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ÖYSTEIN J. RÖDSETH
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Abstract

Using only the most simple properties of the finite field Fp2 , we give a

short proof of Riesel’s primality test for integers of the form N = h ·2n −1.
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Lucas [10] gave two tests which show whether 2n − 1, n odd, is prime or not.
But he never published any proof of either. The “first” test is valid only if n ≡ 3
(mod 4), while the “second” test is valid for any odd n. Therefore the second
test is the most interesting. In 1930, Lehmer [8] gave an “arithmetical” proof of
the second test. In 1932, Western [16] gave “algebraic” proofs of both tests, and
also of that of Pepin [11], first proved by Carmichael [4].

However, as late as in 1988, Rosen [14] is not completely satisfied with the
situation. He says that: “ . . . it is hard to find a proof (of the second test) in a
modern text. Most books which state the result do not prove it, but do prove a
related and weaker result (the first test), e.g. [5], [6]. In [15] a complete proof is
given which follows the original proof of D. H. Lehmer (see [9]), but it is lengthy
and detailed.”

The algebraic proofs of the two tests are much shorter than the arithmetical
ones. And the algebraic proof of the first test is simpler than that of the second
test. The algebraic proofs use properties of algebraic numbers. For the proof of
the first test, Western uses the field K = Q(

√
5 ), and for the proof of the second

test, Western uses the field K = Q(
√

3 ), as suggested to him by D. H. Lehmer.
The latter field is also used by Rosen [14] in his more recent variant of Western’s
proof of the second test. In these proofs one works in the ring OK of algebraic
integers a + bω, a, b ∈ Z, where ω = (1 +

√
5 )/2 if K = Q(

√
5 ), and ω =

√
3

if K = Q(
√

3 ). One considers various algebraic integers a + bω (or rather a
and b) modulo π, where π is a prime in OK . However, both Western and Rosen
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overlook the fact that it is not necessary to consider non-rational primes in OK .
Thus we are looking at a + bω, where a and b are considered modulo a rational
prime p that doesn’t split in OK . This indicates that the proper environment for
algebraic proofs of the Lucas-tests is the finite field Fp2 . And in 1951, Brewer
[1] gave a short proof of the second Lucas test (the Lucas-Lehmer test) using the
finite field Fp2. However, Brewer’s proof of the Lucas-Lehmer test does not seem
to have received the attention it deserves. A possible reason for this is that there
are some gaps in the proofs of some of the other theorems in Brewer’s paper; cf.
de Bruijn [3].—Recently Bruce [2] gave a proof of the sufficiency of the test. His
proof has much in common with that of Brewer. Even though Bruce actually
works in (the multiplicative group of) the field Fp2, he carefully avoids the notion
of a finite field, and uses only terminology from group theory.

Lucas’ two tests and Pepin’s test are special cases of the theorem of Riesel [12,
Theorem 5], [13, Theorem 4.17]. Also Riesel proved his result by using properties
of quadratic fields, but unlike some of the authors mentioned above, Riesel knew
that it is not necessary to consider non-rational primes.—In this note we present
an alternative proof of a simplified, but equivalent, version of Riesel’s theorem,
using only the most simple properties of the field Fp2. However, in the theorem
below we replace Riesel’s condition h < 2n by the weaker condition h < 2n+1 −1.
By excluding certain composite values of N , the bound 2n+1 − 1 can also be
replaced by larger bounds; cf. Inkeri [7, p. 7].

For various initial integer values of S1, we shall consider an integer sequence
S1, S2, . . . satisfying the recurrence relation

Si+1 = S2
i − 2 for i ≥ 1.

In the theorem below, P is a rational integer, and the statement involves the
term Vh of the Lucas sequence {Vi} given by

V0 = 2, V1 = P, Vi+1 = PVi − Vi−1 (i ≥ 1).

The term Vh can quickly be computed by the formulas

V2i = V 2
i − 2, V2i+1 = ViVi+1 − P.

Also, the Legendre-Jacobi symbol is denoted by ( / ).
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Theorem. Let n, h be integers, where n > 1, h is odd, and 0 < h < 2n+1−1.
Put N = h · 2n − 1 and let S1 = Vh for some integer P satisfying

(

P − 2

N

)

= 1,
(

P + 2

N

)

= −1.(1)

Then N is a prime if and only if Sn−1 ≡ 0 (mod N).

Proof. Put D = (P − 2)(P + 2). Then (D/N ) = −1, and there is a prime
divisor p of N satisfying (D/p ) = −1.

Let σ ∈ Fp2 satisfy σ2 = D. (The existence of σ is trivial from the represen-
tation of Fp2 as Fp[x]/(x2 −D).) Further, put α = (P + 2 + σ)2/4(P + 2). Then
α−1 = (P +2−σ)2/4(P +2), and by considering {Si} as a sequence in (the prime
field of) Fp2, we have Vi = αi + α−i, Si = αh·2i−1

+ α−h·2i−1

.
By the binomial theorem, Fermat’s little theorem, and Euler’s criterion, we

have (P + 2 + σ)p = P + 2 − σ, and it follows that

α(p+1)/2 =

(

P + 2

p

)

.(2)

Now, suppose that Sn−1 ≡ 0 (mod N). Then Sn−1 = 0 in Fp2, so that

αh·2n−1

+ 1 = αh·2n−2

Sn−1 = 0. Hence 2n divides the multiplicative order of α
in F∗

p2. By (2), αp+1 = 1, so that p + 1 = 2nk for some integer k ≥ 1. Hence
h ·2n−1 = N = (2nk−1)q, and it is easily seen that q = 2nm+1 for some integer
m. Suppose that N 6= p. Then m ≥ 1. If k = m = 1, then h = 2n, contradicting
the fact that h is odd. Hence k ≥ 2 or m ≥ 2, and it follows that h ≥ 2n+1 − 1.

On the other hand suppose that N = p. By (1) and (2), we then have
α(p+1)/2 = −1, and multiplication by α−(p+1)/4 gives Sn−1 = 0, that is Sn−1 ≡ 0
(mod N), and the proof of the theorem is complete.

Also if (1) does not hold, we have that Sn−1 ≡ 0 (mod N) ⇒ N prime. It
is, however, an easy exercise to convince oneself of that (1) is the only case of
interest.

Putting P = 4, we find by reciprocity that (1) holds if n ≥ 3 and

h ≡ (−1)n−1 (mod 3).(3)

Hence we have the following corollary, cf. [13, Theorem 4.16].

Corollary 1. Let n ≥ 3, h odd, 0 < h < 2n+1 − 1. Suppose that (3) holds,
and put P = 4. Then N = h ·2n−1 is a prime if and only if Sn−1 ≡ 0 (mod N).

Note that if h ≡ (−1)n (mod 3), then N is divisible by 3.
In particular, for h = 1 and n odd, Corollary 1 gives us the celebrated Lucas-

Lehmer Test.
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Corollary 2 (Lucas-Lehmer). Let n > 1 be odd, and put S1 = 4. Then
N = 2n − 1 is a prime if and only if Sn−1 ≡ 0 (mod N).

Although this result holds for any odd n > 1, the test would, of course, be
used only if n is a prime.

Putting P = 3, h = 1, and assuming n ≡ 3 (mod 4), the theorem gives us
Lucas’ first test.

Finally, let h = 1, and let b, c be integers such that gcd(b2 + c2, N) = 1.
Putting P ≡ 2(b2 − c2)/(b2 + c2) (mod N), the theorem gives us Pepin’s test.
(Pepin also assumes that b2 + c2 is a prime.)
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