$2^{\text {nd }}$

International Chemistry Olympiad

4 theoretical problems
2 practical problems

THE SECOND
 INTERNATIONAL CHEMISTRY OLYMPIAD 16-20 JUNE 1969, KATOWICE, POLAND

THEORETICAL PROBLEMS

PROBLEM 1

An amount of 20 g of potassium sulphate was dissolved in $150 \mathrm{~cm}^{3}$ of water. The solution was then electrolysed. After electrolysis, the content of potassium sulphate in the solution was 15% by mass.
Problem:
What volumes of hydrogen and oxygen were obtained at a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 101325 Pa ?

SOLUTION

On electrolysis, only water is decomposed and the total amount of potassium sulphate in the electrolyte solution is constant. The mass of water in the solution:
1.1 Before electrolysis (on the assumption that $\rho=1 \mathrm{~g} \mathrm{~cm}^{-3}$): $\quad m\left(\mathrm{H}_{2} \mathrm{O}\right)=150 \mathrm{~g}$
1.2 After electrolysis:
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=m($ solution $)-m\left(\mathrm{~K}_{2} \mathrm{SO}_{4}\right)=\frac{20 \mathrm{~g}}{0.15}-20 \mathrm{~g}=113.3 \mathrm{~g}$
The mass of water decomposed on electrolysis:
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=150-113.3=36.7 \mathrm{~g}$, i. e.
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=2.04 \mathrm{~mol}$
Since, $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
thus, $n\left(\mathrm{H}_{2}\right)=2.04 \mathrm{~mol}$
$n\left(\mathrm{O}_{2}\right)=1.02 \mathrm{~mol}$

$$
\begin{aligned}
& V\left(\mathrm{H}_{2}\right)=\frac{n\left(\mathrm{H}_{2}\right) R T}{p}=\frac{2.04 \mathrm{~mol} \times 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 293.15 \mathrm{~K}}{101325 \mathrm{~Pa}} \\
& \approx 0.049 \mathrm{~m}^{3}, \text { resp. } 49 \mathrm{dm}^{3} \\
& V\left(\mathrm{O}_{2}\right)=1 / 2 V\left(\mathrm{H}_{2}\right) \approx 0.0245 \mathrm{~m}^{3} \approx 24.5 \mathrm{dm}^{3}
\end{aligned}
$$

PROBLEM 2

A compound A contains 38.67 \% of potassium, 13.85% of nitrogen, and 47.48% of oxygen. On heating, it is converted to a compound B containing 45.85 \% of potassium, 16.47% of nitrogen, and 37.66 \% of oxygen.
Problem:
2.1 What are the stoichiometric formulas of the compounds?
2.2 Write the corresponding chemical equation.

SOLUTION

2.1 Compound A:
$\mathrm{K}_{\mathrm{x}} \mathrm{N}_{\mathrm{y}} \mathrm{O}_{z} \quad \mathrm{x}: \mathrm{y}: \mathrm{z}=\frac{38.67}{39.1}=\frac{13.85}{14}=\frac{47.48}{16}=0.989: 0.989: 2.968=1: 1: 3$
A: KNO_{3}
Compound B:
$\mathrm{K}_{\mathrm{p}} \mathrm{N}_{\mathrm{q}} \mathrm{O}_{\mathrm{r}} \quad \mathrm{p}: \mathrm{q}: \mathrm{r}=\frac{45.85}{39.1}=\frac{16.47}{14}=\frac{37.66}{16}=1.173: 1.176: 2.354=1: 1: 2$
B : KNO_{2}
2.2 Equation: $2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$

PROBLEM 3

A $10 \mathrm{~cm}^{3}$ sample of an unknown gaseous hydrocarbon was mixed with $70 \mathrm{~cm}^{3}$ of oxygen and the mixture was set on fire by means of an electric spark. When the reaction was over and water vapours were liquefied, the final volume of gases decreased to 65 cm^{3}. This mixture then reacted with a potassium hydroxide solution and the volume of gases decreased to $45 \mathrm{~cm}^{3}$.

Problem:
What is the molecular formula of the unknown hydrocarbon if volumes of gases were measured at standard temperature and pressure (STP) conditions?

SOLUTION

The unknown gaseous hydrocarbon has the general formula: $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$

$$
n\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right)=\frac{0.010 \mathrm{dm}^{3}}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=\frac{0.010}{22.4} \mathrm{~mol}
$$

Balance of oxygen:

- Before the reaction: $\quad 70 \mathrm{~cm}^{3}$, i. e. $\frac{0.070}{22.4} \mathrm{~mol}$
- After the reaction: $\quad 45 \mathrm{~cm}^{3}$, i. e. $\frac{0.045}{22.4} \mathrm{~mol}$

Consumed in the reaction: $\quad \frac{0.025}{22.4} \mathrm{~mol}$ of O_{2}

According to the equation:
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2}=\mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
Hence, $\frac{0.020}{22.4} \mathrm{~mol}$ of O_{2} reacted with carbon and $\frac{0.020}{22.4} \mathrm{~mol}$ of CO_{2} was formed $\left(\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}\right)$,
$\frac{0.005}{22.4} \mathrm{~mol} \mathrm{O}_{2}$ combined with hydrogen and $\frac{0.010}{22.4} \mathrm{~mol}$ of water was obtained $\left(2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}\right)$.
$3 n(\mathrm{C})=n\left(\mathrm{CO}_{2}\right)=\frac{0.020}{22.4} \mathrm{~mol}$
$n\left(\mathrm{H}_{2}\right)=2 n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{0.020}{22.4} \mathrm{~mol}$
$\mathrm{x}: \mathrm{y}=n(\mathrm{C}): n\left(\mathrm{H}_{2}\right)=0.020: 0.020=1: 1$
From the possible solutions $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{3} \mathrm{H}_{3}, \mathrm{C}_{4} \mathrm{H}_{4}, \mathrm{C}_{5} \mathrm{H}_{5}$.only $\mathrm{C}_{2} \mathrm{H}_{2}$ satisfies to the conditions given in the task, i. e. the unknown hydrocarbon is acetylene.

PROBLEM 4

Calcium carbide and water are the basic raw materials in the production of:
a) ethanol
b) acetic acid
c) ethylene and polyethylene
d) vinyl chloride
e) benzene

Problem:
Give basic chemical equations for each reaction by which the above mentioned compounds can be obtained.

SOLUTION

Basic reaction: $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
From acetylene can be obtained:
a) ethanol

b) acetic acid

c) ethylene, polyethylene

d) vinyl chloride

$$
\mathrm{CH} \equiv \mathrm{CH}+\mathrm{HCl} \longrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}
$$

e) benzene

PRACTICAL PROBLEMS

PROBLEM 1 (Practical)

a) Three numbered test-tubes (1-3) contain mixtures of two substances from the following pairs (4 variants):

1.	$\mathrm{ZnSO}_{4}-\mathrm{NaBr}$	$\mathrm{NaCl}-\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{MgSO}_{4}-\mathrm{NH}_{4} \mathrm{Cl}$
2.	$\mathrm{AlCl}_{3}-\mathrm{KBr}$	$\mathrm{CaCl}_{2}-\mathrm{NaNO}_{3}$	$\mathrm{ZnCl}_{2}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
3.	$\mathrm{KNO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{KCl}-\mathrm{MgSO}_{4}$	$\mathrm{NH} 4 \mathrm{Cl}-\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
4.	$\mathrm{MgCl}_{2}-\mathrm{KNO}_{3}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}-\mathrm{ZnSO}_{4}$	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}-\mathrm{NaCl}$

b) Each of the test-tubes numbered 4 and 5 contains one of the following substances: glucose, saccharose, urea, sodium acetate, oxalic acid.

Problem:
By means of reagents that are available on the laboratory desk determine the content of the individual test-tubes. Give reasons for both the tests performed and your answers and write the chemical equations of the corresponding reactions.

Note:

For the identification of substances given in the above task, the following reagents were available to competing pupils: $1 \mathrm{~N} \mathrm{HCl}, 3 \mathrm{~N} \mathrm{HCl}, 1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{FeSO}_{4}, 2 \mathrm{~N} \mathrm{NaOH}, 20$ \% NaOH, $2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{Cl}, 2 \mathrm{~N} \mathrm{CuSO}_{4}, 2 \mathrm{~N} \mathrm{BaCl}_{2}, 0,1 \mathrm{~N} \mathrm{AgNO}_{3}, 0,1 \%$ KMnO_{4}, distilled water, phenolphtalein, methyl orange. In addition, further laboratory facilities, such as platinum wire, cobalt glass, etc., were available.

PROBLEM 2 (Practical)

Allow to react $10 \mathrm{~cm}^{3}$ of a 3 N HCl solution with the metal sample (competing pupils were given precisely weighed samples of magnesium, zinc or aluminium) and collect the hydrogen evolved in the reaction in a measuring cylinder above water. Perform the task by means of available device and procedure.

In order to simplify the problem, calculate the mass of your metal sample from the volume of hydrogen on the assumption that it was measured at STP conditions.

