

- If neither AREA nor RECORD nor SET is coded, all currency indicators are
displayed.

3. If DB-REGISTERS is specified, the contents of the data base registers at the
completion of the traced function are displayed.

4. If STATISTICS is specified, information on the SYSTEM functions activated by the
DBCS during the traced function is displayed.

5. If TIMING is specified, the process-time and elapsed-time of the traced function are
displayed.

6. If PRINT is specified alone then the maximum information is printed out.

7. If the PRINT clause is omitted, only the function name and the data-base-key of the
current record of the run-unit are displayed.

7.5.11.8 Interpretation of the TRACE Listing

A sample TRACE output listing is shown in Figure 7.6. The following comments specify
the meaning of the non-self-explanatory symbols.

First Line:

On the first line are listed the program-name and source internal line number of the
traced statement, the category of the DBCS function, the current record of the run-unit,
the name of the schema currently used and the current time at completion of the
function.

If the current-of-run-unit (CRU) at completion of the statement is non-null, CRU is
followed by the letter P (for Present) and the data-base-key of the CRU. The latter is
given in hexadecimal form and in interpreted decimal form (A: area code number, P:

Reference Manual IDS/II

7-34 47 A2 11UD Rev00

page number, L: line number). AN and RN supply the area-name and record-name of the
CRU.

If the current-of-run-unit is null, CRU is followed by the letter N (for Null) only.

Pointers:

The CRU pointers, if present, are given in their order of appearance in the record pointer
zone. They are displayed in:

• The hexadecimal form which shows how many bytes are used.

• The interpreted decimal form which indicates the area code number (for a global
pointer), the page and line number.

Complementary information is supplied by the letters:

L => local pointer
G => global pointer
E => the record is owner of an empty set occurrence
D => the record is an optional member currently disconnected
N => NEXT pointer
P => PRIOR pointer
O => OWNER pointer

Fields:

• Offsets of the fields in the record data zone are given in decimal and hexadecimal.

• The type of the fields is indicated by the symbols:

 CHAR for CHARACTER.
 FB15, FB31 for SIGNED BINARY 15 and 31.
 UPK for UNSIGNED UNPACKED DECIMAL
 PK for UNSIGNED PACKED DECIMAL
 PK2 for UNSIGNED PACKED-2 DECIMAL
 UPKS for SIGNED UNPACKED DECIMAL
 PK for SIGNED PACKED DECIMAL.

• When fields are displayed in hexadecimal, an EBCDIC interpretation is also provided.

Currencies:

A currency indicator may have the states:

• Present => letter P.

• Null => the corresponding indicator is not displayed.

• Virtual => letter V. The related DBK represents:

- For a current-of-realm, the DBK of the erased record.

- For a current-of-set, the DBK of the next record of the erased or disconnected
record.

User Program Execution

47 A2 11UD Rev00 7-35

AN and RN give the area-name and record-name of the record.

Names:

The area, record and set names are right-truncated to 17 characters.

**
*****PGID:TG11 LINE:9080 **FIND N/P SET **AT *
* 08:55:24.917**SCH:TG11-SH **CRU N *
**CURRENT OF REALM TG11-A00 V DBK:000001A1 A:0 P:26 L:1 AN:TG11-A00 *
* RN:R02 *
**CURRENT OF RECORD R01 P DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* RN:R01 *
**CURRENT OF SET S01 V DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* RN:R01 *
* S02 P DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* AN:R01 *
**DBSTATUS:0502100 AN: RN: SN:S01 *
**TIMING PROCESS:2.3 ELAPSED:2.3 *
* (MILLISECS) *
**STATISTICS SYSTEM FUNCTION: NUMBER : AVERAGE DBCS SUBFUNCTION: *
* NUMBER : AVERAGE *
* CATEGORY : OF CALLS : I-O COUNT CATEGORY : OF *
* CALLS : I-O COUNT *
* ---------------+----------+------------- ----------------+-----*
* FREECI : 1 : 0.00 *
* GETCI : 1 : 0.00 *
**
*****PGID:TG11 LINE:9I30 **FIND N/P SET **AT *
* 08:55:24.949**SCH:TG11-SH **CRU P *
* CRU DBK:00000030 A:0 P:3 L:0 AN:TG11-A00 *
* RN:R02 *
**HEADER STATE:ACTIVE CODE:2 SIZE:46 STATUS:0 NEXT CALC-RECORD L:- HASH *
* CHECK:E448 OWNER OWL RANK:0 *
**POINTERS MEMBER:S01 L N: 0180 A:- P:24 L:0 *
* AN:TG11-A00 *
* P: 0180 A:- P:24 L:0 *
* AN:TG11-A00 *
 O: 0180 A:- P:24 L:0 *
* AN:TG11-A00 *
**FIELDS 0 0000:R02-IDENT CHAR === R02 *
* 7 0007:R02-CH CHAR C: *
 10 000A:R02-C UPKS +3 *
* 12 000C:R02-CALCH CHAR CALC: *
* 18 0012:R02-CALC UPKS +5327 *
* 22 0016:R02-SH CHAR S: *
* 25 0019:R02-S UPKS +3 *
* 27 0018:R02-TRAILER CHAR +++ *
**CURRENT OF REALM TG11-A00 P DBK:00000030 A:0 P:3 L:0 AN:TG11-A00 *
* RN:R02 *
**CURRENT OF RECORD R01 P DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* RN:R01 *
 R02 P DBK:00000030 A:0 P:3 L:0 AN:TG11-A00 *
* RN:R02 *
**CURRENT OF SET S01 V DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* RN:R01 *
* S02 P DBK:00000180 A:0 P:24 L:0 AN:TG11-A00 *
* AN:R01 *
**DBSTATUS:0000000 AN:TG11-A00 RN:R02 SN:S01 *
**TIMING PROCESS:2.3 ELAPSED:2.3 *
* (MILLISECS) *
**STATISTICS SYSTEM FUNCTION: NUMBER : AVERAGE DBCS SUBFUNCTION: *
* NUMBER : AVERAGE *
* CATEGORY : OF CALLS : I-O COUNT CATEGORY : OF CALLS : I-O COUNT
* ---------------+----------+------------- ----------------+------
 FREECI : 1 : 0.00 *
 GETCI : 1 : 0.00 *
**

Figure 7-6. Run-time External Trace Listing

Reference Manual IDS/II

7-36 47 A2 11UD Rev00

7.5.11.9 IDSTRACE Clause

Function

To redefine the internal-file-name of the IDSTRACE file.

Format

| |
| IDSTRACE INTERNAL FILE NAME IS ifn |
|______________________________________|

Rules

1. "ifn" must conform to the rules for the formation of internal-file-names as defined in
the JCL Reference Manual.

In addition, "ifn" must be different from:

 IDSOPT
 PRTFILE
 COMFILE
 SLLIBa
 DDLIBb
 SAVEc

where a,b,c are decimal digits or spaces.

2. If this clause is omitted, the default IDSTRACE is assumed.

7.5.11.10 OPEN Clause

Function

To specify the OPEN mode of the IDSTRACE file.

Format

 {OUTPUT}
OPEN { }
 {EXTEND}

User Program Execution

47 A2 11UD Rev00 7-37

Rules

1. If OUTPUT is specified, trace information is written starting from the beginning of
the file. Previously recorded information is overwritten.

2. If EXTEND is specified, trace information is written starting from the end of the file.

This option is ineffective if the trace file is SYS.OUT.

3. If this clause is omitted, OPEN OUTPUT is assumed.

7.5.11.11 IAC Clause

Function

To activate the "internal" trace which displays information on certain system calls
performed by the DBCS during the execution of a DML function. IAC stands for
Integrated Access Component.

Format

 [FIELDS [IN HEXADECIMAL]ı]
 []
 [SYSTEM POINTERS]
IAC [WITH]
 [[INPUT]]
 [[] PAGE]
 [[OUTPUT]]

Rules

1. If only IAC is coded, the trace is limited to the internal system calls with their
parameters, return codes, process-time and elapsed-time.

2. If the supplementary phrase FIELDS is coded, then for each storage record
involved in an internal call, the data field values are made available. They are
displayed in accordance with their schema attributes, or in hexadecimal if
HEXADECIMAL is specified.

3. If the supplementary phrase POINTERS is coded, then for each storage record
involved in an internal call, the set pointers are made available.

Reference Manual IDS/II

7-38 47 A2 11UD Rev00

4. If the supplementary phrase PAGE is coded, pages accessed and/or modified by
the DBCS are printed in hexadecimal.

- If INPUT is specified, pages requested from Buffer Management are printed
before use (internal function GETCI, CHECKCI).

- If OUTPUT is specified, modified pages are printed before their release to
Buffer Management (internal function FREECI).

- If neither INPUT nor OUTPUT is specified, pages requested from Buffer
Management and modified pages released to Buffer Management are printed.

5. If the IAC clause is omitted, the "internal" trace is inhibited.

NOTE: When the IAC clause is specified, the RECORD, AREA, DB-STATUS and
THRESHOLD clauses are ignored in the evaluation of the tracing condition.

7.5.11.12 TRACE Command Example

Let us consider the case of a run-unit composed of three programs, as shown in Figure
5.2. The main program PO is a COBOL driver (no DML); the second program P1
accesses the data base described by the schema DB1; the third program P2 accesses
the data base described by the schema DB2.

User and IDS trace information is gathered on the same IDSTRACE file.

Suppose that the IDS trace is limited to the FINDs of records EMPLOYEE in the realm
REGION-3 of the first data base and to the STOREs of records EMPLOYEE in the
second data base. Information to be printed includes the record data fields in
hexadecimal and the data base registers. The run-time commands are specified as
follows:

SCHEMA NAME IS DB1.
TRACE FIND
 RECORD IS EMPLOYEE
 REALM IS REGION-3
 PRINT CURRENT FIELDS IN HEXADECIMAL DB-REGISTERS.

SCHEMA NAME IS DB2.
TRACE STORE
 RECORD IS EMPLOYEE
 PRINT CURRENT FIELDS IN HEXADECIMAL DB-REGISTERS.

User Program Execution

47 A2 11UD Rev00 7-39

7.5.12 CHECK PAGE Command

Function

To check the structure of the pages retrieved or modified by the DBCS.

Format

 [INPUT]
CHECK [] PAGE STRUCTURE .
 [OUTPUT]

Rules

1. If this command is specified with the INPUT keyword, the complete structure of
pages requested from Buffer Management is validated before use.

2. If this command is specified with the OUTPUT keyword, the complete structure of
modified pages is validated before their release to Buffer Management.

3. If this command is specified with both INPUT and OUTPUT keywords or with
neither, the complete structure of retrieved and modified pages is validated.

4. If this command is not specified, no validation occurs.

5. The page structure validation is the same as that performed by the VALIDATE
PAGE command of DBUTILITY.

6. When inconsistency is detected in the page structure, an error message and the
page contents are printed on the JOR and IDSTRACE file, if any, and the step (or
transaction) is aborted.

7. This command is intended for the investigation of the cause of data base
inconsistencies. It should not be used in normal conditions since it consumes
processor time.

Reference Manual IDS/II

7-40 47 A2 11UD Rev00

7.5.13 INTERNAL FILE NAME Command

Function

To redefine the internal-file-names to be used at run-time in the ASSIGN/DEFINE
statements referencing the specified storage areas.

Format

 { {AREA } }
INTERNAL FILE NAME { FOR { } realm-name IS ifn }... .
 { {REALM} }

Rules

1. "ifn" must conform to the rules for internal-file-names defined in the JCL Reference
Manual.

In addition, "ifn" must be different from:

 IDSOPT
 IDSTRACE
 PRTFILE
 COMFILE
 SLLIBa
 DDLIBb
 SAVEc

where a,b,c are decimal digits or spaces.

2. If no "ifn" in given for a realm of a data base, the default implicitly or explicitly
defined in the DMCL is used.

3. There must be no duplicates among the internal-file-names of a schema.

If several data bases are accessed in the same step and if the internal-file-names
are not unique among the different schemas, the user must ensure the uniqueness
of each internal-file-name using the INTERNAL FILE NAME command for the
relevant schemas.

User Program Execution

47 A2 11UD Rev00 7-41

7.6 INTERPRETATION OF JOR MESSAGES

7.6.1 Message Format

Except for the banners, statistics and syntax error messages, the DBCS formats its JOR
messages as follows:

DDMx...PGID : y...SLNZ : z...SCH : w...ORG: {aa bbbb}...{ERR}:u...Text
 {WNG}

DDM DDM stands for Data Description and Manipulation. "x..." is a 5-
digit decimal number. It is the key identifying the DBCS
message text.

PGID "y..." is a 30-character string containing the program
identificaton as specified in the PROGRAM-ID clause. When
this information is not available or is irrelevant, it is replaced
by asterisks.

SLN "z..." is a 7-digit decimal number identifying the source
internal line number where the statement involved is coded

When this information is not available or is irrelevant, it is
replaced by 0.

SCH "w..." is a 30-character string containing the schema name
characterizing the data base on which the current DBCS
function has been executed.

ORG This field provides information on the DBCS module that
originated the message.

"aa" is a 2-digit decimal number which identifies a DBCS
function. This function may be external (such as STORE) or
internal (such as SELECT). The possible function codes are
presented later in this section.

"bbbb" is a 4-digit decimal number which identifies a point in
the procedure code of the DBCS function. This identification
depends on the function and type of error and can be used
only in conjunction with the listing. It is therefore reserved for
Field Engineering.

The group aa bbbb may be repeated to indicate the stack of
DBCS internal functions called when the error was detected
and reported. The maximum depth is 6.

ERR/WNG ERR indicates a fatal error, WNG indicates a warning, "u..." is a 4-
digit decimal number. It is the code of the error. It is equal to
the message key when one message corresponds to one
error. It is equal to or greater than the message key when
one message covers a whole category of errors.

The error codes are given later in this section.

Reference Manual IDS/II

7-42 47 A2 11UD Rev00

Text This is the plain text reporting the error. Though it is made as
explicit as possible, complementary information may be
found in the Error Messages and Return Codes Pocket
Guide.

NOTE: The DBCS messages described above for the JOR can also be sent with the
same format to the IDSTRACE file, if any, and to the SYSOUT and TERMINAL
reports of the data base utilities or placed in the DB-DETAILED-STATUS
register of the DML programs (warnings only).

7.6.2 DBCS Function Codes

Table 7-1 shows the possible DBCS function codes appearing in JOR messages. Values
are given in decimal. Several categories can be distinguished:

- Codes 00=>24 correspond to external DML statements

- Codes 25=>29 correspond to the prologs generated in COBOL programs.

- Codes 30=>34 correspond to the external or internal functions related to the
initialization and termination of a session or commitment-
unit.

- Codes 35=>44 correspond to external functions activated by the data base
utilities.

- Codes 45=>49 correspond to internal functions appearing as "sub-functions"
in the statistics of an IDS session.

- Codes 50=>79 correspond to other internal functions such as those calling
UFAS/GAC (60 64) or the JOURNAL (75 79).

- Codes 80=>99 correspond to the compatibility layer that converts the 1C/1D
generated code of DML statements into the 1E generated
code.

User Program Execution

47 A2 11UD Rev00 7-43

Table 7-1. DBCS Function Codes in JOR Messages

Function Code Function Code Function Code Function Code
00 UCINIT0 25 CHECK 50 WAJN 75

ACCEPT 01 UCINIT2 26 REPORT 51 OPAJN 76
CONNECT 02 UCINIT 27 ABTERM 52 CLAJN 77
DISCONNECT 03 28 TRACE 53 NOTBJN 78
ERASE 04 29 PAGCHK 54 ROLLBJN 79
FIND 05 STARTDBS 30 GETRCALC 55 80
FINISH 06 TERMDBS 31 ECOSEM 56 IACCEPT 81

07 ROLLBACK 32 57 ICONNEC 82
GET 08 RESTART 33 58 IDISCON 83
IF (DB Condition) 09 CLEANPOINT 34 59 IERASE 84

10 GETPR 35 GETCI 60 IFIND 85
MODIFY 11 SWITCH 36 FREECI 61 IFINISH 86

12 PUTPAGE 37 SETCI 62 87
READY 13 GETPAGE 38 LOKCI 63 IGET 88

14 RELPAGE 39 CHCKCI 64 IIF 89
STORE 15 GETLAB 40 UNLCI 65 90

16 MODLAB 41 INICMT 66 IMODIFY 91
17 READCMT 42 67 92
18 MODOPT 43 68 IREADY 93
19 FREELOCK 44 69 94
20 SELECT 45 70 ISTORE 95
21 INSERT 46 PGREORG 71 IINIT1 96
22 PLACEDIR 47 72 IINIT2 97
23 PLACECALC 48 73 98
24 49 74 99

7.6.3 DBCS Error Code Categories

Table 7-2 shows the possible error code categories. Values are given in decimal.

The first category corresponds to interface problems with the system functions
UFAS/GAC/JOURNAL/TDS. It reports system return codes which the DBCS is unable to
interpret or which prevent any further action.

The second category corresponds to the analysis of the run-time command language. It
includes errors related to the syntax itself and errors due to the IDSOPT environment.

The third category corresponds to the errors which occur when the schema is loaded
(incorrect ASSIGN, mismatch between schema names or dates, etc.) or when the areas
are readied (incorrect ASSIGN, transient state, etc.). The fourth category corresponds to
the tag and format consistency checks that the DBCS performs continuously when
accessing its run-time control structures.

The next five categories correspond to the consistency checks that the DBCS performs
continuously when putting together and interpreting the control structures prepared
before execution: schema, program, data base.
As it is often difficult to determine which of the three elements is faulty, the classification
of an error in one of the five categories may be arbitrary and not reflect the actual cause
of the error.

The last category corresponds to warning codes.

Reference Manual IDS/II

7-44 47 A2 11UD Rev00

Table 7-2. DBCS Error Code Categories in JOR Messages

Category Sub-category Error Code
UFAS/GAC/JOURNAL/TDS interface UFAS/GAC 0 -<=256> 31

JOURNAL 32 -<=256> 39
TDS 40 -<=256> 47
Others 48 -<=256> 63

Run-time command language analysis Syntax analysis 64 -<=256> 351
Others 352 -<=256> 383

Session or area initialization Schema loading 384 -<=256> 415
Area opening 416 -<=256> 447
Others 448 -<=256> 511

System consistency checks Control structure tags 512 -<=256> 535
Control structure formats
(release compatibility)

536 -<=256> 559

TDS 560 -<=256> 575
Others 576 -<=256> 767

Data base inconsistency 768 -<=256> 895
DML inconsistency 896 -<=256> 1023
Schema inconsistency 1024 -<=256> 1151
Schema/data base inconsistency 1536 -<=256> 1791
Schema/DML inconsistency 1792 -<=256> 1919
Warnings 3584 -<=256> 3839

User Program Execution

47 A2 11UD Rev00 7-45

7.7 INTERPRETATION OF STATISTICAL AND TIMING INFORMATION

1. Given the same DML program and the same initial state of the data base, some of
the cumulated results of an IDS session must be interpreted in the context of the
execution environment:

- The number of calls to the DBCS functions is constant.

- The number of internal calls to the UFAS/GAC functions is greater in
MONITORED mode than in EXCLUSIVE or SHARED mode.

- The number of I/0s may vary according to the buffer pool options and the
number of buffers used.

- Suppose that the program searches a sorted set occurrence that fits into four
pages. If the number of buffers is at least 4, the four pages are loaded into
main memory on the first reference and then the transfers between the pages
and the UWA become main memory "move" operations, so long as the
program keeps working on this set occurrence. If the number of buffers is less
than 4, and the sorted order does not correspond to the data-base-key order,
the program changes pages frequently, requiring an I/0 to replace a page by
another in one of the buffers.

- Furthermore, due to the buffer management strategy that defers the rewriting
of modified pages, page transfers may be put down to the account of a
statement that was not responsible for them. For example, a "FIND DB-KEY
IS..." statement, which needs at most one transfer, may be attributed an extra
transfer if it is first necessary to free a buffer by rewriting onto disk the
modified page it contained.

This is particularly true in TDS environment with DEFERRED UPDATES,
where all the I/0s related to the rewriting of modified pages are performed by
the COMMIT function.

- In Batch/IOF environment, the figures reported in the charts do not include the
I/Os of unsuccessful commitment-units, that is, those performed between the
last commitment-point (or check-point) preceding an abort-point and this abort-
point.

In the case of a step restart after a deadlock or any other incident, the JOR
UFAS and I/O CONNECT statistics correspond to the activity of the last
restarted portion of the step, while the DBCS statistics correspond to the
activity of the whole step (excluding the aborted phases, as mentioned above).

- In TDS environment, the figures reported in the charts include the I/Os of
unsuccessful commitment units.

Reference Manual IDS/II

7-46 47 A2 11UD Rev00

- The elapsed times are meaningful in a monoprogramming environment
without output writer. They may be influenced by the number of stack
overflows if they occur too frequently. (See Section VI for the appropriate
LINKER command.)

Theoretically, the process times are not affected by the multiprogramming
environment, unless contention for main memory results in a great number of
missing segments.

As with the I/O counts, the elapsed and process times are influenced by the
buffer pool chosen and the number of buffers used. They are also influenced
by the sharing mode and the presence or absence of journals.

The figures reported in the charts do not include the time spent by the external
trace function at the end of a statement. If the internal trace is triggered, the
time necessary for the output of SYSTEM calls information is incorporated in
the elapsed and process times, which makes them meaningless.

The figures reported in the charts include the time spent by the CHECK PAGE
function when the latter is activated in the run time options.

In TDS environment, the times reported for the TDS session involve all the
transactions of the session:

- The total process time represents the sum of the process times of the
transactions. There is no overlapping between these process times.

- The total elapsed time also represents the sum of the elapsed times of the
transactions. As these transactions run in parallel during the TDS session, the
total sum may far exceed the elapsed time of the TDS session itself.

2. In order to obtain averages as meaningful as possible, DML statements have been
divided into a number of categories greater than the number of DML verbs. For
instance, a "FIND DB-KEY IS..." statement, which requires at most one transfer, is
not placed in the same category as a "FIND record-name WITHIN set-name USING
..." statement, which requires the traverse of the set selection path and the search
of the selected set occurrence.

Nevertheless this categorization on the basis of the external format does not give
complete precision. For example, a "FIND FIRST WITHIN realm-name" statement
will take 40 ms to retrieve a record in the first page of a full area and perhaps 40s to
realize that another area is empty. Similarly a STORE statement will take 40 ms to
store an owner-only CALC record and perhaps 15 seconds to store a record which is
an AUTOMATIC member of 10 sorted sets. It is clear that, in those cases, the
average of the I/0 count and elapsed and process times within the category is
meaningless.

3. The previous considerations apply to the statistics and timing information displayed
on the JOR at the end of an IDS session, as well as to the statistics and timing
information displayed on IDSTRACE at the end of a traced DML statement.

47 A2 11UD Rev00 A-1

A. DDL, DMCL, DML Syntax

SCHEMA DDL SKELETON
Entry Subentry of entry Clause of entry or subentry
Number Name Number Name Number Name

SCHEMA - - 1 SCHEMA
1 to 2048 AREA - - 1 AREA
1 to 2048 RECORD 1 RECORD 1 RECORD

1 LOCATION
1 WITHIN
0 to 240 CHECK

0 to 2048 DATA 1 DATA-BASE-DATA-
NAME

0 or 1 TYPE
0 or 1 OCCURS
0 or 1 CHECK

0 to 2048 SET 1 1 SET
1 OWNER
1 ORDER

1 to 204 MEMBER 1 MEMBER
1 INSERTION
0 to 240 DUPLICATES
0 or 1 KEY
1 SELECTION

| |
| Schema DDL - Schema Entry |
|_______________________________|

| |
| SCHEMA NAME IS schema-name. |
|_______________________________|

| |
| Schema DDL - Area Entry |
|_______________________________|

| |
| AREA NAME IS area-name. |
|_______________________________|

Reference Manual IDS/II

A-2 47 A2 11UD Rev00

 Schema DDL - Record Subentry

RECORD NAME IS record-name-1

 {DIRECT data-base-parameter-1 }
 { }
LOCATION MODE IS {CALC USING {data-base-identifier-1}... }
 { DUPLICATES ARE [NOT] ALLOWED }
 {VIA set-name-1 SET }

 {{ANY} AREA } }
WITHIN {{area-name-1} ... } [AREA-ID IS data-base-parameter-2] }
 {AREA OF OWNER }
[CHECK IS condition]... .

 Schema DDL - Data Subentry

 [level-number-1] data-base-data-name-1

[{{ {UNPACKED} } }]
[{{[UNSIGNED] {[PACKED]} } }]
[{{ {PACKED-2} } DECIMAL integer-1 [, integer-2]}]
[{{ } }]
[{{ SIGNED {UNPACKED } } }]
[{{ {[PACKED]ı} } }]
[TYPE IS { }]
[{ }]
[{ [SIGNED] BINARY {15} }]
[{ {31} }]
[{ CHARACTER integer-3 }]

 [OCCURS integer-4 TIMES]

 [CHECK IS VALUE [NOT] {literal-1 [THRU literal-2]...] .

 Schema DDL - Set Subentry

SET NAME IS set-name-1

OWNER IS record-name-1

ORDER IS PERMANENT INSERTION IS

 {FIRST }
 { }
 {LAST }
 { }
 {NEXT }
 { }
 {PRIOR }
 { }
 { { WITHIN RECORD-TYPE } } .
 { } }
 { { BY DEFINED KEYS } }
 { { } }
 {SORTED { [RECORD-TYPE SEQUENCE IS {record-name-2]...]} }
 { { } }
 { { {FIRST } } }
 { { DUPLICATES ARE {LAST } } }
 { { {NOT ALLOWED} } }

DDL, DMCL, DML Syntax

47 A2 11UD Rev00 A-3

| |
| Schema DDL - Member Subentry |
|________________________________|

 Schema DDL - Member Subentry

 MEMBER IS record-name-1

 {INSERTION IS AUTOMATIC RETENTION IS MANDATORY}
 { }
 {INSERTION IS MANUAL RETENTION IS OPTIONAL }

 [DUPLICATES ARE NOT ALLOWED FOR {data-base-identifier}...]...

[{ASCENDING } {data-base-identifier-2}]
[KEY IS { } {RECORD-TYPE }]
[{DESCENDING} {DATA-BASE-KEY }]
[]
[[[ASCENDING] {data-base-identifier-3}]]
[[[DESCENDING] {RECORD-TYPE }] ...]
[[{DATA-BASE-KEY }]]
[
[{FIRST }]]
[[DUPLICATES ARE {LAST }]]
[{NOT ALLOWED}]]

SET SELECTION [FOR set-name-1] IS

 THRU set-name-2 OWNER IDENTIFIED BY

 { APPLICATION }
 {
 { DATA-BASE-KEY [EQUAL TO data-base-parameter-1] }
 {
 {CALC-KEY [data-base-identifier-4 EQUAL TO }
 {
 { {data-base-identifier-5}] }
 { { }] ... }
 { {data-base-parameter-2 }] }
 { }
 { [AREA-ID EQUAL TO data-base-parameter-3] }

 [THEN THRU set-name-3 WHERE OWNER IDENTIFIED BY]
 []
 [{data-base-identifier-6 [EQUAL TO]
 [{data-base-identifier-7}] }]
 [{ }] } ...]
 [{data-base-parameter-4 }] }]

Reference Manual IDS/II

A-4 47 A2 11UD Rev00

DMCL SKELETON

Entry Clause of entry
Number Name Number Name
1 SCHEMA 1 SCHEMA

0 or 1 AREAS
0 or 1 GLOBAL
0 or 1 NO LOCAL
0 or 1 POOL
0 or 1 BUFFERS

1 to 2048 AREA 1 AREA
0 or 1 AREA FILE
1 NUMBER-OF-PAGES
1 LINES-PER-PAGE
1 PAGE-SIZE
0 or 1 CALC-INTERVAL
0 or 1 LOCAL

0 to 2048 RECORD 1 RECORD
0 to 2048 RANGE
0 or 1 MIGRATION

0 to 2048 SET 1 SET
0 or 1 NO LOCAL

| |
| DMCL - Schema Entry |
|______________________|

| |
| SCHEMA NAME IS schema-name |
| |
| [EXTEND NUMBER OF AREAS TO integer] |
| |
| [EXTEND GLOBAL POINTERS TO integer BYTES] |
| |
| [NO LOCAL POINTERS] |
| |
| [BUFFER POOL NAME IS buffer-pool-name] |
| |
| [NUMBER OF BUFFERS IS integer]. |
|___|

DDL, DMCL, DML Syntax

47 A2 11UD Rev00 A-5

 DMCL - Area Entry

AREA NAME IS area-name

 [AREA INTERNAL FILE NAME IS ifn]
 [{HIGH}]
 NUMBER-OF-PAGES IS integer [OPTIMIZE { }]
 [{LOW }]

 NUMBER OF LINES-PER-PAGE IS integer

 PAGE-SIZE IS integer BYTES

 [CALC-INTERVAL IS integer PAGES]

 [EXTEND LOCAL POINTERS TO integer BYTES] .

 DMCL - Record Entry

RECORD NAME IS record-name

[{integer PAGES FROM PAGE integer}]
[RANGE [WITHIN area-name] IS { }]
[{PAGE integer THRU integer }]
[]
[[{HIGH}]]
[[OPTIMIZE { }]]
[[{LOW }]]

 [MIGRATION IS ALLOWED] .

| |
| DMCL - Set Entry |
|____________________|

| |
| SET NAME IS set-name |
| |
| [NO LOCAL POINTERS] . |
|___________________________|

Reference Manual IDS/II

A-6 47 A2 11UD Rev00

 DML in DATA DIVISION

DATA DIVISION .

SUB-SCHEMA SECTION .

DB schema-name .

[{WORKING-STORAGE }]
[DB-DESCRIPTIONS IN { } SECTION .]
[{LINKAGE }]

[{ {ALL } }]
[{RECORDS ARE { } }]
[{ {[NOT] {record-name} ... } }]
[{ }]
[{ {ALL } } .]
[{REALMS ARE { } }]
[{ {[NOT] {realm-name} ... } }]
 ...
WORKING-STORAGE SECTION .
 ...
level number identifier USAGE IS DB-KEY .
 ...
LINKAGE SECTION .
 ...
level number identifier USAGE IS DB-KEY .
 ...

| |
| DML in PROCEDURE DIVISION |
| |
| (Declarative Part) |
|_____________________________|

| |
| USE FOR DB-EXCEPTION . (first USE section in DECLARATIVES) |
|___|

DDL, DMCL, DML Syntax

47 A2 11UD Rev00 A-7

 DML in PROCEDURE DIVISION

 (Non-Declarative Part)

 [realm-name]
ACCEPT ident-1 FROM [record-name] CURRENCY
 (DB-KEY) [set-name]

 [record-name]
ACCEPT ident-2 FROM [set-name] REALM-NAME .
 (PIC X(30)) [ident-3]
 [(DB-KEY)]

 {NEXT }
ACCEPT ident-4 FROM set-name {PRIOR }
 (DB-KEY) {OWNER}

ACCEPT ident-5 FROM realm-name LINES-PER-PAGE .
 (COMP-1)

ACCEPT ident-6 FROM realm-name MINIMUM-DB-KEY
 (DB-KEY) [OF record-name] .

ACCEPT ident-7 FROM realm-name NUMBER-OF-PAGES
 (COMP-2) [OF record-name] .

CONNECT [record-name] TO set-name [RETAINING-phrase] .

DISCONNECT [record-name] FROM set-name .

ERASE [record-name] [ALL MEMBERS] .

Reference Manual IDS/II

A-8 47 A2 11UD Rev00

 DML in PROCEDURE DIVISION

 (Non-Declarative Part)

FIND [record-name] DB-KEY IS identifier [RETAINING-phrase] .
 (DB-KEY)

 {ANY }
FIND { } record-name [RETAINING-phrase] .
 {DUPLICATE}

 {NEXT }
 {PRIOR }
 {FIRST } {realm-name}
FIND {LAST } [record-name] WITHIN { }
 {integer } {set-name }
 {identifier} [RETAINING-phrase] .
 {(COMP-2) }

 [{realm-name}]
FIND CURRENT [record-name] [WITHIN { }]
 [{set name }]
 [RETAINING-phrase] .

FIND OWNER WITHIN set-name [RETAINING-phrase] .

FIND record-name WITHIN set-name [CURRENT] [USING {identifier} ...]
 [RETAINING-phrase] .

FIND DUPLICATE WITHIN set-name USING identifier ...
 [RETAINING-phrase] .

DDL, DMCL, DML Syntax

47 A2 11UD Rev00 A-9

FINISH [realm-name]

GET [record-name] .
GET {identifier}

 {OWNER }
[NOT] [set-name] {MEMBER }
 {TENANT}
set-name IS [NOT] EMPTY

 {[record-name]}
MODIFY { } [RETAINING-phrase] .
 {{identifier} ...}

 {ALL }
MODIFY [record-name] ONLY { } MEMBERSHIP
 {{set-name} ...}
 [RETAINING-phrase] .

 {[record-name] } {ALL }
MODIFY { } INCLUDING { } MEMBERSHIP
 {{identifier} ...} {{set-name} ...}
 [RETAINING-phrase] .

READY {[realm-name] ... USAGE-MODE IS }
 { }
 { {EXCLUSIVE {RETRIEVAL } } }
 { { {UPDATE } } }
 { {SHARED RETRIEVAL } }
 { { {RETRIEVAL} } }
 { {[MONITORED] { } } }
 { { {UPDATE } } }

STORE record-name [RETAINING-phrase] .

 {MULTIPLE } }
RETAINING-phrase: {REALM } }
 RETAINING CURRENCY FOR {RECORD } }
 {{SETS } } }
 {{{set-name} ...} }

Reference Manual IDS/II

A-10 47 A2 11UD Rev00

47 A2 11UD Rev00 B-1

B. Differences Between GCOS64 Release 1E
and GCOS 7

This appendix summarizes the differences between the two software releases.
Differences between releases 1D and GCOS7 can be obtained by concatenation of the
differences between releases 1D and 1E and the current appendix contents.

The differences specific to each IDS/II component are presented in the same order as
the sections which appear in the manual.

B.1 NEW FEATURES IN PREALLOC

• The TRACK option in the SPLIT parameter enables the user to specify the starting
disk address of each extent in terms of cylinder and track numbers.

Compatibility

1. There is no change in the internal format of the data base. 1E areas are accepted
under GCOS7 without conversion.

2. Areas preallocated under GCOS7 may be used under 1E.

Reference Manual IDS/II

B-2 47 A2 11UD Rev00

B.2 NEW FEATURES IN COBOL/DML COMPILING AND LINKING

1. COBOL programs containing IDS/II DML statements are compiled only by the
COBOL compiler. The DMLPROC preprocessor is thus made obsolete.

In order for the COBOL compiler to retrieve the data base Schema, new keywords
(DDLIB1, DDLIB2, DDLIB3) have been introduced in the COBOL extended JCL
statement.

2. The use of the new option DDLIST when compiling a COBOL/DML program,
provides the user with a listing of the description of all records used.

3. DML statements are no longer restricted to the main text of the program. They may
be the subject of COPY statements.

4. READY and FINISH statements may appear in any COBOL/DML program, i.e. in
secondary programs (DB-DESCRIPTIONS IN LINKAGE) as well as main programs
(DB-DESCRIPTIONS IN WORKING-STORAGE). There remain no restrictions on
which type of COBOL/DML program (main or secondary) is executing the first
READY or the last FINISH function.

5. The "IF" DML statement becomes a "Data Base Condition" and as such may be
used anywhere a simple condition may appear.

6. Some automatic conversions, as far as data type and data length are concerned,
are provided whenever possible. For example, in the statement

 ACCEPT identifier FROM realm-name LINES-PER-PAGE

the identifier no longer needs to be declared as COMP-1.

7. The cross-references produced by the COBOL compiler provide more detailed and
precise information on DML usage.

8. When linking programs containing DML statements, the VACSEG command is no
longer necessary since the LINKER considers all unaffected segments as vacant.

To avoid an abort with the message VMM ENTRYOV while executing a module
linked under release 1E, the user may relink it under GCOS7 without using the
VACSEG command.

Compatibility

1. Since the DMLPROC preprocessor is obsolete, JCL compiling COBOL/DML
programs has to be modified:

- to suppress the DMLPROC step,

- to include new COBOL keywords.

2. Load-modules linked under release 1E are executable unchanged under GCOS7.

3. Compiled programs produced by DMLPROC and COBOL under release 1E may be
linked with COBOL/DML programs compiled under GCOS7 by the COBOL
compiler.

Differances Between GCOS64 Release 1E and GCOS 7

47 A2 11UD Rev00 B-3

4. When compiling a COBOL/DML program, the COBOL compiler stops its search for
the schema object as soon as it finds a member with the required name (i.e. the
schema name) in the search path (DDLIB1, DDLIB2, DDLIB3).
It is therefore advisable that the search path does not contain binary objects with
the same name as the schema which are not schema objects.

5. Some syntactical and semantic rules are enforced:

- IDS/II statements should not be written in Area A,

- usage DB-KEY will be checked when it is compulsory; for example, in the
statement "ACCEPT identifier FROM ... CURRENCY",

- permissible attributes on data with DB-KEY usage will be checked,

- IDS/II tables and registers will not be writable,

- DB-CXT, DB-PARAMETERS and DB-REGISTERS can only be explicitly
referenced in:

 . PROCEDURE DIVISION USING...
 . CALL... USING...

6. Implicit contextual qualification of field-names is not permitted.

7. All records referred to in a COBOL/DML program must be listed, explicitly or
implicitly, in the SUB-SCHEMA section.

8. If neither RECORDS nor REALMS is specified in the SUB-SCHEMA section, all the
record-types of the data base are made available to the program.

Reference Manual IDS/II

B-4 47 A2 11UD Rev00

B.3 NEW FEATURES IN USER PROGRAM EXECUTION

1. Secondary COBOL/DML program (i.e. with DB-DESCRIPTIONS IN LINKAGE)
which are compiled under GCOS7 may be objects of the "USE procedure-name"
clauses in the TDS generation. If so, they need not be linked to the TPRs chich call
them.

2. The program identification, used in IDSOPT and IDSTRACE, is no longer limited to
12 characters.

3. JOR messages contain the identification of the schema being used in order to be
more precise when executing in a multi-data base environment.

4. The output line length of IDSTRACE has been limited to 120 characters, to avoid
truncation under TDS.

5. When STARTDBS (see TRACE clause in section 7) is triggered by a secondary
program, the corresponding trace refers to the main program as PGID and to an
undefined line (LINE:***).

6. A new command (INTERNAL FILE NAME...) has been introduced as a run-time
option. This enables the user to redefine internal-file-names which are used in the
ASSIGN/DEFINE statements to reference specified storage areas. Thus duplication
of internal-file-names in a multi-data-base environment is avoided.

Compatibility

• The line numbers used in run-time options and TRACE editions are no longer the
source external line numbers; they refer to the COBOL generated internal line
numbers.

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 IDS/II Reference Manual Database Products:
IDS-II

Reference Nº : 47 A2 11UD 00 Date: February 1984

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 11UD 00
REFERENCE

	IDS/II Reference Manual - 47 A2 11UD Rev00
	Preface
	1. Schema Data Description Language
	1.1	SCHEMA VIEW
	1.1.1	Program/Data Independence

	1.2	SCHEMA DDL OVERVIEW
	1.2.1	DDL Source Format

	1.3	NOTATION
	1.4	CHARACTER SET
	1.4.1	Punctuation
	1.4.2	Delimiters
	1.4.3	Separators

	1.5	WORDS
	1.5.1	Reserved Words

	1.6	NAMES
	1.6.1	Alternate Form of Names
	1.6.2	Uniqueness of Names
	1.6.3	Maximum Number of Names

	1.7	LITERALS
	1.7.1	Alphanumeric Literals
	1.7.2	Numeric Literals
	1.7.3	Hexadecimal Literals

	1.8	COMMENTS
	1.9	DATA-BASE-DATA-NAMES -OR FIELD-NAMES-
	1.10	DATA-BASE-IDENTIFIERS -OR FIELD-IDENTIFIERS-
	1.10.1	Subscripting
	1.10.2	Qualification

	1.11	DATA-BASE-PARAMETERS
	1.12	CONDITIONS
	1.12.1	Use of Brackets
	1.12.2	Examples of Conditions

	1.13	SCHEMA DDL SYNTAX
	1.13.1	SCHEMA Entry
	1.13.2	AREA Entry
	1.13.3	RECORD Entry
	1.13.3.1	RECORD Clause
	1.13.3.2	LOCATION Clause
	1.13.3.3	WITHIN Clause
	1.13.3.4	CHECK Clause -Record Subentry-
	1.13.3.5	Data-base-data-name Clause
	1.13.3.6	TYPE Clause
	1.13.3.7	OCCURS Clause
	1.13.3.8	CHECK Clause -Data Subentry-

	1.13.4	SET Entry
	1.13.4.1	SET Clause
	1.13.4.2	OWNER Clause
	1.13.4.3	ORDER Clause
	1.13.4.4	MEMBER Clause
	1.13.4.5	INSERTION RETENTION Clause
	1.13.4.6	DUPLICATES Clause
	1.13.4.7	KEY Clause
	1.13.4.8	SELECTION Clause

	2. Device Media Control Language
	2.1	STORAGE VIEW
	2.1.1	DMCL
	2.1.2	PREALLOC Function
	2.1.3	Program/Data Independence

	2.2	STORAGE AREA STRUCTURE
	2.2.1	Area Code Number
	2.2.2	Area Characteristics
	2.2.3	Page Structure

	2.3	STORAGE RECORD ADDRESSING
	2.3.1	Definitions
	2.3.2	Local Pointer Size
	2.3.3	Global Pointer Size

	2.4	SET IMPLEMENTATION BY A CHAIN OF POINTERS
	2.4.1	Set Code Number
	2.4.2	Number of Pointers
	2.4.3	Local Sets
	2.4.4	Global Sets

	2.5	STORAGE RECORD STRUCTURE
	2.5.1	Record Code Number
	2.5.2	Record Structure
	2.5.3	Example

	2.6	CHOICE OF THE PAGE-SIZE PARAMETER
	2.7	CHOICE OF THE LINES-PER-PAGE PARAMETER
	2.8	CHOICE OF THE CALC-INTERVAL PARAMETER
	2.9	DEVICE MEDIA CONTROL LANGUAGE SYNTAX
	2.9.1	SCHEMA Entry
	2.9.1.1	SCHEMA Clause
	2.9.1.2	EXTEND NUMBER OF AREAS Clause
	2.9.1.3	EXTEND GLOBAL POINTERS Clause
	2.9.1.4	NO LOCAL POINTERS Clause
	2.9.1.5	BUFFER POOL Clause
	2.9.1.6	NUMBER OF BUFFERS Clause

	2.9.2	AREA Entry
	2.9.2.1	AREA NAME Clause
	2.9.2.2	AREA INTERNAL FILE NAME Clause
	2.9.2.3	NUMBER OF PAGES Clause
	2.9.2.4	LINES-PER-PAGE Clause
	2.9.2.5	PAGE SIZE Clause
	2.9.2.6	CALC-INTERVAL Clause
	2.9.2.7	EXTEND LOCAL POINTERS Clause

	2.9.3	RECORD Entry
	2.9.3.1	RECORD Clause
	2.9.3.2	RANGE Clause
	2.9.3.3	MIGRATION Clause

	2.9.4	SET Entry
	2.9.4.1	SET Clause
	2.9.4.2	NO LOCAL POINTERS

	3. Schema Processing
	3.1	DDLPROC FUNCTIONS
	3.2	SL AND DD OBJECT USAGE
	3.3	DDLPROC EXTENDED JCL STATEMENT
	3.3.1	DDLPROC Parameter Description

	3.4	DDLPROC BASIC JCL
	3.4.1	Parameter Description

	3.5	DDLPROC COMMAND LANGUAGE
	3.5.1	Reserved Words
	3.5.2	Types of Command
	3.5.3	TRANSLATE SCHEMA DDL Command
	3.5.4	TRANSLATE DMCL Command
	3.5.5	PRINT SCHEMA Command
	3.5.6	DELETE SCHEMA Command
	3.5.7	MOVE SCHEMA Command
	3.5.8	STATUS Command

	3.6	DDLPROC EXAMPLES

	4. Storage Area Preallocation
	4.1	PREALLOC UTILITY
	4.2	SPACE ALLOCATION
	4.3	PREALLOC EXTENDED JCL STATEMENT
	4.3.1	PREALLOC Parameter Description

	4.4	EXAMPLES

	5. COBOL Data Manipulation Language
	5.1	HOST LANGUAGES
	5.1.1	Implementation Languages
	5.1.2	High Level Languages -COBOL-

	5.2	COBOL DATA MANIPULATION LANGUAGE -DML-
	5.3	NOTATION
	5.4	SYNTAX RULES
	5.4.1	COBOL Syntax Conventions
	5.4.2	Reserved Words
	5.4.3	Record Field Qualification

	5.5	SUB-SCHEMA SECTION IN DATA DIVISION
	5.5.1	Inter-Program Linkage Example

	5.6	DB-KEY DATA ITEMS
	5.7	DATA BASE SPECIAL REGISTERS
	5.8	DATA BASE STATUS INDICATORS
	5.8.1	Statement Code and Status Code
	5.8.2	Statement Code and Status Code Combinations
	5.8.3	Use of Special Registers for Data-base-exception Conditions

	5.9	DATA BASE CURRENCY INDICATORS
	5.9.1	Current Record of the Run-unit
	5.9.2	Current Record of a Set-type
	5.9.3	Current Record of a Realm
	5.9.4	Current Record of a Record-type
	5.9.5	Currency Values
	5.9.6	Currency Indicators and DML Statements
	5.9.7	Example

	5.10	DATA MANIPULATION LANGUAGE STATEMENTS
	5.10.1	ACCEPT
	5.10.2	CONNECT
	5.10.3	DISCONNECT
	5.10.4	ERASE
	5.10.5	FIND
	5.10.6	FINISH
	5.10.7	GET
	5.10.8	DATA BASE CONDITION -IF-
	5.10.9	MODIFY
	5.10.10	READY
	5.10.11	STORE
	5.10.12	USE

	5.11	SYSTEM FUNCTIONS DEFINING CHECK-POINTS AND COMMITMENT-
	5.11.1	Comparison of Check-Points and Commitment-Points
	5.11.2	System Function Defining a Check-Point
	5.11.3	System Function Declaring a Commitment-Point

	5.12	ACCESS TO THE IDSTRACE FILE
	5.13	SIMULATION OF THE CALC HASHING ALGORITHM

	6. COBOL/DML Compiling and Linking
	6.1	SL AND DD OBJECT USAGE
	6.2	COBOL EXTENDED JCL STATEMENT
	6.2.1	COBOL Specific Parameter Description

	6.3	COBOL COMPILATION
	6.4	LINKING
	6.5	EXAMPLE

	7. User Program Execution
	7.1	RUN-TIME ENVIRONMENT
	7.1.1	Prerequisites
	7.1.2	Execution Modes

	7.2	OBJECTS REFERENCED AT RUN-TIME
	7.3	USER STEP BASIC JCL
	7.3.1	Parameter Description
	7.3.2	Example

	7.4	CONCURRENT ACCESS AND AREA PROTECTION
	7.4.1	Data Base Sharing
	7.4.2	Area Usage Modes
	7.4.3	ASSIGN/READY Usage Mode Overriding Rules
	7.4.4	Area Protection by Journals
	7.4.5	Consistency of Area Protection Levels for the Same BATCH/IOF User

	7.5	RUN-TIME COMMAND LANGUAGE
	7.5.1	Reserved words
	7.5.2	Types of Command
	7.5.3	SCHEMA Command
	7.5.4	IGNORE TRANSIENT Command
	7.5.5	BUFFER POOL Command
	7.5.6	NUMBER OF BUFFERS Command
	7.5.7	SAVE CURRENCIES Command
	7.5.8	SYNCHRO Command
	7.5.9	NO WARNING Command
	7.5.10	STATISTICS Command
	7.5.11	TRACE Command
	7.5.11.1	TRACE Clause
	7.5.11.2	WHEN RECORD Clause
	7.5.11.3	WHEN AREA Clause
	7.5.11.4	WHEN DB-STATUS Clause
	7.5.11.5	WHEN THRESHOLD Clause
	7.5.11.6	WHEN PROGRAM Clause
	7.5.11.7	PRINT Clause
	7.5.11.8	Interpretation of the TRACE Listing
	7.5.11.9	IDSTRACE Clause
	7.5.11.10	OPEN Clause
	7.5.11.11	IAC Clause
	7.5.11.12	TRACE Command Example

	7.5.12	CHECK PAGE Command
	7.5.13	INTERNAL FILE NAME Command

	7.6	INTERPRETATION OF JOR MESSAGES
	7.6.1	Message Format
	7.6.2	DBCS Function Codes
	7.6.3	DBCS Error Code Categories

	7.7	INTERPRETATION OF STATISTICAL AND TIMING INFORMATION

	A. DDL-DMCL-DML Syntax
	B. Differences Between GCOS64 Release 1E
	B.1	NEW FEATURES IN PREALLOC
	B.2	NEW FEATURES IN COBOL/DML COMPILING AND LINKING
	B.3	NEW FEATURES IN USER PROGRAM EXECUTION

