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Tidal heating and the long-term stability of a subsurface ocean on Enceladus
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Abstract

Tidal dissipation has been suggested as the heat source for the south polar thermal anomaly on Enceladus. We find that under present-day
conditions and assuming Maxwellian behavior, tidal dissipation is negligible in the silicate core. Dissipation may be significant in the ice shell if
the shell is decoupled from the silicate core by a subsurface ocean. We have run a series of self-consistent convection and conduction models in
2D axisymmetric and 3D spherical geometry in which we include the spatially-variable tidal heat production. We find that in all cases, the shell
removes more heat from the interior than can be produced in the core by radioactive decay, resulting in cooling of the interior and the freezing
of any ocean. Under likely conditions, a 40-km thick ocean made of pure water would freeze solid on a ∼30 Ma timescale. An ocean containing
other chemical components will have a lower freezing point, but even a water–ammonia eutectic composition will only prolong the freezing, not
prevent it. If the eccentricity of Enceladus were higher (e � 0.015) in the past, the increased dissipation in the ice shell may have been sufficient
to maintain a liquid layer. We cannot therefore rule out the presence of a transient ocean, as a relic of an earlier era of greater heating. If the
eccentricity is periodically pumped up, the ocean may have thickened and thinned on a similar timescale as the orbital evolution, provided the
ocean never froze completely. We conclude that the current heat flux of Enceladus and any possible subsurface ocean is not in steady-state, and is
the remnant of an epoch of higher eccentricity and tidal dissipation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The discovery of the thermal anomaly in the south po-
lar region of Enceladus (Spencer et al., 2006), has launched
a great deal of interest in potential activity in the ice shell.
5.8 ± 1.9 GW of heat have been observed pouring out of this
region (Spencer et al., 2006), and the global heat flux may be
an order of magnitude higher. Such a heat flux was unexpected
from a body as small as Enceladus (252 km radius), which
under normal circumstances would have cooled very quickly.
A likely heat source for the observed thermal anomaly is on-
going internal heating due to tidal dissipation (Matson et al.,
2007), an idea first examined by Squyres et al. (1983) and Ross
and Schubert (1989) well before this observation. The tidally
dissipated energy, Ėt within a satellite is a strong function of
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its orbital frequency ω, eccentricity e, and radius Rs (Segatz et
al., 1988)

(1)Ėt = −21
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Im(k2)

(ωRs)
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G
e2,

where G is the gravitational constant, and k2 is the degree-2
tidal Love number. The dissipation is also a function of the
material properties inside the satellite, which are globally de-
scribed by k2, and which can be found analytically for a homo-
geneous body (Ross and Schubert, 1989). For a homogeneous
body,

(2)k2 = 3/2

1 + 19μ̃/(2ρgRs)
,

where ρ is the density, g is the gravitational acceleration, and
μ̃ is the complex rigidity which depends on the rheology.

Enceladus, however, is unlikely to be homogeneous. The
tidal dissipation and k2 depend not only on the material prop-
erties of the planet, but the distribution of material as well.
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The thermal anomaly suggests a warm, differentiated interior
(Schubert et al., 2007), consisting of a silicate core, overlain by
an icy mantle, with a possible ocean separating the two layers
(Porco et al., 2006; Nimmo et al., 2007).

The goals of this paper are to determine to what extent tidal
dissipation may occur in Enceladus, and how that heat is distrib-
uted; to explore how that heat is removed through convection
and/or conduction; and to place constraints on the resulting
long-term stability and depth of the putative ocean. This pa-
per is organized as follows. We first describe our models for
tidal dissipation in multilayered bodies, and present the results
of those models applied to Enceladus. In the following sections
we present the results of convection and conduction modeling
of Enceladus’ ice shell including viscoelastic tidal heating. We
find that under present-day conditions, tidal heating in the inte-
rior of the ice shell and the silicate core is insufficient to prevent
an ocean from freezing. Finally, we discuss the implications of
those results for the thermal evolution of Enceladus. We sug-
gest that if there is a subsurface ocean on Enceladus today, it
cannot be in thermal equilibrium. The current thermal activity
is likely a remnant from an epoch of greater heating and higher
eccentricity (Meyer and Wisdom, 2007), and the south polar
thermal anomaly may be due to a shallow heat source, such
as shear heating (Nimmo et al., 2007), rather than volumetric
Maxwellian tidal dissipation.

2. Tidal dissipation

Previous studies of tidal dissipation in the Solar System
have generally been concerned with the total heat dissipated
globally (Kaula, 1964; Zschau, 1978; Segatz et al., 1988;
Ross and Schubert, 1989; Ojakangas and Stevenson, 1989;
Moore and Schubert, 2000). However, this approach provides
no information about the distribution of the tidal heat. In a case
like Enceladus, where a great deal of the heat flux is local-
ized, understanding this spatial variation is critically important.
Furthermore, when this heat production is coupled with heat
transfer (e.g. convection), there is strong feedback between the
heating rate at any given location within the satellite and the
local temperature and viscosity (Sotin et al., 2002). Because
convection is a nonlinear process, using the globally-averaged
heating rate may be inappropriate. It is therefore necessary to
compute the three-dimensional tidal heating distribution (Tobie
et al., 2005) to explore this problem further.

Here, we briefly summarize the procedure used to determine
the tidal heat distribution inside a body. Our approach closely
follows that outlined in Tobie et al. (2005); details are given
below where our procedure departs from theirs. First, we di-
vided the body into material layers. For the purposes of this
study, these layers are a small, liquid innermost core (compris-
ing 0.1% of the total volume and required to avoid the singu-
larity at the origin), a silicate core, a liquid water ocean, and
an ice shell. The ice shell was further subdivided into a number
of smaller layers (20–40 depending on the total thickness), and
each layer was assigned a constant density, rigidity, and viscos-
ity.
Second, we solved the equations of motion (Pekeris and
Jarosch, 1958; Alterman et al., 1959; Takeuchi and Saito, 1972)
by making use of the spherical symmetry assumed in the pre-
vious step and separating them into their radial and tangential
components. Following a method similar to Alterman et al.
(1959) [but a notation more similar to Sabadini and Vermeersen
(2004)], the radial functions satisfy six coupled first-order lin-
ear differential equations:
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where y1–6 correspond to the radial and tangential displace-
ments, radial and tangential stresses, potential, and potential
stress, respectively, μ is the rigidity or shear modulus, λ is
the other Lamé parameter, � is the spherical harmonic degree,
and r is the radial position. We solved the radial functions
[Eq. (3)] using the propagator matrix technique of Sabadini and
Vermeersen (2004), subject to the surface boundary conditions
appropriate for forced oscillations

y1|r=0 = 0, y2|r=0 = 0, y5|r=0 = 0,

(4)y3|r=Rs = 0, y4|r=Rs = 0, y6|Rs = −2� + 1

Rs

.

More details on this solution method can be found in Appen-
dix A. The appropriate tangential function to use in this case is
the tidal potential, Φ (Kaula, 1964), which for small inclina-
tions and to first-order in eccentricity is

Φ = R2
s ω

2e

[
−3

2
P 0

2 (cos θ) cosωt + 1

4
P 2

2 (cos θ)

(5)× [3 cosωt cos 2φ + 4 sinωt sin 2φ]
]

for longitude φ and colatitude θ , where P m
� is the associated

Legendre polynomial at spherical harmonic degree � and or-
der m. We computed the radial functions yi at the midpoint of
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Table 1
Tidal heating model parameters

Layer Router (km) ρ (kg m−3) μ (GPa) η (Pa s)

Core 160 3500 67 1017

Ocean Rc � Ro � Rice 1000 0.4 104

Ice Ro � Rice � Rlith 950 4 1013–1014

Lithosphere 250 950 4 1019–1020

e 0.0045
ω 5.308 × 10−5 s−1

Notes. (1) Increasing the core viscosity has no appreciable effect on the ice
layer. (2) We treat the ocean as a low-viscosity, low-rigidity layer rather than as
an inviscid fluid. This approximation is acceptable as long as τM of the ocean
is not close to the forcing (orbital) period.

each layer and at the boundaries, and at eight equispaced times
over an orbital period. We computed the tidal potential on a reg-
ular grid in latitude and longitude, typically 2◦ × 2◦.

Third, we determined the strain tensor εij at each point on
the 3D grid from the displacements (y1 and y2), and used the
correspondence principle (Biot, 1954) to determine the stress
tensor σij at each point as well at each time

(6)σij = 2μ̃εij +
[
K − 2

3
μ̃

]
εkkδij ,

where K is the bulk modulus and δij is the Kronecker delta.
Finally, we compute the heating at each point averaged over
the orbital (forcing) period from the complex stress and strain
rate (Schubert et al., 2000) and applying the correspondence
principle (Biot, 1954):

(7)Ėt = ω
[
Re(σij )Re( ˙εij ) + Im(σij ) Im( ˙εij )

]
.

3. Tidal heating in Enceladus

Having developed a procedure for calculating the spatially-
variable tidal heating in a multilayered, viscoelastic body, we
now proceed to apply the results to Enceladus. In this section
we carry out simple calculations of tidal dissipation for dif-
ferent prescribed spherically-symmetric internal structures, to
assess the likely location and magnitude of tidal heat sources.
In reality, of course, lateral variation in the tidal dissipation rate
creates similar variations in the interior temperature structure,
which in turn affects the viscosity structure. In Section 4 we
perturb the local heat production based on the local viscosity
values in the convection models. We do not, however, con-
sider lateral variations in material properties when calculating
the background heat production rate. Such heterogeneity can be
treated numerically (Latychev et al., 2005), but is computation-
ally expensive and beyond the scope of this paper. The global
parameters used are summarized in Table 1.

The extent to which heat can be dissipated within the sili-
cate core is important for investigating whether localized seas
can be generated due to basal heating of the ice shell (Collins
and Goodman, 2007) and whether ammonia can be broken
down to form the N2 observed in the plume (Matson et al.,
2007). Fig. 1 shows the tidal heating in the Maxwellian core
as a function of core viscosity. Only when ηsil < 1014 Pa s does
Fig. 1. Tidal heating of the silicate core of Enceladus as a function of viscosity
(solid line), compared with present-day radiogenic heating assuming a chon-
dritic composition (dashed line). The core has a density of 3500 kg m−3, radius
of 160 km, and a rigidity of 67 GPa. A 20 km thick layer of water and a 70 km
thick layer of ice lie atop the core.

the tidal heating (solid line) approach the present-day radi-
ogenic heat (∼1.8 × 10−8 W m−3; Multhaup and Spohn, 2007;
Schubert et al., 2007) for a chondritic core (dashed line). While
a high melt fraction may reduce the viscosity, as is believed to
be the case for Io (Scott and Kohlstedt, 2004a), it is not possi-
ble to achieve a value as low as 1014 Pa s in a silicate material.
Experiments on the flow of silicate with high melt fractions
indicate that ηsil > 1015 Pa s even if the melt fraction is 0.25,
near the critical value for disaggregation (Scott and Kohlstedt,
2004a, 2004b).

The tidal heating in a satellite is a strong function of its size,
with the global dissipation increasing as R7

s , and the volumet-
ric rate as R4

s , for the case in which μ̃/(ρgRs) � 1 [Eqs. (1)
and (2)]. Io’s radius is more than ten times that of Enceladus’
core and thus would be expected to produce over 107 times
more heat. If we use Io’s actual radius and orbital parame-
ters (Murray and Dermott, 1999), and assume that its material
properties are the same as our Enceladus model, we find using
Eqs. (2) and (1) that Io should dissipate 6 × 106 as much heat
as Enceladus’ core. The present day surface heat flux at Io is
2.5–3.0 W m−2 (Veeder et al., 2004), suggesting that dissipation
within the silicate portion of Enceladus should be ∼0.02 GW,
or 1.2 × 10−9 W m−3. Hence, we would not expect significant
dissipation in Enceladus’ core, even if we assumed an Io-like
rheology with a partially molten interior.

Thus, under reasonable rheologic conditions (ηsil >

1015 Pa s), we find it is not possible to generate significant tidal
dissipation in the silicate core. We therefore conclude that ra-
dioactive decay is the only significant heat source in the silicate
layer, producing a total of 0.3 GW. This result is in contrast to
the works of Collins and Goodman (2007) and Matson et al.
(2007), who assume that �7 GW of heat is produced in the
silicate core.
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(a)

(b)

Fig. 2. Surface heat flux predicted from tidal heating models for Enceladus
using parameters in Table 1. Horizontal line shows the heat flux measured in the
south polar region (Spencer et al., 2006). Vertical line indicates the minimum
shell thickness considered for convection models. μ = 4 GPa. For (a), viscosity
is constant in the ice shell. For (b), the top half of the ice shell is a high viscosity
(106× the lower layer) lithosphere.

In the absence of an ocean, the ice layer is locked onto the
core and the deformation of the former is inhibited by the rela-
tive rigidity of the latter. However, substantial tidal heating may
be produced in the ice shell if it is decoupled from the core
by a subsurface ocean (Moore and Schubert, 2000). Using the
methods of Section 2, an ice shell with constant viscosity of
3 × 1013 Pa s, and rigidity of 4 GPa will dissipate only 0.5 GW
of heat if it is locked onto the core, but will dissipate 6.4 GW if
there is a 500 m ocean between the solid layers. Fig. 2a shows
the globally-averaged surface heat flux predicted by these tidal
heating models as a function of ice viscosity η and shell thick-
ness d for a constant viscosity ice shell. A thinner shell is more
easily deformable and has a greater tidal heating rate. How-
ever, a thin shell also has a smaller volume, limiting the total
heat production within it, and thus the total heat flux from the
surface. These two competing effects result in a critical shell
thickness, dc at which the maximum heat flow occurs. Although
dc is viscosity-dependent, it is less than 5 km for all the models
considered here. dc is higher for lower-viscosity shells, because
the low-viscosity shell is more easily deformable and thus re-
quires a greater thickness to substantially reduce deformation.

The heat fluxes shown in Fig. 2a are for constant-viscosity
ice shells. This is intended only to show the effect of the thick-
ness of the ice shell and the ocean on the total heat production,
and should not be interpreted to represent the actual viscos-
ity structure. The actual heat flux is probably significantly less
than shown in Fig. 2a, because ice viscosity is temperature-
dependent (Goldsby and Kohlstedt, 2001), and the ice shell will
develop a high viscosity lithosphere that is resistant to tidal de-
formation. Not only does the lithosphere dissipate very little
heat itself, but it impedes the deformation of the deeper layers
and reduces the global heating. Fig. 2b shows the heat flux pro-
duced by ice shells with a lithosphere equal to half the thickness
of the total ice shell. The lithospheric viscosity is 106 times that
of the lower ice, and the rigidity is the same. The inclusion of
the lithosphere strongly reduces the total dissipation. For exam-
ple, a 40 km thick shell with constant viscosity of 3 × 1013 Pa s
will dissipate enough heat to generate 26 mW m−2 at the sur-
face (Fig. 2a), but if the viscosity of the top 20 km is raised to
3 × 1019 Pa s, the heat flux drops to 6 mW m−2, a reduction of
more than a factor of 4. Since most of the heat is produced near
the base of the ice shell and not in the region where the viscos-
ity was increased, this effect occurs because the presence of the
lithosphere has reduced the overall shell deformation (and thus
k2). The dissipation rate is a combination of the amplitude of
the dissipation and the phase lags (Moore and Schubert, 2000).
The phase lag is higher for high viscosity models, but the ampli-
tude is low. When no lithosphere is present (Fig. 2a), the high
amplitude in the low viscosity shells yield high dissipations.
When a lithosphere is present (Fig. 2b), the deformation is re-
stricted at all depths, but the phase lag in the deep ice is not so
affected. Thus the dissipation is more severely reduced for low
basal viscosity (η0 = 1013 Pa s) models, particularly at low d .

The primary controls on tidal dissipation in our models are
the viscosity structure and the thickness of the ice shell (i.e.
the depth to the ocean). We have investigated the effects of this
tidal heating on the surface heat flux, and the shell thickness by
modeling convection and conduction in the ice shell. In the next
section (Section 4) we present our convection models, includ-
ing the tidal heating as a spatially varying internal heat source,
for various prescribed basal viscosities and shell thicknesses.
This internal heating controls the heat flux at the surface and
the bottom of the ice shell. We compare the bottom heat flux
to the sub-ice heat provided by radioactive decay in the silicate
core, to assess whether or not the interior (and especially the
ocean) is cooling or heating (Moore, 2006). In Section 5, we
present models of conduction, in which we determine the ice
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shell thickness that is consistent with the temperature and heat
flux boundary conditions at the base of the ice shell, for a self-
consistent ice viscosity structure (cf. Ojakangas and Stevenson,
1989).

4. Convection

Despite the small size of Enceladus, the low viscosity of ice
and the large potential for internal heat generation may make
convection an efficient process for heat transfer (Barr and Mc-
Kinnon, 2007). An upwelling diapir may be a good way to gen-
erate the localized heat flow in the south polar region (Spencer
et al., 2006). Density anomalies and the geoid associated with
such an upwelling may also be responsible for an episode of po-
lar reorientation possibly explaining the location of the hotspot
(Nimmo and Pappalardo, 2006).

4.1. Modeling

To investigate the behavior of convection under spatially-
variable tidal heating, we modeled convection in the ice shell
using spherical shell convection models for an incompressible
fluid and using the Boussinesq approximation. We used the
finite-element convection codes Citcom (Roberts and Zhong,
2004) and CitcomS (Zhong et al., 2000), to which we made a
few key modifications discussed below.

Of primary interest to us is the thickness of the ocean be-
neath the ice shell, therefore our models assume its existence.
The ocean decouples the ice shell from the silicate core, so we
impose free-slip boundary conditions at the surface and base of
the ice shell, and consider convection in the ice shell only. The
ice shell is heated both from below by radioactive decay in the
core, and from within by tidal dissipation in the ice shell.

The convection is governed by the equations of conservation
of mass, momentum and energy:

∇ · �u = 0,

−∇P + ∇ · [η(∇�u + ∇T �u)] + δρg�er = 0,

(8)
∂T

∂t
+ �u · ∇T = κ∇2T + H,

where �u is the velocity, P is the pressure, η is the viscosity, T

is the temperature, δρ is the density perturbation from the mean
density ρ0, g is the gravitational acceleration, �er is a unit vector
in the radial direction, t is time, and κ is the thermal diffusivity.
H is the volumetric rate of internal heating; in our case this is
the tidal dissipation, and H varies spatially.

At the temperatures and low pressures corresponding to con-
vection within Enceladus’ ice shell, Newtonian diffusion creep
is likely to dominate (Moore, 2006). We use a temperature-
dependent Newtonian rheology for the ice shell

(9)η = A exp

[
Ea

RgT

]
,

where Ea is the activation energy, and Rg is the gas constant.
A is a pre-exponential constant such that at the base of the ice
shell, η = η0, the basal reference viscosity.
We assume the ice shell is in thermal equilibrium with the
ocean and the lower boundary is therefore at the melting point
of water (273 K). The surface temperature, T0 is constant in
time, but varies with co-latitude, θ due to the variation in inso-
lation (Ojakangas and Stevenson, 1989), such that

T0(θ) = [sin θ ]1/4T0,eq, i < θ < π − i,

T0(θ) =
[
i2 + θ2

2

]1/8

T0,eq, θ < i,

(10)T0(θ) =
[
i2 + (π − θ)2

2

]1/8

T0,eq, θ > π − i.

T0(θ) is normalized to its value at the equator, T0,eq, and i is
the inclination of the rotation axis to the orbital plane about the
Sun. Note that this is not the same as Enceladus’ inclination to
its orbit about Saturn, which is very close to zero. Thus, we use
Saturn’s obliquity of 27◦ (Murray and Dermott, 1999) for this
value.

We use the following nondimensionalizations for the quan-
tities above:

s′ = s

Rs

, u′ = u

κ/Rs

, t ′ = t

R2
s /κ

,

P ′ = P
η0κ

R2
s

, η′ = η

η0
, T ′ = T − T0,eq

�T
,

H ′ = H
R2

s

κρ0C�T
, E′ = Ea

Rg�T
,

(11)V ′ = ρ0gRsV

Rg�T
, T ′

0 = T0,eq

�T
,

where all primed quantities are nondimensional. �T is the tem-
perature difference across the ice shell at the equator, ρ0 is the
reference density, C is the specific heat, and s represents any
length quantity. Note that although T ′ is 0 on the equator at the
surface, the dimensionless surface temperature T ′

0 is not 0. We
use Eq. (11) to nondimensionalize the governing and rheologic
equations (8) and (9). Dropping the primes, we obtain

∇ · �u = 0,

−∇P + ∇ · [η(∇�u + ∇T �u)] + RaT �er = 0,

∂T

∂t
+ �u · ∇T = ∇2T + H,

(12)η = η0 exp

[
E

T + T0
− E

1 + T0

]
.

The vigor of convection is characterized by the dimension-
less Rayleigh number, Ra,

(13)Ra = ρ0gα�T R3
s

κη0
,

where α is the thermal expansivity. Note that we use Rs as the
length scale, and not the layer thickness, d . Our Ra will be
greater by a factor of (Rs/d)3 from Ra defined in that man-
ner.

For a given set of model parameters, we first ran a tidal
heating model for an isoviscous shell (η = η0) as described in
Section 3 to determine a reference heating distribution. We then
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set up a corresponding convection model, in which we imported
the results of the tidal heating models into Citcom and interpo-
lated them onto the Citcom mesh as a spatially variable internal
heating rate. We ran the convection model with temperature-
dependent viscosity to a statistical steady-state, and determined
the stagnant-lid thickness from the final radial temperature and
viscosity profile. We then ran a second tidal heating model in
which we included the stagnant lid as a second viscosity layer.
The viscosity in the lid was increased by a factor of 106 over
the deep ice shell. Finally, we ran a second convection model to
statistical steady-state based on the new tidal heating.

2D-axisymmetric convection models used a numerical grid
of 192 equally spaced elements in latitude, and either 48 or 64
radial elements, refined near the boundaries. Selected models
were run in 3D on 12 processors of a PC cluster, using a nu-
merical grid with 1.3 million elements. Details about the 3D
grid setup can be found in Zhong et al. (2000).

Our tidal heating models, by necessity, assume constant ma-
terial properties within each layer. However, lateral temperature
and therefore viscosity variations can be quite strong in a con-
vecting system. Furthermore, the two-layer viscosity structure
used in the tidal heating models does not fully reflect the ra-
dial variations in viscosity due to temperature variations that
evolve during convection. To account for these variations, at
every timestep of the convection calculations, we perturbed the
tidal heating for each element by a factor f (Ojakangas and
Stevenson, 1989; Sotin et al., 2002; Han and Showman, 2007)

(14)f =
[

ωη/μ

1 + (ωη/μ)2

]/[
ωηref/μ

1 + (ωηref/μ)2

]

such that f = 1 when the local viscosity, η is equal to the ref-
erence viscosity ηref for the appropriate viscosity layer in the
tidal heating models. For the preliminary tidal heating models
with an isoviscous shell, ηref = η0. For the tidal heating mod-
els with two viscosity layers, ηref = η0 in the lower layer, and
ηref = 106η0 in the upper layer. At each timestep of the convec-
tion calculation, the governing equations (12) are solved, and
the viscosity for each element is updated according to Eq. (9)
based on the current temperature field. The tidal heating as-
signed to a particular element is the tidal heating predicted
from the spherically symmetric tidal heating models described
in Section 2, multiplied by f . The advantage to this approach
is that for every set of parameters, the heating model need only
be computed once rather than at every timestep. Note that the
presence of a lithosphere in reducing the global deformation
(Figs. 2a and 2b) is taken into account by our procedure.

4.2. Results

Our chief goal is to determine a regime of ice shell thick-
ness d , and reference viscosity η0, that may be in thermal
equilibrium with an ocean, meaning that the basal heat flux Fb

across the bottom convective boundary layer in the ice shell is in
balance with the heat flux out of the core Fc. Because the radius
of the core and the radius of the base of the ice shell are unequal,
we must modify Fc by a geometrical factor n = (Rcore/Rbase)

2,
Table 2
Convection and conduction model parameters

Rs 250 km
Rb 170–210 km
Tb 273 K
T0,eq 80 K
Ea 60 kJ mol−1

g 0.114 m s−2

k 4 W m−1 K−1

α 10−4 K−1

κ 1.18 × 10−6 m2 s−1

ρ0 950 kg m−3

μ 4 GPa
η0 1013–1014 Pa s
ω 5.308 × 10−5 s−1

i 27◦

before comparing it to Fb. If Fb > nFc, then more heat is be-
ing extracted from the ocean than is being produced by the core
below, and ocean freezing will occur.

We ran several convection calculations exploring the (η0, d)
parameter space. For each model, we first generated a refer-
ence tidal heating distribution using the method outlined in
Section 2. The reference tidal dissipation was computed on a
2◦ × 2◦ regular surface grid at 20–40 points radially (depend-
ing on d). For the determination of the reference tidal dissi-
pation, the ice shell consisted of two viscosity layers, a lower
layer at η0, and a lithosphere at 106 × η0. The thickness of the
lithosphere varied based on d and η0, and was computed as de-
scribed above from the results of an initial convection model
in which the tidal heat assumed an isoviscous shell. The model
parameters are summarized in Table 2.

An example of the initial heating distribution, averaged
about the rotation axis is shown in Fig. 3a, with d = 70 km
and η0 = 3 × 1013 Pa s. Note that the heating is greatest near
the base of the ice shell and especially at the polar regions. In
the lithospheric layer, the heating is insignificant (but we in-
clude it in the convection models). The reference heating value
was interpolated onto the Citcom grid, and the correspond-
ing convection model was run. In the convection calculation,
the lithosphere developed self-consistently through the rheo-
logic equation (9), and the tidal heating was computed at each
timestep based on the local viscosity [Eq. (14)]. The steady-
state lithospheric thickness was then used to recompute the
background tidal dissipation which was then used as the start-
ing point for the subsequent convection model. Each calculation
was run until the heat flux reached a statistical steady-state.
The final heat distribution (Fig. 3b) is not dramatically different
from the initial, but does reflect the convective structure with
pronounced downwellings and weaker upwellings. Because the
basal temperature is fixed, the basal heat flux depends on the
interior temperature, which in turn depends upon the heat distri-
bution in the ice shell. Fig. 3c shows the final radial temperature
profile for the case in Fig. 3b. The ice shell in this case has a
very thick stagnant lid in which heat production is insignificant.
This lid insulates the interior very effectively, raising the inte-
rior temperature to near the melting point. There is, however,
a thin lower boundary layer, across which Fb = 22 mW m−2.
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Fig. 3. Initial (a) and final (b) heating distributions for an axisymmetric convec-
tion model with a 70 km thick ice shell above a 20 km ocean with basal viscosity
3 × 1013 Pa s, and a lithospheric thickness of 38 km. The heating rates shown
are in terms of 10−9 W m−3. (c) Radial temperature profile for the case shown
in (b). Tidal dissipation in the interior generates heat in the deep part of the ice
shell, heating this region almost to the melting point. A thick (40 km) stagnant
lid insulates the lower region. The basal heat flux in this case is 22 mW m−2,
and the surface heat flux is 15 mW m−3, for a global total of 9.0 and 11.8 GW
at the base and surface, respectively.

For this particular model, despite the high interior temper-
ature, Fb is still far in excess of the chondritic value of nFc

(0.75 mW m−2 at Rb = 180 km, which corresponds to Ė =
0.3 GW in the core), suggesting that either a thicker shell or
greater internal heating is required for long-term equilibrium.
We ran a total of 11 cases to determine the effect of d and
η0 on the heat flow balance. Fig. 4 summarizes the results
for the heat flow from the 2D axisymmetric convection mod-
els.
(a)

(b)

Fig. 4. Global heat flow across the surface (a) and base of the ice shell (b) for
convection models. Solid line represents the conductive heat flow. Dashed line
is the heat generated by radioactive decay in the silicate core. Note in (b) that
some cases with η0 = 1013 Pa s have lower heat flow than would be removed
conductively. These models are so warm that melting is widespread.

In general we found that the heat flow at both boundaries
increased with increasing Ra (i.e. with decreasing viscosity)
and with decreasing shell thickness (Fig. 4). Note that the high
reference viscosity (1014 Pa s) models are essentially conduc-
tive if the shell is thinner than 70 km. Note also, that while
the low viscosity (1013 Pa s) models have the highest surface
heat flows, their basal heat flows are similar to those for the
high reference viscosity cases, and in some cases are below
the conductive value. The low reference viscosity shells have
substantially more heat to remove. Although they convect more
vigorously, these weaker shells have very warm interiors (al-
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though still below the melting point), and are thus inefficient at
cooling the core. Nevertheless, in every case far more heat is
drawn across the base of the ice shell than can be generated by
radioactive decay in the core (dashed line in Fig. 4b), implying
a rapid cooling of the ocean and interior. This key result will be
discussed in more detail in Section 6.

5. Conduction

We have also considered the possibility that the ice shell may
be conductive. This is certainly the case if the ice shell is thin
(�40 km), or if the ice reference viscosity is relatively high
(�1014 Pa s).

5.1. Modeling

Our goal is to determine what conductive ice shell thickness
d will be in thermal equilibrium with a liquid ocean beneath it.
Thermal equilibrium requires not only that the base of the ice
shell be at the same temperature as the ocean, but also that the
heat flow across the base of the ice shell is equal to the radi-
ogenic heat produced in the silicate core. That is, we attempt to
find a shell thickness in which heat production and heat loss are
in balance, resulting in no net heating or cooling of the interior,
and thus no freezing of the ocean or melting of the ice shell.

Unlike a convective system, the interior of a conductive ice
shell is far from isothermal. The strong radial temperature varia-
tion throughout the ice shell leads to strong viscosity variations.
Our tidal heating model requires constant viscosity within a
layer, therefore we break the ice shell into an onion-skin model
of 2-km thick layers. We make an initial guess as to the thick-
ness and radial viscosity structure of the ice shell and calculate
the tidal dissipation, HT (r, θ). In steady state, the conductive
temperature within the ice shell satisfies:

(15)k∇2T + HT (r, θ) = 0,

where k is the thermal conductivity. We then determine the
2D-axisymmetric conductive temperature profile subject to this
heating and to the same temperature boundary conditions as in
the convection case. The bottom of the shell is at 273 K (melt-
ing point of water), and the equatorial surface temperature is
80 K, and varies with latitude according to Eq. (10). We then
recompute the viscosity based on this conductive temperature
profile, according to Eq. (9). If the ice shell is in thermal equi-
librium, then the heat flow across the base of the ice shell should
match the heat flow produced by the core. The basal and core
heat fluxes (Fb and Fc, respectively) are

(16)Fb = −k

π∫
0

dT

dr
dθ, Fc = 1

3
HcoreRc.

Because Fc comes from radioactive decay in the core, we as-
sume that it does not vary with position. Based on a present-day
chondritic heating rate, Fc = 0.95 mW m2 at Rcore. If nFc does
not equal Fb, we adjust the thickness of the ice shell d , and cal-
culate the tidal heating for the new d and η profile. We iterate
between the tidal heating and conduction models until either
Fig. 5. Minimum Fb for a 90 km conductive ice shell as a function of the
basal viscosity. That is, the ice shell is as thick as possible. The viscosity in
the shell is temperature dependent with Ea = 60 kJ/mol and the tidal heating
is calculated accordingly. In all cases, Fb exceeds Fc from radioactive decay
(0.95 mW m−2) in the core.

|Fb − nFc| � 0.001, the shell melts completely, or the ocean
freezes completely.

5.2. Results

Given Enceladus’ current orbital parameters, we find that
the ocean beneath a conductive ice shell freezes completely,
that is Fb > nFc for all reference viscosities considered for the
ice shell (1013–1014 Pa s). Fig. 5 shows the minimum Fb for a
conductive shell over an ocean, that is the Fb when the shell
is 90 km thick, and for a constant k = 4 W m−1 K−1. Clearly,
the basal heat flux greatly exceeds the expected radiogenic heat
flux.

These results assume that the current orbital parameters are
in a steady state. The Saturn system, however, is very complex
dynamically. One might imagine that through interactions with
other satellites, Enceladus’ eccentricity may have been higher
in the past (Meyer and Wisdom, 2007). If e � 0.0156 (roughly
3.3 times the present value), the heating in the ice shell is suffi-
cient to reduce Fb below nFc, and would permit a liquid ocean
to persist long-term between the silicate core and the ice shell.
We show as an example the radial temperature profile and heat
distribution for a 70-km thick conductive ice shell in thermal
equilibrium (Fig. 6), in which we have used a higher eccen-
tricity (e = 0.0156) than the current one. The heating is very
sensitive to the temperature (and viscosity), and is only strong
near the bottom where the ice is warm.

6. Discussion

6.1. Lifetime of the ocean

In both the tidally-heated convective and conductive cases,
we find that heat is removed from the ocean of Enceladus faster
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Fig. 6. Radial temperature and heat distributions for a 70-km thick conduc-
tive ice shell in thermal equilibrium with η0 = 3 × 1013 Pa s. The heating is
concentrated in the warmer, less viscous part of the ice shell and drops off dra-
matically when T < 200 K. Heating is negligible in the upper half of the ice
shell. Fb = 0.95 mW m−2 (the expected value from radiogenic core heating),
and e = 0.0156, exceeding the present-day value by a factor of ∼3.5.

than it is generated by radioactive decay in the silicate core.
A large amount of interior cooling (7–25 mW m−2) occurs, re-
sulting in the freezing of the ocean onto the base of the ice shell.
A thicker ice shell resists deformation to a greater degree and
is less strongly heated (Fig. 4b), accelerating the freezing of
the ocean. Once the ocean freezes entirely, the ice shell is me-
chanically coupled to the silicate core, severely reducing the
tidal dissipation in the ice. If Enceladus enters this state, it will
likely remain frozen indefinitely, barring an external heat source
delivered to the interior. The timescale for the freezing of the
ocean depends upon the initial thickness of the ocean, but a
40 km thick ocean with (Fb − nFc) = 8 mW m−2 will freeze in
∼30 Ma.

We have identified four ways in which the lifetime of the
ocean may be extended. The first is to have greater heat pro-
duction in the core, thereby increasing Fc. However, it is not
obvious how this would be accomplished. The composition of
the core is poorly known, but it is unlikely to be so differ-
ent from chondritic that the radioactive heat production rate is
substantially greater. Tidal dissipation in the core is negligible
at any plausible silicate viscosity, assuming the core behaves
in a Maxwellian manner; the core radius is simply too small.
The core might behave in some non-Maxwellian manner that
is more dissipative, but no such mechanism has been proposed.
Unlike for larger planets such as Earth or Mars, secular cooling
of the core is unlikely to be a significant source of heat today,
because the diffusion time for Enceladus is less than 2 Ga.

The second way to prolong the ocean is to increase the
heating in the ice shell, thereby reducing Fb . Eliminating the
lithosphere in the tidal dissipation models for convective shells
increases the global heating by a factor of several (compare
Figs. 2a and 2b). Fig. 7 shows the convective basal heat flux
for the preliminary runs of all the cases shown in Fig. 4, that
is without the lithosphere. In this situation, the low-viscosity
(1013) ice shells have sufficiently low Fb to prevent the freez-
ing of the ocean. However, these cases also have widespread
Fig. 7. Heat flux across the base of the ice shell for convection models with
no lithosphere. Solid line is the heat generated by radioactive decay in the sil-
icate core. All values have been normalized to the surface area of Enceladus.
Compare with Fig. 4. Fb for η0 = 1014 Pa s is very similar to the lithospheric
version, for η0 = 3 × 1013 Pa s Fb is slightly reduced. Fb for η0 = 1013 Pa s is
greatly reduced, and even negative in some cases, indicating the ice is warmer
than the underlying ocean and is melting.

overheating and melting of the ice shell. These ice shells will
therefore thin, become heated even more, and experience run-
away melting until they become conductive. At this point the
heating will drop off and the shell will begin to thicken again.
One might envision a situation in which the ice shell oscil-
lates between a thick, convective, melting shell, and a thin,
conductive, freezing one. However, this scenario depends on
the assumption that convection can take place without a rigid,
near-surface layer developing, which contradicts the general
experience of strongly temperature-dependent convection (e.g.
Solomatov, 1995).

A third possibility for maintaining a liquid ocean is if the
liquid is not be pure water. If the ocean contains substantial
amounts of other volatiles (e.g. ammonia), the melting point
may be severely depressed. We have tested this by running ad-
ditional conduction models as in Section 5 in which we lowered
the basal temperature. However, even at the H2O–NH3 peri-
tectic temperature of 175 K (Leliwa-Kopystyński et al., 2002),
the conductive Fb ∼ 6 mW m2, which is still in excess of nFc.
This result is not unexpected: we have essentially reduced the
temperature contrast by half, and thus reduced the heat flux by
the same fraction. This is not sufficient to prevent freezing, al-
though it will slow it down. Furthermore, there is currently no
observational evidence for NH3 in the plumes (Waite et al.,
2006). Therefore, while chemical effects may play an impor-
tant role in the ocean and ice shell of Enceladus, they cannot
alone prevent the freezing of the ocean.

As a fourth possibility, we note that sufficiently low ther-
mal conductivity due to near-surface porosity may slow the
heat loss from the interior below our estimates. However k <
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0.5 W m−1 K−1 is required to satisfy the condition on Fb, an
unrealistically low value.

Studies of orbital dynamics suggest that the current observed
heat flux cannot be sustained in the steady state, independent
of the material properties of Enceladus (Meyer and Wisdom,
2007). If we relax the assumption that Enceladus is in the
steady-state, the apparent transient nature of a subsurface ocean
becomes easier to understand. The global tidal dissipation is a
strong function of eccentricity [Eq. (1)]. If e were higher in the
past, the global tidal dissipation would also have been higher.
A transient ocean could exist beneath the ice shell today as a
remnant of an earlier epoch of higher heating. If Enceladus’
eccentricity is periodically pumped up, then the ocean could
be periodically thickened, provided that it never freezes com-
pletely. The timescale for orbital evolution is on the order of
tens of Ma, similar to the freezing timescale indicated above.

6.2. True polar wander

True polar wander (TPW) due to buoyant upwellings in the
ice shell have been proposed as an explanation for the south po-
lar location of the observed hotspot (Nimmo and Pappalardo,
2006). If the lithosphere is sufficiently strong (likely for Ts ∼
80 K), the plume buoyancy is not compensated by dynamic
topography at the surface. The net negative mass anomaly can
cause poleward TPW if the load can overcome the fossil rota-
tional bulge (Willemann, 1984). Large amounts of reorientation
are achieved if the nondimensional load, Q � 1 (Willemann,
1984), where

(17)Q = 3
√

5gN20

(Rsω)2(k∗
2 − k2)

,

where N20 is the geoid at degree-2 and k∗
2 is the fluid love num-

ber. For the Enceladus models studies here, k2 is typically of
order 0.01 vs 0.75 for k∗

2 . The � = 2 geoid due to internal loads
(Zhang and Christensen, 1993) is

(18)N20(Rs) = 3

5

Rs∫
ri

(
r

Rs

)4
δρ(r)

ρ̄
dr.

For a 40 km tall upwelling in the lower half of the ice shell,
a density reduction of about 1.75% in the buoyant upwelling is
required for Q = 1. If the density contrast arises purely through
temperature variations, a lateral variation of 175 K is required.
This variation is not supported by our models. However, local-
ized partial melting near the base of the ice shell could remove
impurities, enhancing the density contrast between the clean ice
in the upwelling and the dirty ice of the surroundings (Nimmo
and Pappalardo, 2006). Such thermochemical modeling is be-
yond the scope of this paper. Furthermore, although the heating
pattern is � = 2, this is not reflected very strongly in the temper-
ature profiles, which are dominated by � = 8 (Fig. 3). Effects
besides the tidal dissipation may be required to explain the
south polar thermal anomaly.
6.3. Spatial pattern

Also of interest is the spatial pattern of tidal heating and the
surface heat flux, which may be indicative of the pattern of con-
vection in the underlying material. The observed thermal anom-
aly (Spencer et al., 2006) is a single large scale feature, domi-
nated by spherical harmonic degree � = 1. If the hotspot is the
surface expression of convection in the ice shell, then it suggests
that the convection is at the same wavelength. Czechowski and
Leliwa-Kopystyński (2005) have noted the correlation between
spatial patterns of tidal heating and flow patterns, although they
do not consider the feedback of the convection on the tidal
heating pattern. However, developing a long-wavelength con-
vective pattern is not easy. Degree-1 convection has been suc-
cessfully modeled for the Earth (McNamara and Zhong, 2005)
and Mars (Harder and Christensen, 1996; Breuer et al., 1997;
Harder, 2000; Roberts and Zhong, 2006). However, those mod-
els made use of mobile lids, phase transitions, and/or strong
radial viscosity variations, all of which help to increase the
wavelength of convection, and none of which are applicable to
Enceladus. Furthermore, Enceladus has some additional char-
acteristics that serve to reduce the wavelength. The core is pro-
portionally much larger on Enceladus (Rc = 0.64Rs ) than on
Earth or Mars, resulting in a much thinner convective region.
The dominant heat source in the ice shell of Enceladus is tidal
dissipation, and the tidal potential is entirely an � = 2 function
(Kaula, 1964). It is not clear how an � = 1 pattern may arise
from a � = 2 forcing. To study this problem, we ran some of the
convection cases from Section 4 in 3D. Fig. 8 shows the residual
temperature and the spherical harmonic decomposition for tem-
perature structures for the same parameters as the axisymmetric
case shown in Fig. 3. The convection planform is characterized
by a large number (∼30) of small-scale upwellings, superim-
posed upon a � = 2 background (Fig. 8a), rather than a single
long-wavelength upwelling that might explain the south polar
hotspot. The spectrum of temperature structures also shows no
significant power at � = 1; it is one of the weakest wavelengths
(Fig. 8b). Hence, our current models cannot explain the pre-
dominately � = 1 thermal anomaly observed; this is an area of
active investigation.

6.4. Alternate rheologies and heating mechanisms

The choice of rheology in the tidal heating models may af-
fect the amount of energy dissipated in the body. Following
Sabadini and Vermeersen (2004) and Tobie et al. (2005), we
have treated Enceladus as a Maxwellian viscoelastic solid [see
Eq. (6)], because this rheology matches the real response of
planetary materials in both high frequency (ω � 1/τM ) and
low frequency (ω 
 1/τM ) limits (Ross and Schubert, 1986).
By comparison, the Kelvin–Voigt rheological model does not
reproduce the real behavior in either limit.

It is conventional to consider the steady-state (secondary)
creep of ice when calculating tidal heating. However, tidal
strains are low and timescales are short, in which case the tran-
sient (initial or primary) creep of ice may play a role (e.g. Sinha,
1978). For primary creep, the strain goes as σatb where σ is
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(a)

(b)

Fig. 8. (a) Isosurface of temperature for a 3D convection model with tidal
heating. Ra = 9.2 × 108, Ea = 60 kJ/mol. The isosurface is for T ′ = 0.95.
(b) Spectrum of temperature structures for the case in (a) at � = 1 and at the
three strongest harmonics. There is no indication in this, or other 3D models of
a single long-wavelength upwelling that might explain the south polar thermal
anomaly (Spencer et al., 2006).

stress, and a and b are constants. Integrating over a tidal cycle
of period TT , the effective viscosity of the ice (= stress/strain
rate) is given by

ηeff = σ 1−aT 1−b
T c−1

(19)= 2.5 × 1012
(

0.1 MPa

σ

)1.43(
TT

105 s

)1/3

Pa s,

where c is a (temperature-dependent) constant and the numeri-
cal values are taken from Azizi (1989) for ice at 268 K.
This effective viscosity is somewhat lower than the range of
steady-state reference viscosities assumed, suggesting that pri-
mary creep may play a non-negligible role. The effective mod-
ulus of ice is also slightly frequency-dependent (Sinha, 1978),
but the total variation is a factor of ≈2 and is thus unlikely to
change our results.

In this paper, we have not considered the effects of non-
Maxwellian heating mechanisms on the tidal dissipation. One
such possibility is tidally-driven shear heating along the tiger
stripes, that may help explain the pattern of heat flux as well
as the amplitude (Nimmo et al., 2007). This localized near
surface heating can also affect the deeper convection (Roberts
and Nimmo, submitted for publication), although how the near-
surface heating is initiated remains an open question.

We have only considered a fully differentiated Enceladus
(Schubert et al., 2007). However, it may be that Enceladus is
only partially differentiated, and the interior similar to Callisto
(Nagel et al., 2004; McKinnon, 2006), where an ocean may still
be present (Zimmer et al., 2000). In this case, the ice–silicate
mantle will have a higher rigidity and viscosity than pure ice,
substantially reducing the tidal dissipation. Such a body would
probably be conductive rather than convective. We expect the
former effect would promote the cooling of the interior and
cause the ocean to freeze more rapidly.

6.5. Summary

To summarize our results, we find that a liquid ocean cannot
exist in thermal equilibrium beneath the ice shell of Enceladus,
for either convective or conductive ice shells. Heat transport
across the ice shell is simply too efficient compared with the
small amount of radiogenic heat generated in the silicate core.
This conclusion is supported by independent dynamical argu-
ments (Meyer and Wisdom, 2007), which suggest that the ob-
served heat anomaly (Spencer et al., 2006) cannot be sustained,
given Enceladus’ current eccentricity. Our results do not pre-
clude the existence of a transient ocean, left over from a period
of higher heating, due to higher eccentricity. Some of the mod-
els shown here are able to replicate the 3–7 GW observed by
Spencer et al. (2006) for the south pole, but the models cannot
reproduce the spatial pattern. Future work in this area may con-
sider the effects of alternate heating mechanisms, such as shear
heating (Nimmo et al., 2007), and the effects of chemical het-
erogeneity on the convective planform and thermal evolution of
Enceladus.
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Appendix A. Solution method for tidal dissipation radial
functions

In our method of solving for the tidal dissipation within
Enceladus described in Section 2, we have generally followed
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Fig. 9. Results for benchmarking the tidal dissipation code. (a–d) Radial functions for a homogeneous body (dashed lines), and for a layered body composed of a
silicate mantle (solid lines) overlying an iron core, using parameters from Tobie et al. (2005), and equivalent to their Fig. 2. For the layered model, results are only
shown for the silicate portion. (e) Plot of Love numbers (thin lines) and phase lags (bold lines) vs ice viscosity for the Europa model of Moore and Schubert (2000).
Comparable to their Fig. 2. Note that the Love numbers are for the case with no lithosphere, and the double-peaked phase lags are for the case with a lithosphere.
(f) Phase lag of h2 as a function of shell thickness and ice viscosity for the Europa model (Moore and Schubert, 2000) with an ocean. Comparable to their Fig. 3.
a method similar to that outlined by Tobie et al. (2005), the
details for which come from earlier works on free oscillations
motivated by terrestrial seismological problems (Pekeris and
Jarosch, 1958; Alterman et al., 1959; Takeuchi and Saito, 1972)
and are not repeated here in greater detail than the summary in
Section 2. However, our solution method differs from Tobie et
al. (2005) in one key respect: we do not use a numerical shoot-
ing method to solve for the radial functions, but an analytical
propagator-matrix approach based on Sabadini and Vermeersen
(2004), which we describe here.
The radial functions, yi satisfy a set of six first-order lin-
ear equations [Eq. (3)] and six boundary conditions [Eq. (4)].
Pekeris and Jarosch (1958) give an analytical solution for
a homogeneous body. Enceladus is probably differentiated
(Schubert et al., 2007) and its material properties vary sub-
stantially with radius. An analytical solution is impossible for a
fully variable body. However, if we treat Enceladus as a set of
spherically-symmetric “onion-skin” layers, we can use a prop-
agator matrix (Sabadini and Vermeersen, 2004) technique to
solve for the yi , assuming that the material properties (μ, λ, ρ)
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are constant within each layer. For a given layer k, we can ex-
press the solution vector �y(k) = y

(k)
i in terms of the fundamental

matrix Y and a vector integration constant �C(k) that describes
the internal boundary conditions for that layer (Sabadini and
Vermeersen, 2004).

(A.1)�y(k+1)|rk = Y (k+1)|rk �C.

Y and its inverse are 6 ×6 matrices and are defined by Sabadini
and Vermeersen (2004). There is no need to explicitly find �C
for each layer. The internal boundary conditions they represent
arise from the fact that yi must be continuous across each layer
interface

(A.2)y
(k+1)
i |rk = y

(k)
i |rk ,

where rk is the radius of the interface between layer k and layer
k + 1 above. We can express the �C for one layer in terms of the
other:

Y (k+1)|rk �C(k+1) = Y (k)|rk �C(k),

(A.3)�C(k+1) = [
Y (k+1)

]−1|rkY (k)|rk �C(k)

and therefore at any point in layer k + 1

(A.4)�y(k+1)(r) = Y (k+1)(r)
[
Y (k+1)

]−1|rkY (k)|rk �C(k).

We do this for all N layers in the body (where k = 0 is the
innermost core, and k = N − 1 is the top layer), so that at the
surface:

(A.5)�y|Rs =
(

1∏
k=N−1

Y (k)|rk
[
Y (k)

]−1|rk−1

)
Y (0)(r0) �C(0)

and �y everywhere is based on the �C of the lowest layer, with
radius r0, the innermost core. The conditions at r = r0 can be
expressed as an interface matrix I0 as

(A.6)Y (1)(r0) �C(1) = I0 �C0.

Three boundary conditions are specified at the center of the
body [Eq. (4)], thus reducing I0 to only a 6 × 3 matrix and
�C0 to a three component vector. �C0 is found from the surface
boundary conditions, after substituting Eq. (A.6) into (A.5),

(A.7)�y|Rs =
(

0∏
k=N−1

Y (k)(r)
[
Y (k−1)

]−1|rk
)

I0(r0) �C0.

This permits us to solve for the radial functions yi at all points
in layers k = 1 to N − 1. Note that this approach requires the
presence of a fluid innermost core of radius r0 as layer k = 0
inside of which the properties are unknown. However, by mak-
ing this layer small, its effect on the upper layers (which are of
interest here) is negligible.

The Love numbers can be related to the surface values of the
yi ’s (Jobert, 1973; Tobie et al., 2005),

(A.8)h2 = y1|r=Rs, �=2, k2 = −(y5|r=Rs, �=2) − 1.

We have benchmarked the propagator matrix solution against
the numerical solution by Tobie et al. (2005) for a homogeneous
undifferentiated body (Figs. 9a–9d), and for a multi-layered
body consisting of an iron core, silicate mantle, and ice shell
including a lithosphere layer from Moore and Schubert (2000),
both with and without an ocean (Figs. 9e and 9f), and find good
agreement with those studies. Fluid layers are approximated as
a low-viscosity, low-rigidity viscoelastic material. Rigidity, μ,
and viscosity, η have been reduced by a factor of 106 and 109

respectively, from that of the overlying ice (Table 1). This ap-
proximation is valid to within a few percent as long as care is
taken that the Maxwell time (τM = η/μ) of the fluid layer is
not similar to the forcing period, and has been benchmarked
against an independent multilayer Love number code (Moore
and Schubert, 2000).

Using the same values for the material properties and orbital
parameters as Tobie et al. (2005) with our heating formula, we
also reproduce the amplitude (0.3 nW m−3 globally averaged)
and pattern for the heating reported by Tobie et al. (2005) for a
homogeneous body.

Appendix B. Symbols used in this work

Although defined in the text, we find it convenient to also
present the various symbols used in this paper and their mean-
ings in Table 3.

Table 3
Symbols used in this paper

Symbol Meaning Alternate name

A Pre-exponential viscosity constant
a, b, c Primary creep constants
C Specific heat
�C Vector integration constant
d Ice shell thickness
dc Critical ice shell thickness
Ea Activation energy
Ėt Global dissipation rate
e Eccentricity
�er Unit vector in r direction
f Local viscosity perturbation to

tidal heating
Fb Basal heat flux per unit area Φ (Tobie et al., 2005)
Fc Core heat flux per unit area Φ (Tobie et al., 2005)
G Gravitational constant
g Gravitational acceleration
H Volumetric internal heating rate
HT Tidal heating rate per unit volume
Hcore Hent produced in the core rate per

unit volume
h2 Love number
I0 Interface matrix
i Inclination
K Compressibility or bulk modulus
k Thermal conductivity
k2 Love number
k∗

2 Fluid Love number
� Spherical harmonic degree n (Pekeris and Jarosch, 1958;

Alterman et al., 1959;
Takeuchi et al., 1962;
Takeuchi and Saito, 1972)

m Spherical harmonic order
N20 Geoid at degree-2

(continued on next page)
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Table 3 (continued)

Symbol Meaning Alternate name

n Geometric surface-area factor
P Pressure
Pm

�
Associated Legendre function

Q Nondimensional load
Rb Radius of base of ice shell
Rc Core radius
Rg Gas constant
Rs Surface radius a (Pekeris and Jarosch, 1958;

Alterman et al., 1959;
Takeuchi et al., 1962;
Takeuchi and Saito, 1972)

Ra Rayleigh number
r Radial position
s Length quantity
T Temperature
T0 Surface temperature
T0,eq Surface temperature at equator
Tb Basal temperature
TT Tidal period
t Time
�u Velocity vector
Y Propagator matrix
yi Radial functions for spheroidal

oscillations
U ,V ,P (Pekeris and Jarosch,
1958)

α Coefficient of thermal expansion
�T Temperature difference across ice

shell
δij Kronecker delta
δρ Density perturbation
εij Component of strain in the i–j

direction
ε̇ij Component of strain rate in the

i–j direction
e (Turcotte and Schubert,
2002)

η Viscosity
η0 Basal viscosity
ηeff Effective viscosity
ηref Reference viscosity from tidal

heating models, used to normalize
f

ηsil Silicate viscosity
θ Co-latitude
κ Thermal diffusivity
λ Lamé parameter
μ Rigidity or shear modulus G (Turcotte and Schubert,

2002)
μ̃ Visco-elastic “rigidity”
ρ Density
ρ0 Reference density
σ Stress
σij Component of stress in the i–j

direction
τij (Schubert et al., 2000)

τM Maxwell time
Φ Tidal potential
φ Longitude
ω Orbital angular frequency σ (Pekeris and Jarosch, 1958;

Alterman et al., 1959)
Mean motion n (Murray and Dermott, 1999;

Kaula, 1964)
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