

Rail Development Plan

1. Match capacity to demand

Provide adequate corridor and terminal capacity at the right place ahead of demand.

TRANSNEF

2. Align infrastructure to freight type

Heavy haul or light industrial standards depending on the freight type.

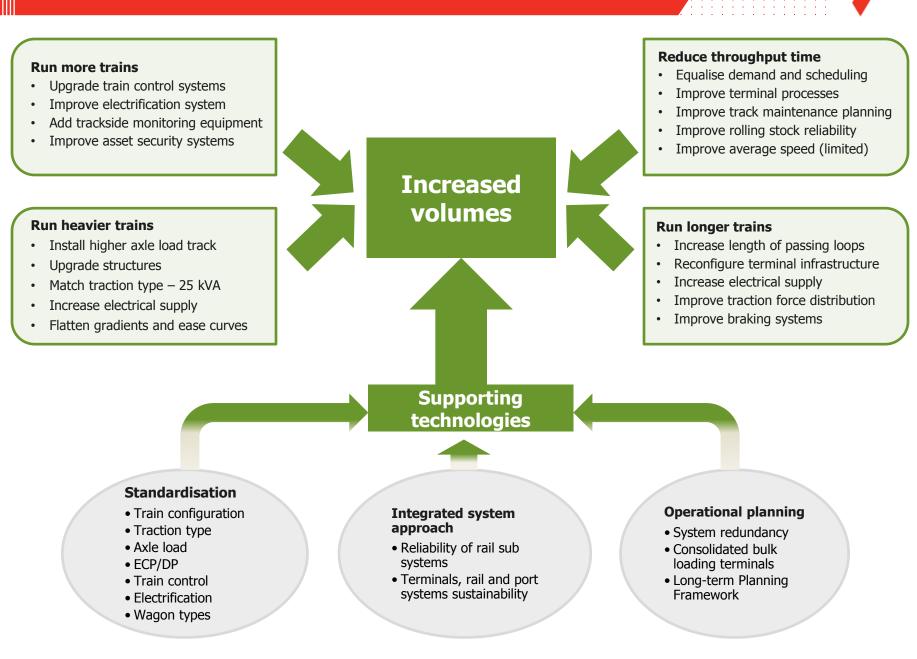
3. Improve operational characteristics

Reconfigure line infrastructure and layouts to remove bottlenecks.

4. Ensure network connectivity

Link complementary ports with inland connections. Support connectivity to SADC/regional railways.

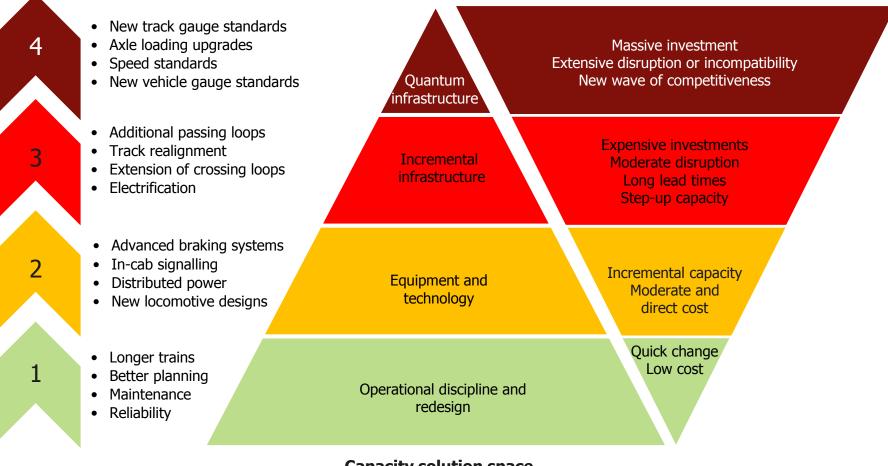
5. Standardise infrastructure


Use similar technologies across the network to improve safety, maintainability and operational performance.

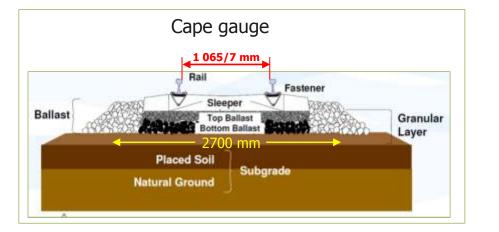
6. Align with PRASA/non-Transnet operator requirements

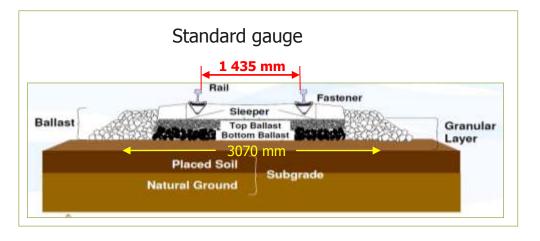
Separate, re-route and enhance services where needed. Consider inter-operability with branch-line services

TRANSNEF


Options for capacity creation (Principle 1)

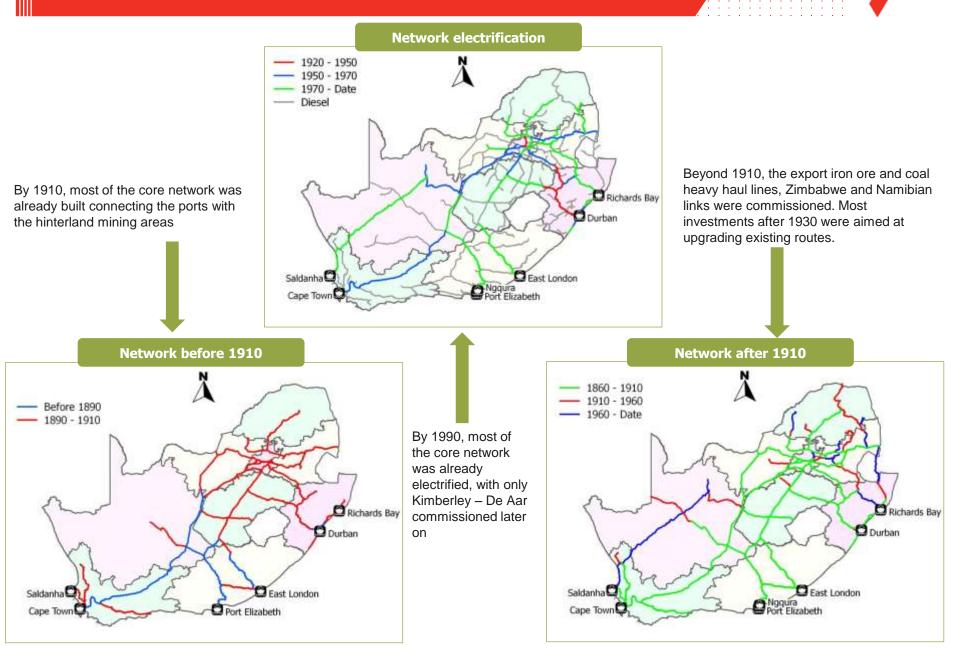
Capacity creation logic




Impact

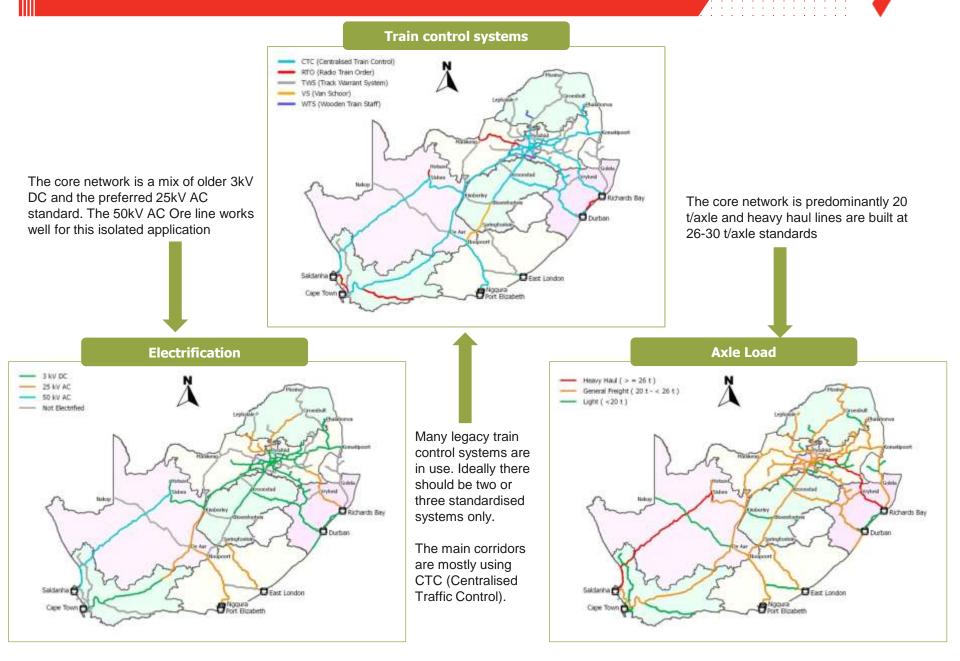
Capacity solution space

Bottom-up solutions are the most affordable and provide the best fit to existing systems Consider the operational improvements prior to implementation of major and costly new infrastructure solutions

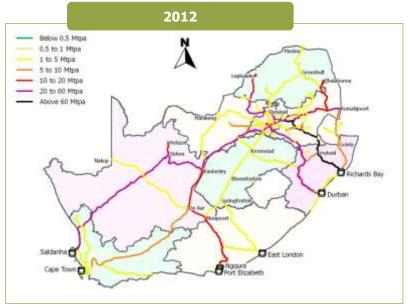


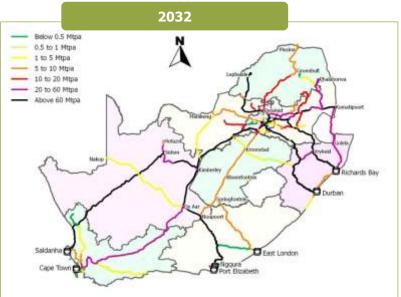
• Rail gauge is the distance between the inner sides of the two parallel rails.

- It affects train axle load, maximum speeds and stability.
- Wider gauges are more expensive to construct but are more suited to heavier axle loads and faster train services as:
 - Forces are spread over a larger surface area.
 - Train stability is enhanced due to the greater distance between wheels.
 - Larger rolling stock with higher carrying capacity can be deployed.
- Two of the more commonly found gauges are:
 - Cape gauge: 1 065/7 mm
 - Standard Gauge : 1 435mm


Historic development

Installed technology


Installed technology: Standardisation


Торіс	Comments	Status
Gauge	Single gauge on main lines	
Axle load	Main corridors 20 t/axle.	
Traction types	Corridors not standardised	
Gradients & curves	Corridors not standardised	
Train control	Corridors not standardised	
Locomotives	\pm 20 main classes	
Wagons	> 80 groups	
Operating philosophy	Unit loads, wagon loads	
Customer base	> 800 Consolidate.	
Commodity base	Substantial	
	Legend	
Good	Acceptable	Not acceptable

- Gauge: Virtually the whole Southern African network is on Cape gauge and connectivity is excellent.
- Axle load: Axle load on virtually all the main corridors is at 20 t/axle or more. Most branch lines at less than 20 t/axle but have sufficient capacity if maintained in good condition.
- **Traction types:** Many main corridors are a mixture of 3 kV DC, 25 kV AC and Diesel. This detrimentally affects consignment throughput times and locomotive utilisation as substantial time is lost during locomotive changeovers.
- **Gradients & curves:** Many corridor design characteristics are not standardised, resulting in underutilisation of locomotives as traction power on trains are provided to cope with the steepest gradients along the route and are not required for most or the time. Non-standardised curves result in different speed profiles between trains that further limit line capacity.
- Locomotives: The large number of different locomotive types in use increase maintenance training and spares requirements.
- **Wagons:** Different wagon types are required deal with the large number of commodities transported. Dedicated wagons are most suited for bulk flows such as iron ore and coal, but multi purpose wagons are more suitable where flow variations are more greater.
- Operating philosophy: TFR traffic is categorised in megaRail (large, regular consignments), accessRail (regular wagon loads handled on a hub-and-spoke principle) and flexiRail (irregular ad-hoc consignments). These allow tailor made designs for all Customer and traffic types.
- **Customer and commodity base:** Consolidation will result in lost revenues but may increase profitability. Many smaller consignments are not rail friendly and transported at a loss. Consolidation will significantly reduce operational complexities but result in further loads on and deterioration of the road network. This will be contrary to our mandate as an enabler to economic development.

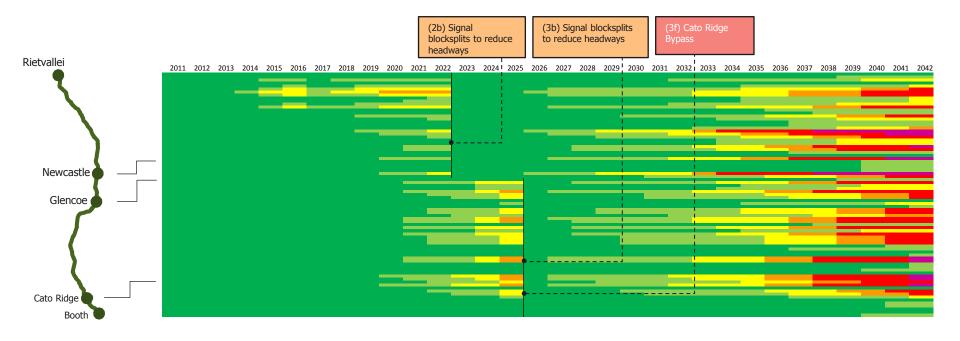
TRANSNEF

Planned demand

Gauteng – Durban system context

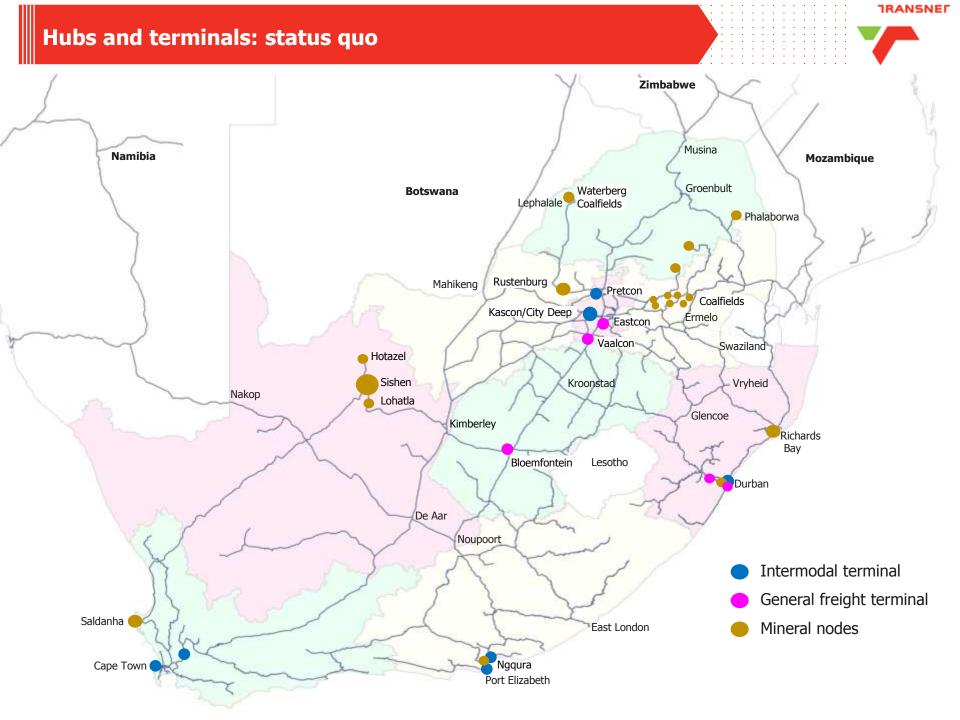
 The Gauteng to Durban section is a general freight line, but carries substantial high volumes tonnages.

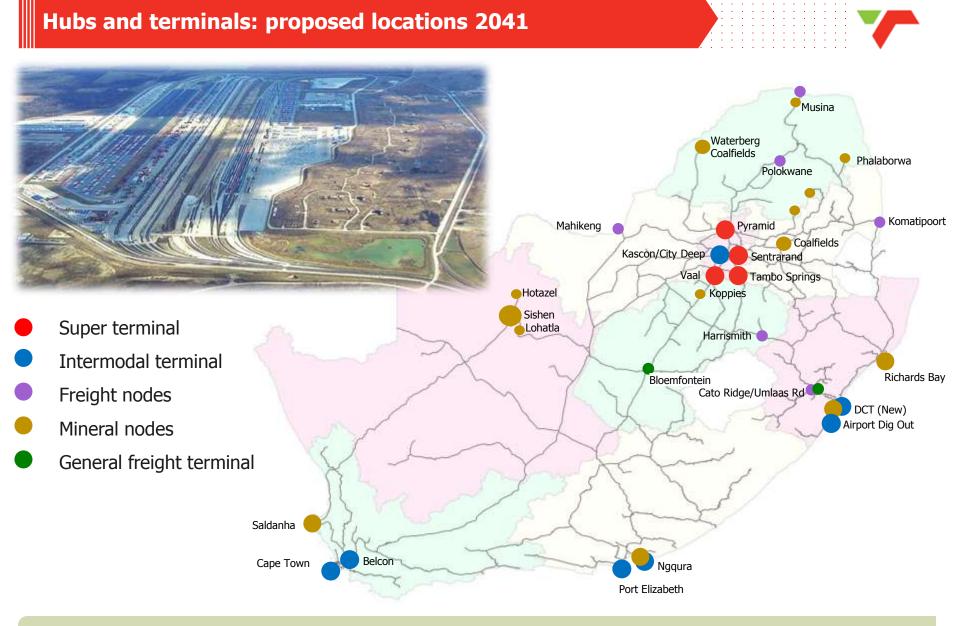
- The volumes on the northern section (Gauteng to Glencoe) of Natcor are dominated by coal, iron ore and containers.
- Capacity interventions involves train control upgrading, axle load (heavy haul) upgrading, new links, Cato ridge bypass, upgrading of the electrification, doubling of single lines, and improving the connectivity of the rail network with existing and proposed intermodal terminals


Gauteng – Durban: capacity interventions

Notes

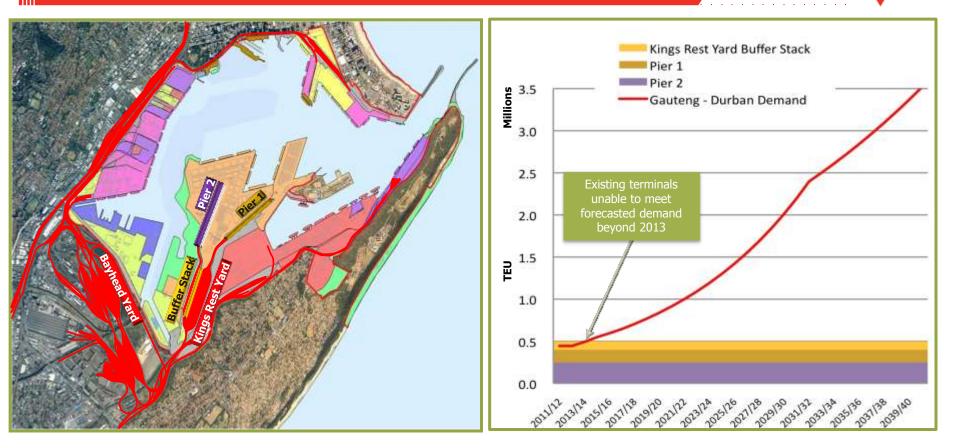
- Volumes along the Natal Corridor are expected to increase dramatically in the next 30-years. As the line is already double the strategy to create additional capacity is to install signal blocksplits between existing signals thereby reducing headways between trains. These interventions are proposed to come into effect on the Rietvallei to Glencoe section by 2022 and the Glencoe to Booth section by 2025
- Investigations into the possibility of a bypass at Cato Ridge on the difficult terrain section of the Glencoe to Booth line, as well as the implications surrounding lengthening container train consists, are currently underway



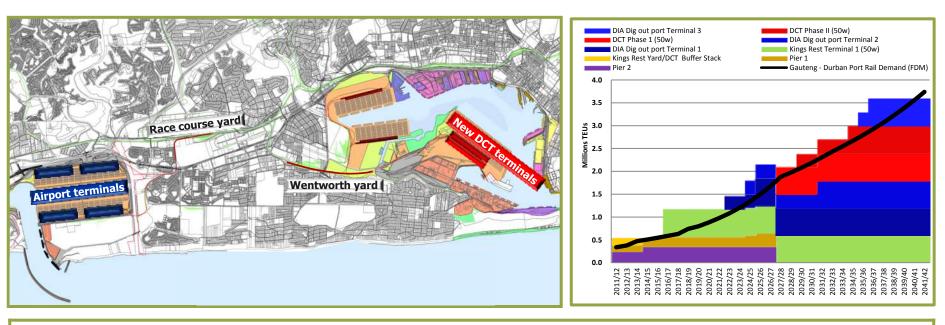

		Strateg	IV	
Axle	Train control	Electrical	Capacity expansion	Alignments
Upgrade Natcor North to 26 t/axle	Signal infill scheme	Upgrade to 25 kV AC	Reduce headway	Gradients, curves, bypass /links

Expansion and investment

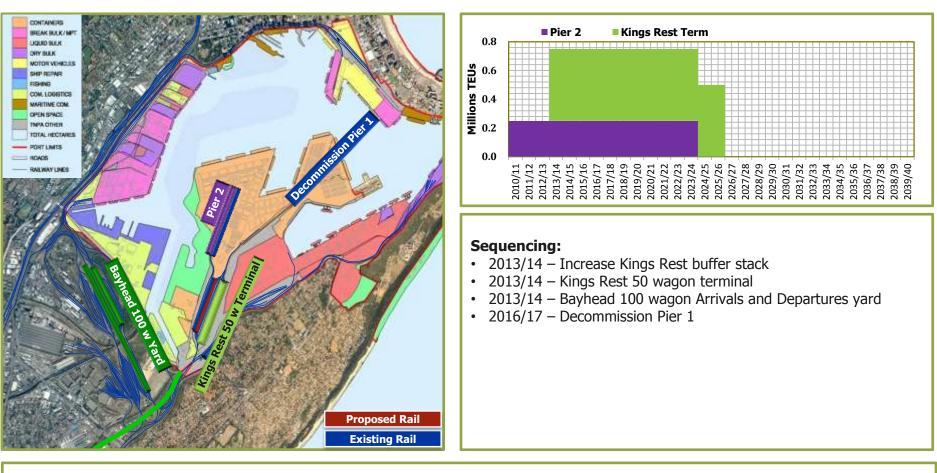
Section	Phase	Intervention	ETC (Rm)
Pyramid to Sentrarand	1a	Double remainder of line (40 km)	1 209
Sentrarand to Skansdam	1b	Signal infill scheme to reduce the running time over this section to achieve a headway of 8mins	350
Skansdam to Houtheuwel	1c	New double track, 3 kV DC, CTC signalling (PRASA bypass)	1 600
Donkerhoek – Pienaarsrivier	1d	New single track chord from South to East (To facilitate the routing of Freight traffic travelling North from Sentrarand onto the Maputo corridor)	60
Rietvallei to Glencoe	2a	Transformer replacement	458
Rietvallei to Glencoe	2b	Implement CTC signal infill scheme to reduce headway	400
Rietvallei to Glencoe	2c	Upgrade to 25 kV AC and voltage changeover at All DC traction intersections	2 247
Rietvallei to Glencoe	2d	Train Control system	2 366
Glencoe to Booth	3a	Transformer replacement	458
Glencoe to Booth	3b	Implement CTC signal infill scheme to reduce headway	400
Glencoe to Cato Ridge	3c	Relieve Gradients and Curves	13 511
Glencoe to Booth	3d	Upgrade to 25 kV AC and voltage changeover at All DC traction intersections	2 247
Glencoe to Booth	3e	Train Control system	2 366
Cato Ridge to Durban	3f	Cato Ridge bypass	28 383
Durban to Stanger	4a	PRASA interface within eThekwini area	603
Durban to Richards Bay	4b	Double single line between Stanger and Richards Bay, 3 kV DC, and CTC signalling	5 190


										D	eve	lopn	nent	t pla	n														
Section	Phase	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Pyramid to Sentrarand	1a		-	12	24	86	180	308	551			_										_		-	-			-	
Sentrarand to Skansdam	1b							3	8	90	206	228	56																
Skansdam to Houtheuwel	1c				8	25	86	249	458	576	459	70																	
Donkerhoek – Pienaarsrivier	· 1d						1	1	11	23	25	6																	
Rietvallei to Glencoe	2a	2	6	78	154	170	49																						
Rietvallei to Glencoe	2b																2	5	30	83	140	123	17						
Rietvallei to Glencoe	2c						9	30	160	466	785	689	108																
Rietvallei to Glencoe	2d								10	30	125	303	555	698	560	85													
Glencoe to Booth	3a	2	6	78	154	170	49																						
Glencoe to Booth	3b																			2	5	30	83	140	123	17			
Glencoe to Cato Ridge	3c				56	166	486	892	2 178	3 456	3 414	2 426	437												_				
Glencoe to Booth	3d											9	30	160	466	785	689	108											esearch
Glencoe to Booth	3e								10	30	125	303	555	698	560	85										FEL-1	: Cor	cept :	study
Cato Ridge to Durban	3f										114	350	1 355	3 627	6 658	8 370	6 672 1	1 237								FEL-2			
Durban to Stanger	4a			3	8	100	207	228	57																				uction
Durban to Richards Bay	4b									-	21	64	188	342	837	1 328	1 312	932	166									Jonsu	uccion
Total cash flow (Rm)	62429	4	12	171	404	717	1 067	1 711	3 443	4 719	5 274	4 4 4 8	3 284	5 525	9 081	10 653	8 675 2	2 282	196	85	145	153	100	140	123	17	0	0	0

The indicated freight nodes are not necessarily informed by demand but are proposed by public sector in support of economic development


Durban terminals: capacity vs demand

The port of Durban has two rail container terminals at Pier 1 and DCT with 150 000 and 250 000 TEUs capacity respectively. A buffer stack exists at Kings Rest yard which increases the overall capacity to about 450 000 TEUs.


Both Bayhead and Kings Rest yards can accommodate 50 wagon container trains which presents a problem for the current 75 wagon Anaconda trains running along the corridor. With the increase in container traffic forecasted over the next 30 years it is vital to increase the port's current rail intermodal capacity to match the corridor and inland capacities.

Durban terminals: development plan

										De	evel	opn	nent	pla	n														
Location	Terminal type	Capacity created (TEUs)	ETC (Rm)	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Bayhead	100 W yard	N/A	677		406	271																		_					
Kings Rest	Container	600 000	1 641		985	656																				ront E 1: Cor		search	
Umbogintwini	100 W yard	N/A	574		6	11	56	139	195	111	56															2: Pre			
Airport 1	Container	600 000	1 282						12	25	125	311	436	249	125													uction	
Airport 2	Container	600 000	1 010										10	20	294	491	196												
DCT 1	Container	600 000	1 929											19	37	187	468	656	375	187									
DCT 2	Container	600 000	1 065															10	21	310	517	207							
Airport 3	Container	600 000	1 002																					10	19	292	486	195	
Total cash	flow (Rm)	4 200 000	9 181		1397	938	56	139	207	136	181	311	446	288	456	678	664	666	396	497	517	207		10	19	292	486	195	

Durban future terminals: Pier 1 2019 concept

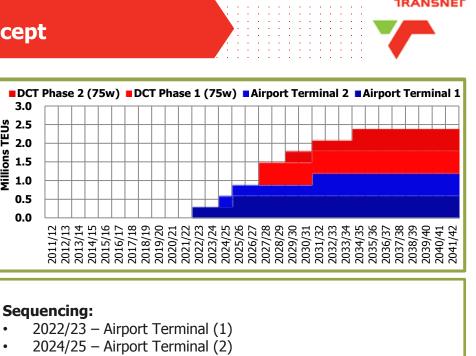
										De	evel	opm	ent	: pla	n														
Location	Terminal type	Capacity created (TEUs)	ETC (Rm)	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Bayhead	100 W yard	N/A	677		406	271																			FER:	Front E	ind Re	search	
Kings Rest	Container	600 000	1 641		985	656																				-1: Coi -2: Pre			
Total cash	flow (Rm)	600 000	2 318		1391	927																				3 and (

Durban future terminals: Pier 1 2027 concept

DCT Terminal 1

CONTAINERS

LIQUID BULK DRY BULK


BREAK BULK/I

NOTON VEHICLES SHIP REPAR FISHING COM, LOGISTICS MARITIME COM OPEN SPACE TNPA OTHER

TOTAL HECTARES

WILLINE

RCADS

- 2024/25 Decommission Pier 2 ٠
- 2026/27 Decommission Kings Rest ٠
- 2027/28 DCT 75 wagon terminal (1) ٠
- 2029/30 DCT 75 wagon terminal (2) ٠
- 2035/26 Airport Terminal (3) .

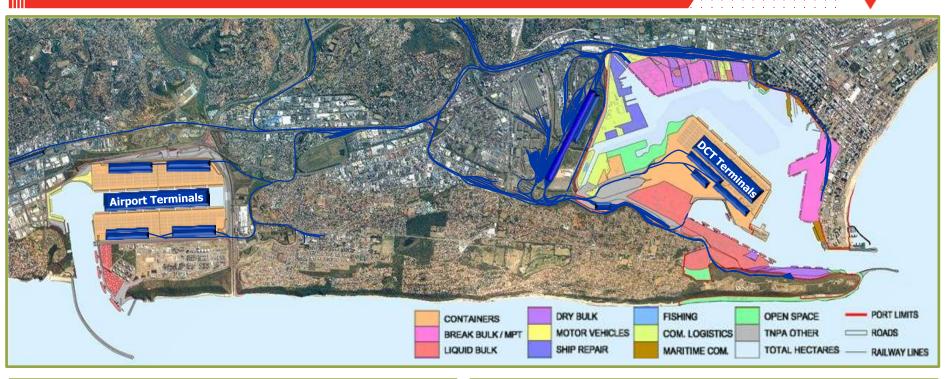
										De	vel	opm	ent	pla	n														
Location	Terminal type	Capacity created (TEUs)	ETC (Rm)	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Airport 1	Container	600 000	1 283						12	25	125	311	436	249	125														
Airport 2	Container	600 000	1 011										10	20	294	491	196										nd Re		
DCT 1	Container	600 000	1 929											19	37	187	468	656	375	187							cept s feasil		
DCT 2	Container	600 000	1 065															10	21	310	517	207					Constru		
Total cash	flow (Rm)	4 200 000	5288						12	25	125	311	446	288	456	678	664	666	396	497	517	207							

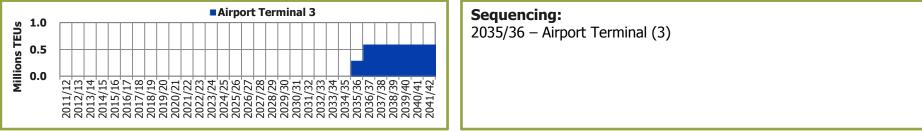
3.0

Willions TEUs 2.0 1.5 1.0

0.5

0.0

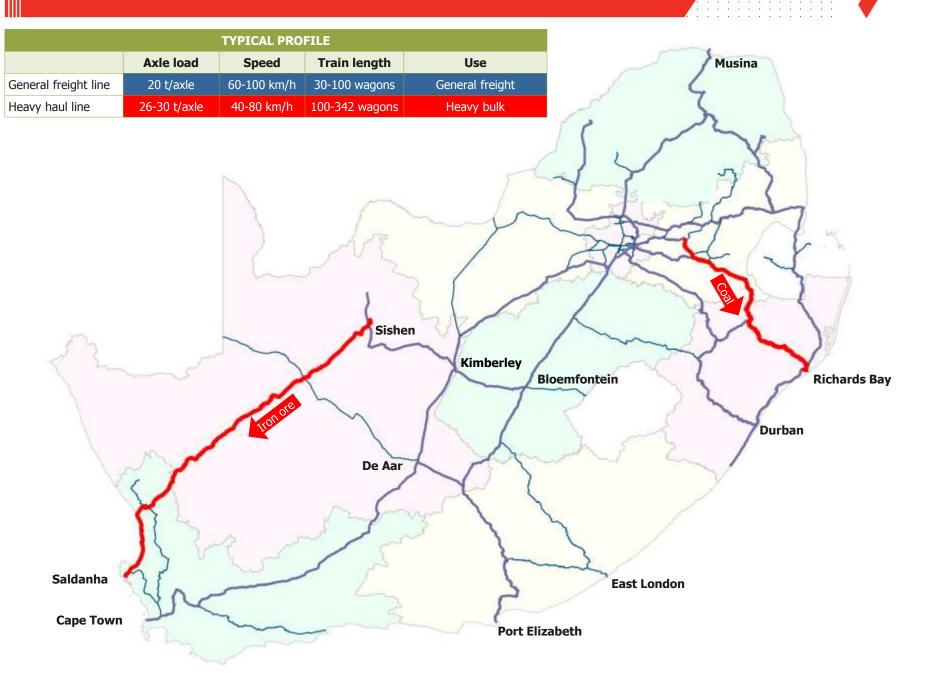

•


٠

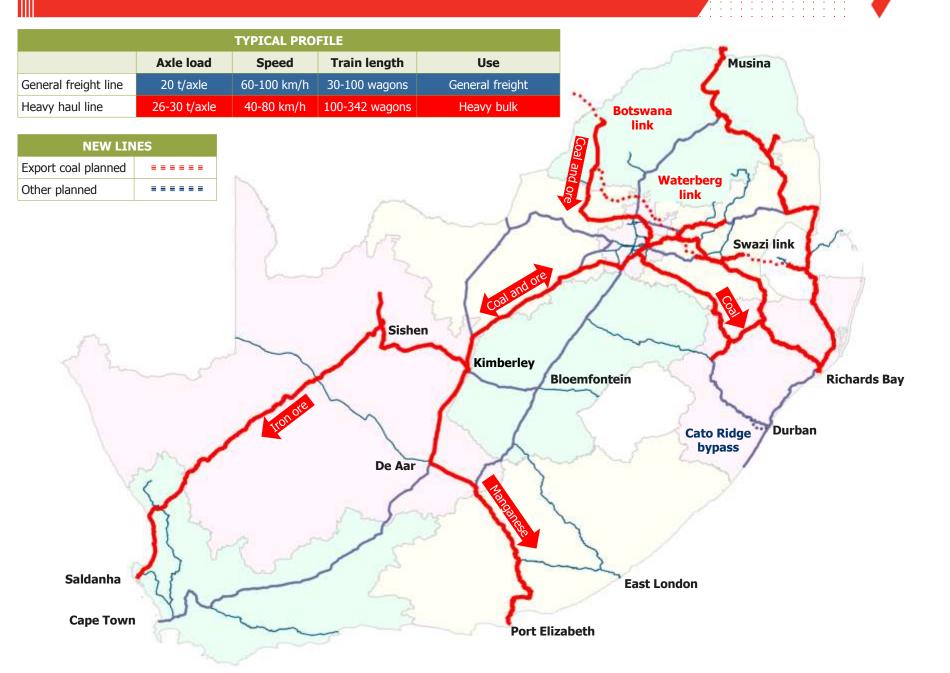
Termina

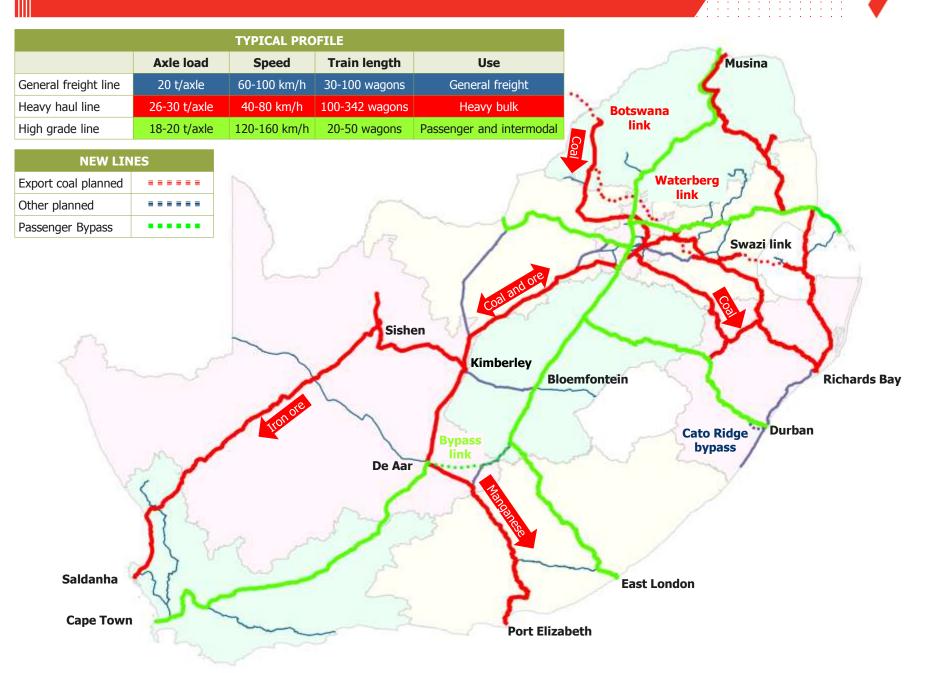
Proposed Rail Existing Rail

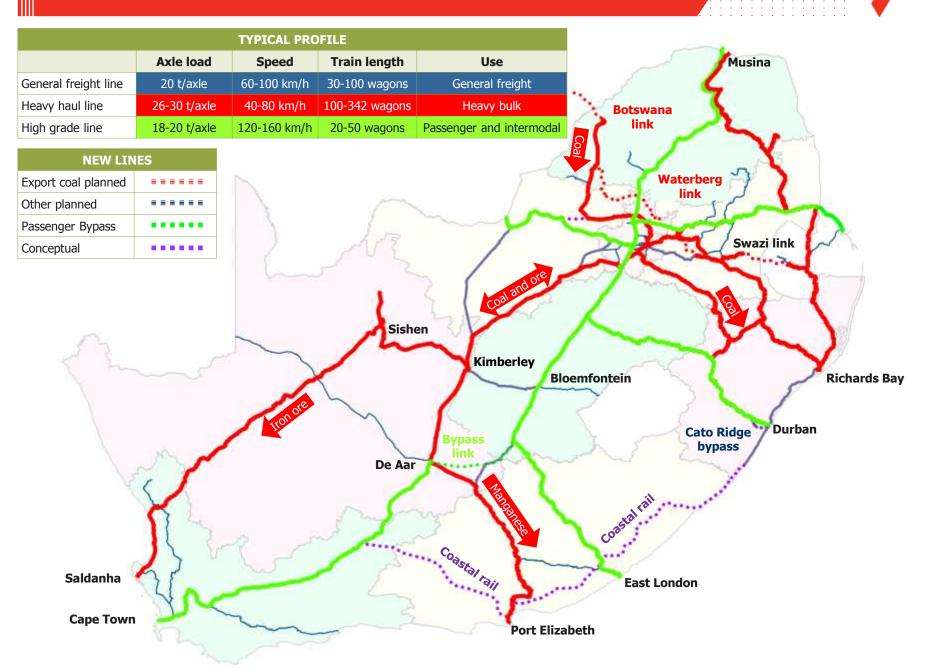
Durban future terminals: Pier 1 and DIA 2042 concept

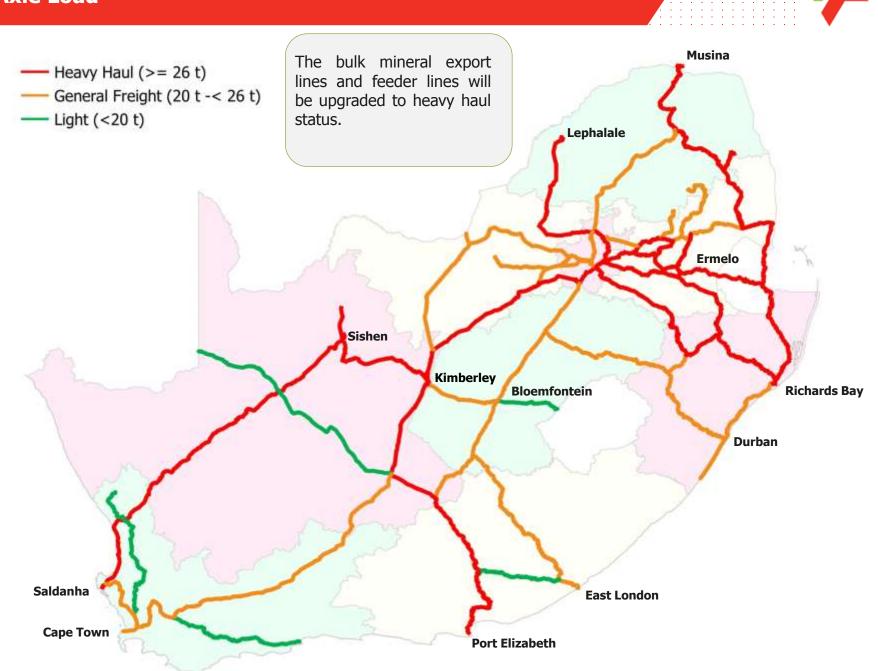


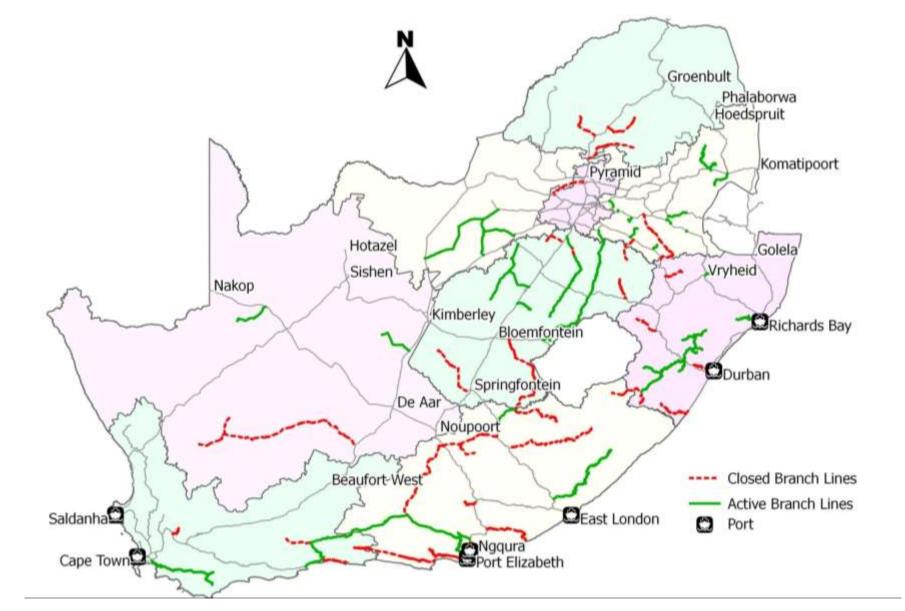
										De	evel	opn	nent	: pla	n														
Location	Terminal type	Capacity created (TEUs)	ETC (Rm)	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
Airport 3	Container	600 000	1 002																					10	19	292	486	195	
Total cash	flow (Rm)	600 000	1 002																					10	19	292	486	195	


Current network


Planned network (30 years)


Long-term shared network – PRASA/Transnet


Long-term network potential


Axle Load

Branch lines context and status quo

TRANSNE

Re-instatement of the KwaZulu – Natal branch lines

Project description

The development of a new line to link the Makatini flats with the Golela

 Richards Bay line in support of the National Planning Commission
 and New Growth Path.

Project detail & issues

- This area is renowned for its agriculture potential and especially genetically modified crops.
- The immediate traffic potential is 0,2 mtpa of sugar cane for Felixston, and can grow substantially.
- The Umkhanyakude District Municipality is investigating potential future linkages with Mozambique and new the proposed new deep water port at Techobanine (22 km from the KZN border) are contemplated.

Project description

- Possible re-instatement of the line between Somkele and Mtubatuba closed in 1928.
- Re-instatement of the line between Mtubatuba and Riverview (Umfolozi sugar mill).

Project detail & issues

- To be used for the export of 2,5 mtpa for the next 20 years of antracite from Somkele through the Port of Richards Bay.
- Alternatively, the creation of a loading facility at Mtubatuba or Dukuduku.
- Transport of potentially 0,2 mtpa of Umfolozi sugar and molasses to Durban.

Project description

 Development of loading facilities at Mkhuze (on the Golela – Richards Bay coal line) for 0,8 mtpa of sugar cane destined for the Felixston sugar mill.

Project detail & issues

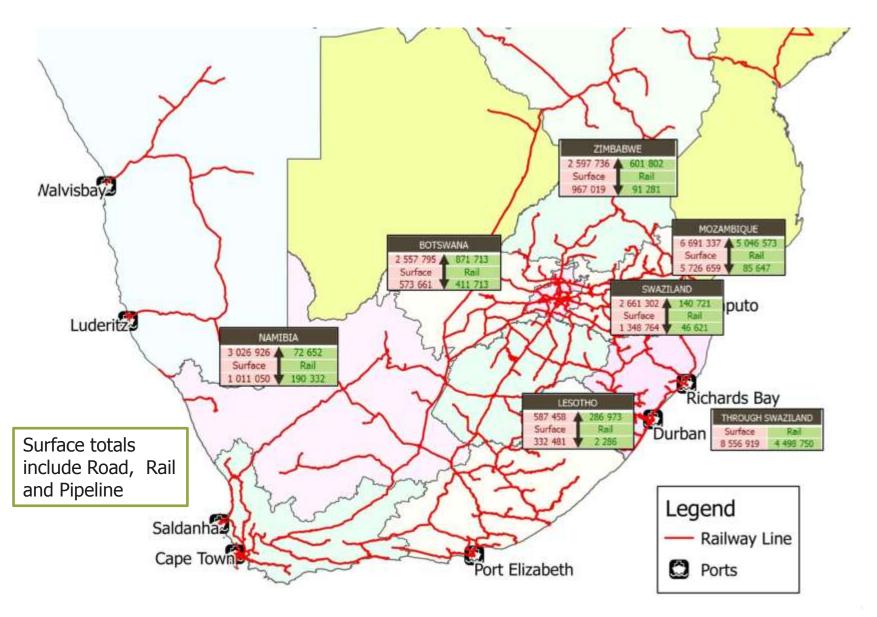
• The Senekal Family and their Employee Empowerment Trust within the Umkhanyakude District Municipality (KZN), have a 20 year agreement with the sugar mill at Felixston for the exclusive supply of cane.

Project description

• Upgrade and re-instatement of the line from Mt. Alida to Greytown, Donnybrook to Kokstad and potentially Pietermaritzburg to Richmont.

Project detail & issues

- The focus will be to increase timber traffic from 0,2 mtpa to 1,5 mtpa and to develop other agricultural and general freight opportunities.
- Current interaction with Forestry SA to regain business.


Project description

Potential reinstatement of the line and safeguard the right of way.

Project detail & issues

- Potential re-opening of the Banana Express (passengers) and some timber.
- Investigate the potential for dual gauge to promote regional and business integration.
- Potential rail link between KZN and the Eastern Cape provinces through a proposed connection with Umtata.

2012 Cross-border freight flows (tpa)

