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On Zurek’s Derivation of the Born Rule
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Recently, W. H. Zurek presented a novel derivation of the Born rule
based on a mechanism termed environment-assisted invariance, or “envariance”
[W. H. Zurek, Phys. Rev. Lett. 90(2), 120404 (2003)]. We review this
approach and identify fundamental assumptions that have implicitly entered into
it, emphasizing issues that any such derivation is likely to face.

KEY WORDS: Born rule; quantum probabilities; environment-assisted inva-
riance.

1. INTRODUCTION

In standard quantum mechanics, Born’s rule(1) is simply postulated. A typ-
ical formulation of this rule reads:

If an observable Ô, with eigenstates {|oi〉} and spectrum {oi}, is measured on a
system described by the state vector |ψ〉, the probability for the measurement to
yield the value oi is given by p(oi) = |〈oi |ψ〉|2.

Born’s rule is of paramount importance to quantum mechanics as it
introduces a probability concept into the otherwise deterministic theory
and relates it mathematically to the Hilbert space formalism. No viola-
tion of Born’s rule has ever been discovered experimentally—which has
certainly supported the role of the Born rule as the favorite ingredient of
what has been nicknamed the “shut up and calculate” interpretation of
quantum mechanics. (Although often attributed to Feynman, it appears
that the nickname was actually coined by Mermin.(2) For an example of
such a stance, see(3)).

Replacing the postulate of Born’s rule by a derivation would be
a highly desirable goal within quantum theory in general. The famous
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theorem of Gleason(4) presented a mathematical motivation for the form
of the Born probabilities by showing that if one would like to assign a
non-negative real valued function p(v) to every vector v of a vector space
V of dimension greater than two such that for every orthonormal basis
{v1, . . . , vn} of V the sum of the p(vi) is equal to one,

∑

i

p(vi) = 1, (1)

then the only possible choice is p(v) = |〈v|w〉|2 for all vectors v and
an arbitrary but fixed vector w, provided that probabilities are assumed
to be non-contextual. The normalization requirement of Eq. (1) for p(v)
with respect to any orthonormal basis can be physically motivated by
remembering that any orthonormal basis {v1, . . . , vn} can be viewed as the
eigenbasis of observables Ô = ∑

i λi |vi〉〈vi |, and by referring to the fact
that in every measurement of such an observable Ô on a system with state
vector w one outcome (represented by the eigenvalue λj corresponding to
one of the eigenvectors vj ) will occur, such that p(vj ) = 1 and p(vi) = 0
for i �= j , and Eq. (1) follows. In spite of its mathematical elegance, Glea-
son’s theorem is usually considered as giving rather little physical insight
into the emergence of quantum probabilities and the Born rule.

Other attempts towards a consistent derivation of the Born prob-
abilities have previously been made in particular in the context of rel-
ative-state interpretations where both the meaning of probabilities and
their relation to Born’s rule requires explicit elucidation (see, for exam-
ple, Refs. 5–10), but the success of these approaches is controversial.(11–13)

A widely disputed derivation of the Born rule that is solely based on
the non-probabilistic axioms of quantum mechanics and on classical deci-
sion theory (and that is more physically motivated than Gleason’s argu-
ment) has been proposed by Deutsch.(14) It was criticized by Barnum
et al.(15) but was subsequently defended by Wallace(16) and put into an
operational framework by Saunders;(17) no decisive conclusion seems to
have been reached on the success of these derivations thus far.

A novel and interesting proposal towards a derivation of Born’s rule
has recently been put forward by Zurek(18) (see also the follow-ups in
Refs. 19, 20). Zurek is a key figure in the development of the decoher-
ence program (for a recent survey of the program and further references,
see Refs. 20, 21) that is based on a study of open quantum systems
and their interaction with the many degrees of freedom of their environ-
ment, leading to explanations for the emergence of the “classical” world of
our observation. However, one of the remaining loopholes in a consistent
derivation of classicality from decoherence and standard non-collapse
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quantum mechanics alone has been tied to the fact that the formalism of
decoherence and its interpretation rely implicitly on Born’s rule, but that
decoherence does not yield an independent motivation for the connection
between the quantum mechanical state space formalism and probabilities.
Any derivation of the Born rule from decoherence(22) is therefore subject
to the charge of circularity.(23)

To address this criticism, Zurek has suggested a derivation of Born’s
rule that is based on the inclusion of the environment—thus matching well
the spirit of the decoherence program—but without relying on the key ele-
ments of decoherence that presume Born’s rule and would thus render the
argument circular. Zurek’s derivation is of course not only relevant in the
context of the decoherence program.

Because we consider Zurek’s approach promising, we would like to
bring out the assumptions that enter into the derivation but have not
been explicitly mentioned in Refs. 18–20. Hopefully such an analysis will
help in a careful evaluation of the question to what extent Zurek’s der-
ivation can be regarded as fundamental. In fact, after this paper had
been posted online as a preprint, two other discussions of Zurek’s argu-
ment have appeared that also describe variants of the proof.(24,25) More-
over, Zurek himself(26) has recently revised his original derivation in a
way that addresses several of the issues raised in this article and that
is more explicit about the assumptions (some designated now as “facts”)
used in his proof. These correspond to what we identify in the following
discussion.

To anticipate, we find that Zurek’s derivation is based on at least the
following assumptions:

(1) The probability for a particular outcome, i.e., for the occurrence
of a specific value of a measured physical quantity, is identified
with the probability for the eigenstate of the measured observable
with eigenvalue corresponding to the measured value—an assump-
tion that would follow from the eigenvalue–eigenstate link.

(2) Probabilities of a system S entangled with another system E are
a function of the local properties of S only, which are exclusively
determined by the state vector of the composite system SE .

(3) For a composite state in the Schmidt form |ψSE 〉 = ∑

k λk|sk〉|ek〉,
the probability for |sk〉 is equal to the probability for |ek〉.

(4) Probabilities associated with a system S entangled with another
system E remain unchanged when certain transformations (namely,
Zurek’s “envariant transformations”) are applied that only act on E
(and similarly for S and E interchanged).
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Our paper is organized as follows. First, we review Zurek’s derivation
of the Born rule as given in his original papers,(18–20) and also include a
line of reasoning presented in his recent follow-up(26) (that in turn takes
issues raised in the following discussion into account). We then elucidate
and discuss step-by-step the assumptions that we believe have entered into
Zurek’s approach. In the final section, we summarize our main points.

2. REVIEW OF ZUREK’S DERIVATION

(I) Zurek suggests a derivation of Born’s rule for the following pure
state that describes an entanglement between a system S, described by a
Hilbert space HS , and its environment E , represented by a Hilbert space HE :

|ψSE 〉 =
∑

k

λk|sk〉|ek〉, (2)

where {|sk〉} and {|sk〉} are orthonormal bases of HS and HE , respectively.
Zurek holds that after the SE correlation has been established, the sys-
tem no longer interacts with the environment (Ref. 19, p. 10), i.e., that E
is “dynamically decoupled” [Ref. 18, p. 120404-1] and thus “causally dis-
connected” [Ref. 20, p. 754] from S.

For the sake of clarity and simplicity, we shall in the following
restrict ourselves to the case of coefficients of equal magnitude and to
two-dimensional state spaces HS and HE , i.e., we consider the state

|ψSE 〉 = 1√
2

(

eiα1 |s1〉|e1〉 + eiα2 |s2〉|e2〉
)

. (3)

Once a valid derivation of Born’s rule is accomplished for this situa-
tion, the case of non-equal probabilities and of state spaces of more than
two dimensions can be treated by means of a relatively straightforward
counting argument(18) (at least for probabilities that are rational numbers).
What Zurek’s derivation now aims to establish is the result that for an
observer of S, the probabilities for |s1〉 and |s2〉 will be equal. That claim
is the focus of our analysis.

(II) Zurek considers pairs of unitary transformations ÛS = ûS ⊗ ÎE
and ÛE = ÎS ⊗ ûE . Here ûS acts only on the Hilbert state space HS of
S, and ÎE is the identity operator in HE . Similarly ûE acts only on the
Hilbert state space HE of E , and ÎS is the identity operator in HS .

If the composite state |ψSE 〉 is invariant under the combined applica-
tion of ÛS and ÛE ,

ÛE (ÛS |ψSE 〉) = |ψSE 〉, (4)
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the composite state is called envariant under ûS . (The word “envariant”
stems from the abbreviation “envariance” of the term “environment-
assisted invariance,” an expression coined by Zurek). Zurek gives the fol-
lowing interpretation of envariance (Ref. 18, p. 120404-1):

When the transformed property of the system can be so “untransformed” by act-
ing only on the environment, it is not the property of S. Hence, when SE is in
the state |ψSE 〉 with this characteristic, it follows that the envariant properties of
S must be completely unknown.

It is difficult to understand just what the term “property” refers to
here, since it is the composite state that is transformed and untransformed,
and so the “properties” involved would seem to be features of the state,
not of the system. It seems that envariance under ûS is taken to imply that
an observer who “in the spirit of decoherence” (Ref. 19, p. 10) only has
access to S will not be able to determine features of the combined state
that are affected by ûS (or, more properly, by ÛS ). For such an observer
a local description of S will be independent of these features, which may
depend on a particular decomposition. While this general description is far
from precise, the uses to which Zurek puts envariance are clear enough.

(IIa) The first type of an envariant transformation that Zurek consid-
ers is the pair

û
(β1,β2)
S = eiβ1 |s1〉〈s1| + eiβ2 |s2〉〈s2|, û

(β1,β2)
E = e−iβ1 |e1〉〈e1| + e−iβ2 |e2〉〈e2|.

(5)

The effect of the first transformation ÛS = û
(β1,β2)
S ⊗ ÎE is to change the

phases associated with the terms in the Schmidt state, Eq. (3), that is,

ÛS |ψSE 〉 = 1√
2

(

ei(α1+β1)|s1〉|e1〉 + ei(α2+β2)|s2〉|e2〉
)

. (6)

It is easy to see that if one subsequently acts on this state with ÛE =
ÎS ⊗ û

(β1,β2)
E , the original |ψSE 〉 will be restored. Thus, |ψSE 〉, and in par-

ticular the phases associated with the states in the Schmidt decomposition
of |ψSE 〉, are envariant under the phase transformation û

(β1,β2)
S given by

Eq. (5).
In the spirit of Zurek’s interpretation of envariance stated above, this

implies that the phases of the Schmidt coefficients are not a property of S
alone, so that a local description of S cannot depend on the phases α1 and
α2 in the composite state |ψSE 〉 of Eq. (3). This leads Zurek to the conclu-
sion that also the probabilities associated with S must be independent of
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these phases, and that it thus suffices to show that equal likelihoods arise
for the state

|ψSE 〉 = 1√
2

(

|s1〉|e1〉 + |s2〉|e2〉
)

. (7)

We shall therefore use this state in the rest of the argument.
(IIb) Another type of envariant transformations relevant to Zurek’s

derivation are the so-called “swaps,”

û
(1↔2)
S = |s1〉〈s2| + |s2〉〈s1|, (8)

û
(1↔2)
E = |e1〉〈e2| + |e2〉〈e1|. (9)

Application of ÛS = û
(1↔2)
S ⊗ ÎE , with û

(1↔2)
S from Eq. (8), to the state

|ψSE 〉 in Eq. (7) yields

ÛS |ψSE 〉 = 1√
2

(

|s2〉|e1〉 + |s1〉|e2〉
)

, (10)

i.e., the states of the environment E correlated with the states of the sys-
tem S have been interchanged. This swap can obviously be undone by a
“counterswap” ÛE = ÎS ⊗ û(1↔2)

E , with û(1↔2)
E from Eq. (9), applied to the

state ÛS |ψSE 〉 in Eq. (10). Thus, the composite state |ψSE 〉, Eq. (7), is en-
variant under swaps. The invariant property is then “|sk〉 is correlated with
|el〉.” On the basis of the interpretation of envariance quoted above, this
implies that a local description of S must be independent of which partic-
ular environmental state |el〉 is correlated with a given |sk〉, i.e., that swap-
ping of the states of the system cannot be detected by a local observation
of S alone.

(IIIa) To make the connection between envariance of |ψSE 〉 under
swaps with quantum probabilities and Born’s rule, Zurek states (Ref. 18,
p. 120404-2):

Let us now make a rather general (and a bit pedantic) assumption about the
measuring process: When the states are swapped, the corresponding probabilities
get relabeled (i ↔ j ). This leads us to conclude that the probabilities for any two
envariantly swappable |sk〉 are equal.

This argument assumes that the swapping transformation (that inter-
changes the correlations between the states of the system and the environ-
ment) also swaps the probabilities associated with the states of the system.

To motivate this assumption, the following line of reasoning has been
described to us by Zurek in private communication and has subsequently
also appeared in published form in Refs. 24, 26. Let p(|s1〉; |ψSE 〉) denote
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the probability for |s1〉 when the SE combination is in the composite state
|ψSE 〉, and similarly for |s2〉, |e1〉 and |e2〉. Before the first swap, Zurek
states that

p(|s1〉; |ψSE 〉) = p(|e1〉; |ψSE 〉),
(11)

p(|s2〉; |ψSE 〉) = p(|e2〉; |ψSE 〉),
by referring to the direct connection between the states of S and E in the
state vector expansion Eq. (3). After the first swap (acting on S),

p(|s1〉; ÛS |ψSE 〉) = p(|e2〉; ÛS |ψSE 〉),
(12)

p(|s2〉; ÛS |ψSE 〉) = p(|e1〉; ÛS |ψSE 〉),
where we have used ÛS |ψSE 〉 instead of |ψSE 〉 as the second argument
of the probability function to take into account the transformation of the
state of SE . Zurek now holds that under a swap, properties of the envi-
ronment cannot have been affected by the first swap acting on the system
S only, so that we must have

p(|e1〉; ÛS |ψSE 〉) = p(|e1〉; |ψSE 〉),
(13)

p(|e2〉; ÛS |ψSE 〉) = p(|e2〉; |ψSE 〉).
After the application of the counterswap, we get

p(|s1〉; ÛE ÛS |ψSE 〉) = p(|e1〉; ÛE ÛS |ψSE 〉),
(14)

p(|s2〉; ÛE ÛS |ψSE 〉) = p(|e2〉; ÛE ÛS |ψSE 〉),
where Zurek has that

p(|s1〉; ÛE ÛS |ψSE 〉) = p(|s1〉; ÛS |ψSE 〉),
(15)

p(|s2〉; ÛE ÛS |ψSE 〉) = p(|s2〉; ÛS |ψSE 〉),
since the counterswap only acted on E . Moreover, since after the counter-
swap the final state vector will be identical to the initial state vector, Zurek
concludes that

p(|s1〉; ÛE ÛS |ψSE 〉) = p(|s1〉; |ψSE 〉),
p(|s2〉; ÛE ÛS |ψSE 〉) = p(|s2〉; |ψSE 〉),

(16)
p(|e1〉; ÛE ÛS |ψSE 〉) = p(|e1〉; |ψSE 〉),
p(|e2〉; ÛE ÛS |ψSE 〉) = p(|e2〉; |ψSE 〉).
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This implies, from the above Eqs. (11)–(16), that

p(|s1〉; |ψSE 〉) = p(|s1〉; ÛE ÛS |ψSE 〉) = p(|s1〉; ÛS |ψSE 〉) = p(|e2〉; |ψSE 〉)
= p(|s2〉; |ψSE 〉), (17)

which establishes the desired result p(|s1〉; |ψSE 〉) = p(|s2〉; |ψSE 〉).
(IIIb) Since the connection between envariance under swaps and equal

probabilities is the crucial step in the derivation, we would like to mention
another line of argument found in Zurek’s papers(19,20) that more explic-
itly connects envariance with ignorance and the information available to a
local observer. Here, Zurek considers a von Neumann measurement car-
ried out on the composite state vector |ψSE 〉 by an observer, described by
“memory states” |µ0〉 (the premeasurement memory state) and |µ1〉, |µ2〉
(the post-measurement memory states corresponding to the perception of
the “outcomes” |s1〉 and |s2〉, respectively):

|µ0〉|ψSE 〉 ∝ |µ0〉
(|s1〉|e1〉 + |s2〉|e2〉

) −→ |µ1〉|s1〉|e1〉 + |µ2〉|s2〉|e2〉. (18)

Zurek then states (Ref. 20, p. 755):

[Envariance of |ψSE 〉 under swaps] allows the observer (who knows the joint state
of SE exactly) to conclude that the probabilities of all the envariantly swappable
outcomes must be the same. The observer cannot predict his memory state after
the measurement of S because he knows too much: the exact combined state of
SE . (. . . ) Probabilities refer to the guess the observer makes on the basis of his
information before the measurement about the state of his memory—the future
outcome—after the measurement. Since the left-hand side of Eq. (18) is envari-
ant under swaps of the system states, the probabilities of all the states must be
equal.

In a different paper, Zurek argues (Ref. 19, p. 12):

When the state of the observer’s memory is not correlated with the system, and
the absolute values of the coefficients in the Schmidt decomposition of the entan-
gled state describing SE are all equal, and E cannot be accessed, the resulting
state of S is objectively invariant under all local measure-preserving transforma-
tions. Thus, with no need for further excuses, probabilities of events {|sk〉} must
be—prior to measurement—equal.

Obviously, these arguments appeal to a rather different explanation for the
emergence of equal likelihoods from the envariance of |ψSE 〉 under swaps
than the previously quoted argument. Now, probabilities are introduced
from the point of view of the observer to account for his lack of knowl-
edge of the individual state of S, since he has perfect knowledge of the
composite state of SE . Then, so goes Zurek’s claim, since the observer
cannot detect the swapping of the possible outcome states |s1〉 and |s2〉 of
S before the measurement, he will regard them as “equivalent” and there-
fore attach equal likelihoods to them.
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3. DISCUSSION

(A) First of all, Zurek’s derivation intrinsically requires the split of the
total Hilbert space H into at least two subspaces HS and HE which are
identified with a system S and its environment E , where S is presumed
to have interacted with E at some point in the past. The environment is
then responsible for the emergence of probabilities within the system, sim-
ilar to the spirit of decoherence where the environment is responsible for
the emergence of subjective classicality within the system.(20,21)

The obvious question is then to what extent the necessity to include
the environment constitutes a restriction of generality. Apart from the
problem of how to do cosmology, we might take a pragmatic point of
view here by stating that any observation of the events to which we wish
to assign probabilities will always require a measurement-like context that
involves an open system interacting with an external observer, and that
therefore the inability of Zurek’s approach to derive probabilities for a
closed, undivided system should not be considered as a shortcoming of the
derivation.

(B) Secondly, we might wonder whether the choice of the entangled
pure Schmidt state, Eq. (2), implies a lack of generality in the derivation.
Any two-system composite pure state can be diagonalized in the Schmidt
form above, so the particular form of the expansion of |ψSE 〉 implies no
loss of generality. Furthermore, if ρSE were non-pure, it could be made
pure simply by enlarging the space HE , which cannot influence probabili-
ties of S since E is assumed to be dynamically decoupled from S after the
initial interaction that established the entanglement between S and E .(19)

We thus conclude that once the requirement for openness is acknowledged,
the consideration of the state |ψSE 〉, Eq. (2), will suffice for a general der-
ivation of the Born rule.

(C) Before introducing any probability concept into quantum theory,
we need to define what these probabilities are supposed to be assigned
to. Clearly, from the point of view of observations and measurements, we
would like to assign probabilities to the occurrence of the specific values
of the observable O that has been measured, i.e., to the “outcomes”. The
eigenvalue–eigenstate link of quantum mechanics postulates that a system
has a value for an observable if and only if the state of the system is
an eigenstate characteristic of that value (or a proper mixture of those
eigenstates). If we consider only a measurement situation, one way of get-
ting this link is first to assume that the only possible values are outcomes
of measurements and that those are restricted to the eigenvalues oi of
an operator Ô that represents the measured observable O. If one then
assumes the collapse or projection postulate, that after the measurement
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the state of the system will be in an eigenstate |oi〉 of Ô, it follows that
in the non-degenerate case (i.e., when a certain eigenvalue corresponds
only to a single eigenvector of the operator observable) an outcome oi
(the value of a physical quantity that appears in a measurement) can be
directly related to the eigenstate |oi〉 of the measured operator Ô, as the
eigenvalue–eigenstate link requires, and we can talk equivalently about the
probability for a certain outcome, or eigenvalue, or eigenstate.

The basis states {|s1〉, |s2〉} and {|e1〉, |e2〉} appearing in the composite
Schmidt state |ψSE 〉 of Eq. (3) may then be thought of as the eigenstates
of operator observables ÔS and ÔE . In this sense, Zurek’s derivation tries
to establish that for the state |ψSE 〉 of Eq. (3), the outcomes represented
by the eigenvalues s1 and s2 corresponding to the eigenstates |s1〉 and |s2〉
of an operator observable ÔS = s1|s1〉〈s1| + s2|s2〉〈s2| are equally likely.
However, in the context of the relative-state view that Zurek promotes,
he never explicitly talks about observables and instead directly speaks of
determining the “probabilities of events {|sk〉}” (Ref. 19, p. 12). This iden-
tifies the probability for the occurrence of a specific value of a measured
physical quantity with the probability for an eigenstate of the measured
observable with an eigenvalue equal to the measured value. That assump-
tion would be justified by the eigenvalue–eigenstate link, although it does
not require it.

(D) Zurek furthermore assumes that the probabilities of the outcomes
associated with the individual states {|s1〉, |s2〉} of S and {|e1〉, |e2〉} of E are
functions of the composite state vector |ψSE 〉 only. (Zurek spells out the
assumption that the derivation will be based on the composite state vec-
tor but without direct reference to probabilities: “Given the state of the
combined SE expressed in the Schmidt form (. . . ) what sort of invari-
ant quantum facts can be known about S?” (Ref. 18, p. 120404-1).) This
assumption about the functional dependence of the probabilities is cer-
tainly reasonable, especially since Zurek’s aim is clearly to derive Born’s
rule from within standard quantum mechanics, where the state vector is
assumed to provide a complete description of the physical system. The
assumption, of course, might well be questioned in a hidden variable or
modal interpretation.

But Zurek’s argument requires actually a more detailed assumption
than stated so far. Obviously, since the SE composition is in an entangled
pure state, there is no individual state vector of S alone. But Zurek infers
the properties of S from the composite state vector |ψSE 〉 by studying its
properties under envariant transformations. The idea is to use envariance
to deduce statements about S alone. The assumption is now that proba-
bilities are local in the sense that the probabilities that an observer of S
alone can associate with the “events” |sk〉—following Zurek’s identification
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of outcomes with eigenstates, cf. our discussion in (C)—only depend on
the local properties of S (i.e., those properties that cannot be affected
by envariant transformations). An analogous assumption must also be
invoked with respect to E for Zurek’s argument to go through: probabili-
ties for the states |ek〉 of E are only dependent on the local properties of
E . This is used to infer the crucial conclusion that probabilities of S and
E must be independent of the envariant properties of SE (i.e., properties
of SE that do not belong to S or E individually).

This locality of probabilities can be related to the decomposition of
the total Hilbert space into the state space of the system and the state
space of the environment, together with the focus of any observation on
the system alone, on which also the whole definition of envariance relies.
But without having explicitly connected the Hilbert state space description
with the functional dependence of the probabilities on the state, affirming
that probabilities of S and E can only depend on the local properties of S
and E , respectively, must be counted as an important additional assump-
tion.

(E) We would also like to point out that Zurek holds that his argu-
ment does not require a causality or locality assumption, but that refer-
ence to envariance suffices (see, for example, Ref. 18, p. 120404-2). Zurek
suggests that one could alternatively argue for the independence of prob-
abilities from an envariant property of the entangled SE combination
directly if causality and the impossibility of faster-than-light signaling is
assumed. He claims that a measurable property associated with S cannot
depend on an envariant property of the entangled SE state, since other-
wise one could influence measurable properties of S by acting on a “dis-
tant” environment E , and superluminal communication would be possible.
We do not find this argument compelling, since influencing measurable
properties of a system entangled with a distant partner by locally acting
on the partner does not necessarily require the effect to be instantaneously
transmitted to the system. Even if it were, it is not clear that this would
entail any violation of relativistic no-signaling requirements (witness the
Bohm theory!).

Of course, even if the assumption of causality and the impossibility
of faster-than-light signaling indeed justified the conclusion that envariant
properties of SE cannot influence locally measurable physical quantities of
S, any necessity for an appeal to causality to justify Eq. (13) would be
rather undesired, since the goal is to derive the Born rule from quantum
theory alone which, strictly speaking, does not entail the impossibility of
superluminal communication. Zurek is clearly aware of this point by stat-
ing that causality is “more potent” (Ref. 20, p. 754) and “more ‘costly’
(and not entirely quantum)” (Ref. 18, p. 120404-2) than envariance. He
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consequently holds that his derivation only requires envariance, although
he sometimes seems to implicitly refer to causality, for instance in arguing
that “only the absolute values of the coefficients can matter since phases
[of the coefficients] can be altered by acting on E alone, and E is causally
disconnected from S” (Ref. 19, p. 10).

(F) Let us now turn to the chain of relations between the probabilities
as established in Eqs. (11)–(17).

(F1) The first relations, Eqs. (11), infer equal probabilities for the out-
comes represented by |s1〉 and |e1〉 from their correlation in the direct
product |s1〉|e1〉 as appearing in the composite state vector |ψSE 〉 in the
Schmidt decomposition, Eq. (7). From a point of view that presupposes
Born’s rule, this assumption is of course trivially fulfilled, since a simple
projection yields

| 〈e1|〈s1|s1〉|e1〉
︸ ︷︷ ︸

=1

+ 〈e2|〈s1|s1〉|e1〉
︸ ︷︷ ︸

=0

|2 = | 〈e1|〈s1|s1〉|e1〉
︸ ︷︷ ︸

=1

+ 〈e1|〈s2|s1〉|e1〉
︸ ︷︷ ︸

=0

|2,

(19)

due to orthonormality of the Schmidt basis states {|s1〉, |s2〉} and {|e1〉, |e2〉}.
But without this (obviously undesired) presupposition, the relations in
Eqs. (11) represent an additional assumption about the connection between
state and probabilities which does not follow from the assumption (D)
that probabilities are a function of the state vector only.

Of course Eqs. (11) may seem innocuous because most of us are
accustomed to thinking in terms of state space projections, and we make
an intuitive connection to probabilities from such projections. But it seems
important in evaluating a derivation of the quantum probability concept
and Born’s rule to be aware of where such presupposed conceptions enter,
as assumptions, into the derivation.

(F2) Yet another important assumption appears to be contained in
Eqs. (13). We recall that Zurek justified the relations p(|e1〉; ÛS |ψSE 〉) =
p(|e1〉; |ψSE 〉) and p(|e2〉; |ψSE 〉) = p(|e2〉; ÛS |ψSE 〉) by saying that the
probabilities associated with the environment E cannot change as a result
of the envariant swap acting on S since this swap cannot affect proper-
ties of E . An analogous statement is made in justifying the relations of
Eqs. (15).

But this argument requires the assumption that the probabilities
behave similar to the envariant property that the transformation refers
to; i.e., that the behavior of probabilities under envariant transformations,
in particular swaps, is somehow known. This knowledge, however, is not
established by Zurek’s derivation, and we do not see how it could auto-
matically follow from envariance (as suggested by Zurek). To illustrate this
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point, consider the following two statements regarding the implications
derived from envariance in the course of Zurek’s argument:

(i) Phase envariance implies that the probabilities of S must be
independent of the phases of the Schmidt coefficients.

(ii) Envariance under swaps implies that the probabilities of S cannot be
influenced by a swap acting on E alone.

The important difference between (i) and (ii) is that (i) aims at demon-
strating the independence of the probabilities from an envariant property,
whereas (ii) claims invariance of the probabilities under an envariant trans-
formation. Statement (i) only requires assumption (D) to hold: phase en-
variance implies that a local description of S cannot depend on the phase
factors of the Schmidt coefficients, so if we assume that the probabilities are
a function of the local properties ascribed to S on the basis of the entangled
state vector only (and a study of its envariant transformations), (i) follows.
But (ii) requires more: Employing a reasoning analogous to (i), envariance
of the composite state under swaps solely means that probabilities of S will
not depend on whether |s1〉 is entangled with |e1〉 or with |e2〉, since this
“property” of a specific correlation is not property of S alone; but we have
said nothing about whether the application of the swap operation itself to
E might disturb the probabilities associated with S.

We might reinforce this concern by drawing attention to the physi-
cal interpretation of the swap operation. A swap applied to S implies that
the existing correlations |s1〉|e1〉 and |s2〉|e2〉 between the system S and the
environment E need to be “undone,” and new correlations of the form
|s1〉|e2〉 and |s2〉|e1〉 between S and E have to be created. From the form
of the swap transformations, ÛS = ûS ⊗ ÎE and ÛE = ÎS ⊗ ûE , it is clear
that swaps can be induced by local interactions. But we do not see why
shifting features of E , that is, doing something to the environment, should
not alter the “guess” (to use Zurek’s expression (Ref. 20, p. 755); cf. the
quote in (IIIb) above) an observer of S would make concerning S-out-
comes. Here, if possible, one would like to see some further argument (or
motivation) for why the probabilities of one system should be immune to
swaps among the basis states of the other system.

(G) Let us finally discuss Zurek’s alternative argument based on the
ignorance of an observer of S with respect to the individual state of the
system S.

In his derivation, Zurek takes the entangled Schmidt state |ψSE 〉
describing the correlation between S and E as the given starting point and
assumes that the observer somehow knows this state exactly already before
any measurement has taken place. According to Zurek this knowledge
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seems to imply that the observer is aware of the “menu” of possible out-
comes (but cannot attribute a particular outcome state to S before the
measurement). But since the observer has only access to S, how is this
knowledge established in the first place?

In the case of the composite state |ψSE 〉 with coefficients of equal
magnitude, Eq. (3), one can choose any other orthonormal basis for HS
and always find a corresponding orthonormal basis of HE such that the
composite state |ψSE 〉 has again the diagonal Schmidt form of Eq. (3).
Therefore, no preferred basis of HS or HE has been singled out. On one
hand, this implies that Zurek’s argument does not require any a priori
knowledge of the environmental states |ek〉 for the observer of S. On the
other hand, however, this also means that there is nothing that would
tell the observer of S which possible “events” |sk〉 he is dealing with.
(Decoherence provides a mechanism, termed environment-induced super-
selection, in which the interaction of S with E singles out a preferred
basis in HS (20); however, a fundamental derivation of the Born rule must
of course be independent of decoherence to avoid circularity of the argu-
ment.) Even if one holds that a choice of a particular set of basis vec-
tors is irrelevant to the derivation since the aim is solely to demonstrate
the emergence of equal likelihoods for any orthonormal basis {|sk〉}, one
is still left with the question how the observer of S establishes the knowl-
edge that the composite state must be described by coefficients of equal
magnitude.

Zurek then goes on to claim that (i) because all possible outcome
states |sk〉 are envariantly swappable, these states appear as “equivalent”
to the observer of S, and (ii) that this “equivalence of outcomes” trans-
lates into an attribution of equal likelihoods for each of these outcomes.
With respect to part (i) of the argument, perfect knowledge of the pure
composite state implies that the observer (before the measurement) cannot
know the individual state of S, which adds in an ignorance-based proba-
bility concept, but without having established equal likelihoods. Now, as
mentioned before, envariance under swaps simply means that the ques-
tion of which |el〉 of E is correlated with a particular |sk〉 of S is irrel-
evant to a complete local description of S. But we do not see how this
state of affairs forces the observer of S to conclude that all the |sk〉
are “equivalent.” For part (ii), we note that even if the previous argu-
ment did establish an “equivalence of outcomes,” this epistemic indiffer-
ence about the occurrence of a particular outcome among a set of possible
outcomes would not necessarily, from a general point of view of probabil-
ity theory, force out the implication of equal likelihoods; this conclusion
would be particularly questionable when dealing with a set of continuous
cardinality.
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4. CONCLUDING REMARKS

To summarize, we have pointed out four important assumptions in
Zurek’s derivation about the connection between the state vector and
probabilities, and about the behavior of probabilities under envariant
transformations of the state vector:

(1) The probability for a particular outcome in a measurement is
directly identified with the probability for an eigenstate of the mea-
sured observable with an eigenvalue equal to the value of the mea-
sured physical quantity, an assumption that would follow from the
eigenvalue–eigenstate link.

(2) For two entangled systems S and E described by the Schmidt state
|ψSE 〉 = ∑

k λk|sk〉|ek〉, probabilities associated with the “outcome
states” |sk〉 and |ek〉 of each individual system are a function of the
local properties of the systems only; these properties are exclusively
determined by the state vector |ψSE 〉 of the composite system.

(3) In an entangled Schmidt state of the form |ψSE 〉 = ∑

k λk|sk〉|ek〉,
the “outcome states” |sk〉 and |ek〉 are equally likely:
p(|sk〉; |ψSE 〉) = p(|ek〉; |ψSE 〉).

(4) Probabilities associated with the Schmidt states |sk〉 of a system
S entangled with another system E remain unchanged under
the application of an envariant transformation ÛE = ÎS ⊗ ûE
that only acts on E (and similarly for S and E symmet-
rically exchanged): p(|sk〉; ÛE |ψSE 〉) = p(|sk〉; |ψSE 〉) and
p(|ek〉; ÛS |ψSE 〉) = p(|ek〉; |ψSE 〉).

The necessity for an assumption like (3) in the derivation of the Born
rule can be traced back to a fundamental statement about any probabi-
listic theory: we cannot derive probabilities from a theory that does not
already contain some probabilistic concept; at some stage, we need to “put
probabilities in to get probabilities out.” Our analysis suggests that this
has been done via assumption (3) above.

We have pointed out that assumption (4) is necessary to have the
argument that is contained in the chain of relations in Eqs. (11)–(17)
between transformed and untransformed probabilities go through, but we
claim that this assumption neither follows from envariance alone nor from
assumption (2). We have also questioned whether this assumption is phys-
ically plausible.

Furthermore, we have expressed doubts that Zurek’s alternative
approach that appeals to the information available to a local observer is
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capable of leading to a derivation of the Born rule. It is neither clear to us
how exact knowledge of the composite state is established “within” the local
observer before the measurement, nor how envariance under swaps leads the
observer to conclude that the possible outcomes must be equally likely.

We hope the questions we raise here will not downplay the interest
of Zurek’s derivation in the mind of the reader. To the contrary, because
we regard it as significant, we aimed at facilitating a balanced and care-
ful evaluation of Zurek’s approach by bringing out central assumptions
implicit in his derivation. We note that Zurek uses both “derivation” and
“motivation” to describe his treatment of the emergence of the Born rule.
Once the critical assumptions are made explicit, however, as they are here
and now in his, Ref. 26, the former term seems more appropriate. More-
over, any derivation of quantum probabilities and Born’s rule will require
some set of assumptions that put probabilities into the theory. In the era
of the “Copenhagen hegemony,” to use Jim Cushing’s apt phrase, prob-
abilities were put in by positing an “uncontrollable disturbance” between
object and apparatus leading to a brute quantum “individuality” that was
taken not to be capable of further analysis. Certainly Zurek’s approach
improves our understanding of the probabilistic character of quantum the-
ory over that sort of proposal by at least one quantum leap.
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