
CS 536 Park

TCP connection establishment (3-way handshake):

A B

SYN = 1, Seq. No. = X

SYN = 1, Seq. No. = Y

ACK = 1, Ack. No. = X + 1

ACK = 1, Ack. No. = Y + 1

• X , Y are chosen randomly

→ sequence number prediction

• piggybacking

CS 536 Park

2-person consensus problem: are A and B in agreement

about the state of affairs after 3-way handshake?

−→ in general: impossible

−→ can be proven

−→ “acknowledging the ACK problem”

−→ also TCP session ending

−→ lunch date problem

CS 536 Park

Call Collision:

A B

SYN = 1, Seq. No. = X

SYN = 1, Seq. No. = Y

SYN = 1, Seq. No. = Y
Ack. No. = X + 1

SYN = 1, Seq. No. = X
Ack. No. = Y + 1

−→ only single TCB gets allocated

−→ unique full association

CS 536 Park

TCP connection termination:

.

.

.
A B

Ack. No. = Y

Ack. No. = X + 1

Ack. No. = Y + 1

FIN = 1, Seq. No. = Y

FIN = 1, Seq. No. = X

Seq. No. = X + 1

• full duplex

• half duplex

CS 536 Park

More generally, finite state machine representation of TCP’s

control mechanism:

−→ state transition diagram

CS 536 Park

Features to notice:

• Connection set-up:

– client’s transition to ESTABLISHED state without

ACK

– how is server to reach ESTABLISHED if client ACK

is lost?

– ESTABLISHED is macrostate (partial diagram)

• Connection tear-down:

– three normal cases

– special issue with TIME WAIT state

– employs hack

CS 536 Park

Basic TCP data transfer:

0K

0K

A B

Ack = 1024, Win = 1024

Seq = 1024

Ack = 2048, Win = 0

Seq = 1024

Seq =2048

Seq = 0

Timer Expires;
Retransmit

1K

1K

0K

2K

Ack = 2048, Win = 0

Ack = 2048, Win = 1024

CS 536 Park

TCP’s sliding window protocol

Stream
Byte

Stream
Byte

Receiver:
NextByteExpected

LastByteRead LastByteRcvd

Sender:

LastByteAcked

LastByteSent

LastByteWritten

• sender, receiver maintain buffers MaxSendBuffer,

MaxRcvBuffer

CS 536 Park

Note asynchrony between TCP module and application.

Sender side: maintain invariants

• LastByteAcked ≤ LastByteSent ≤ LastByteWritten

• LastByteWritten−LastByteAcked < MaxSendBuffer

−→ buffer flushing (advance window)

−→ application blocking

• LastByteSent−LastByteAcked ≤ AdvertisedWindow

Thus,

EffectiveWindow = AdvertisedWindow−
(LastByteSent− LastByteAcked)

−→ upper bound on new send volume

CS 536 Park

Actually, one additional refinement:

−→ CongestionWindow

EffectiveWindow update procedure:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

−→ domain of TCP congestion control

CS 536 Park

Receiver side: maintain invariants

• LastByteRead < NextByteExpected ≤
LastByteRcvd + 1

• LastByteRcvd− NextByteRead < MaxRcvBuffer

−→ buffer flushing (advance window)

−→ application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer−
(LastByteRcvd− LastByteRead)

CS 536 Park

Issues:

How to let sender know of change in receiver window size

after AdvertisedWindow becomes 0?

• trigger ACK event on receiver side when

AdvertisedWindow becomes positive

• sender periodically sends 1-byte probing packet

−→ design choice: smart sender/dumb receiver

−→ same situation for congestion control

CS 536 Park

Silly window syndrome: Assuming receiver buffer is full,

what if application reads one byte at a time with long

pauses?

• can cause excessive 1-byte traffic

• if AdvertisedWindow < MSS then set

AdvertisedWindow← 0

CS 536 Park

Do not want to send too many 1 B payload packets.

Nagle’s algorithm:

• rule: connection can have only one such unacknowl-

edged packet outstanding

• while waiting for ACK, incoming bytes are accumu-

lated (i.e., buffered)

. . . compromise between real-time constraints and effi-

ciency.

−→ useful for telnet-type applications

CS 536 Park

Sequence number wrap-around problem: recall sufficient

condition

SenderWindowSize < (MaxSeqNum + 1)/2

−→ 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around im-

portant due to possibility of roaming packets.

bandwidth time until wrap-around †
T1 (1.5 Mbps) 6.4 hrs

Ethernet (10 Mbps) 57 min

T3 (45 Mbps) 13 min

F/E (100 Mbps) 6 min

OC-3 (155 Mbps) 4 min

OC-12 (622 Mbps) 55 sec

OC-24 (1.2 Gbps) 28 sec

CS 536 Park

Even more importantly, “keeping-the-pipe-full” consider-

ation.

bandwidth delay-bandwidth product †
T1 (1.5 Mbps) 18 kB

Ethernet (10 Mbps) 122 kB

T3 (45 Mbps) 549 kB

FDDI (100 Mbps) 1.2 MB

OC-3 (155 Mbps) 1.8 MB

OC-12 (622 Mbps) 7.4 MB

OC-24 (1.2 Gbps) 14.8 MB

−→ 100 ms latency

Also, throughput limitation imposed by TCP receiver

window size.

−→ e.g., high-performance grid apps

CS 536 Park

RTT estimation

. . . important to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precau-

tions

EstimateRTT← α · EstimateRTT + β · SampleRTT

• SampleRTT computed by sender using timer

• α + β = 1; 0.8 ≤ α ≤ 0.9, 0.1 ≤ β ≤ 0.2

• TimeOut← 2 · EstimateRTT or

TimeOut← 2 · TimeOut (if retransmit)

−→ need to be careful when taking SampleRTT

−→ infusion of complexity

−→ still remaining problems

CS 536 Park

Hypothetical RTT distribution:

RTT

Samples

RTT

Samples

−→ need to account for variance

−→ not nearly as nice

CS 536 Park

Jacobson/Karels:

• Difference = SampleRTT− EstimatedRTT

• EstimatedRTT = EstimatedRTT + δ · Difference
• Deviation = Deviation+δ(|Difference|−Deviation)

Here 0 < δ < 1.

Finally,

• TimeOut = µ · EstimatedRTT + φ · Deviation

where µ = 1, φ = 4.

−→ persistence timer

−→ how to keep multiple timers in UNIX

