
82 Bell Labs Technical Journal ◆ January–June 2001 Copyright 2001. Lucent Technologies Inc. All rights reserved.

Introduction
Optical components and systems are ready to play

a key role in next-generation backbone and enterprise

networks. Routers with optical interfaces, dense wave-

length division multiplexing (DWDM) systems, and

optical cross connects of unprecedented capacities are

on the verge of large-scale commercial deployment.

This massive buildup of optical equipment calls for

careful planning and provisioning of the basic units of

transmission—the optical lightpaths.

This paper presents techniques for efficient and

reliable design of optical networks through failure-

resilient lightpath provisioning. We consider a range of

routing options, their associated tradeoffs for optimiza-

tion of wavelengths, and lightpath protection against

optical fiber and interface failures ranging from decen-

tralized dedicated protection to shared path-based

mesh restoration. This evaluation calls for novel net-

work design software that not only employs the rele-

vant optimization solvers but also has the flexibility to

solve for a variety of routing and protection mecha-

nisms. The relative merits of distinct core architectures

and provisioning schemes can therefore be measured

for any specific network. Furthermore, new routing

protocols can be quickly evaluated in terms of their

comparative efficiency and restoration properties.

SPIDER is a software tool built at Bell Labs to help

evaluate the various options for design and provision-

ing of lightpaths in core optical networks. In this

paper, we review both SPIDER and the problems it

solves in some detail.

In the next section, we discuss basic optical design

and routing problems from an algorithmic point of

view and describe the routing and protection/restora-

tion algorithms currently incorporated into SPIDER. In

the section following it, we describe the software

architecture of SPIDER, including its browser-based

user interface, Java*-based visualization, and spread-

sheet input/output capabilities. In a subsequent sec-

♦ SPIDER: A Simple and Flexible Tool for
Design and Provisioning of Protected
Lightpaths in Optical Networks
R. Drew Davis, Krishnan Kumaran, Gang Liu, and Iraj Saniee

Optical devices are poised to form the core of the next generation of backbone and
enterprise networks. Optical routers, dense wavelength division multiplexing
(DWDM) systems, and cross connects of unprecedented capacities are on the verge
of large-scale commercial deployment. This massive buildup of optical gear necessi-
tates careful planning and provisioning of the basic units of transmission—the light-
paths. This paper presents a range of techniques for efficient and reliable optical
network design, covering decentralized dedicated protection to shared path-based
mesh restoration. These algorithms have been incorporated into SPIDER, an extensi-
ble software tool with a browser-based user interface, Java*-based visualization, and
spreadsheet input/output capabilities. We describe SPIDER and report on recent core
networking applications using this tool, which also illustrate the key tradeoffs in
optical network designs involving a variety of grades of protection and the balance
between efficient use of wavelengths and restoration time.

Bell Labs Technical Journal ◆ January–June 2001 83

The following sections describe three possible net-

work architectures applicable to optical networks with

their associated routing and protection mechanisms.

1 + 1 Dedicated Protection
In this routing scheme, node pairs that have

demand are connected with a sufficient number of

wavelengths on an active path and an identical num-

ber of protection wavelengths on a diversely routed

protection path. Note that all wavelengths between

two nodes need not follow the same path. The protec-

tion wavelengths are dedicated for each node pair for

each wavelength, but the fibers carrying active or pro-

tection wavelengths for different node pairs may be

shared, as shown in Figure 1. The scheme for recov-

ery from link failure generally entails:

• Propagation delay and recognition of failure by

each affected node pair (~10 ms) and

• Switching to the dedicated protection wave-

length(s) (~20 to 40 ms).

Propagation delays may be eliminated by duplicate

transmission on the protection paths and selection of

the best signal at each destination node (this is called

1 + 1 protection). Otherwise (that is, when no transmis-

tion, we give examples of a SPIDER core optical design

for a U.S.-wide network. We complement this with

the output of various SPIDER runs to measure the

network and cost efficiency of various design schemes

versus their restoration times. In the final section, we

conclude with the implications of these routing

schemes for near-real-time and proposed new light-

path provisioning protocols such as extended open

shortest path first (E-OSPF) and optical network navi-

gator (ONN).

Bandwidth Efficiency Versus Restoration Time
In this section, we describe techniques for routing

of lightpaths in core all-optical networks in which

100% (or any desired degree of) recovery is required

for a single network link or node failure. (Doshi et al.1

provide an overview of different restoration schemes

and proposals for new restoration protocols.) Optimal

design and routing for such networks, taking the cost

of failure recovery into account, is a difficult compu-

tational problem (see, for example, the work of

Rajagopalan et al.2). The effectiveness of a proposed

routing mechanism is judged not only by the result-

ing efficiency in the use of available wavelengths but

also by its complexity of provisioning and speed of

restoration in operational networks. Each of our

schemes described below best fits a given grade of

protection, such as “platinum” (below 50 ms), “gold”

(50 to 100 ms), and “silver” (~1 to 10 s) restoration,

and can be implemented by the majority of emerging

optical networking protocols, such as multiprotocol

lambda switching (MPλS).

For prior work on routing and design of networks

using synchronous optical network (SONET) or logical

rings, see Ritchie3 and Tillerot et al.;4 for DWDM and

restoration, see Lee and Li;5 for asynchronous transfer

mode (ATM), see Irascho and Grover;6 and for mesh

network design, restoration optimization, and wave-

length assignment, see Mukherjee et al.,7 Saniee,8 and

Bouillet and Bala.9 Mukherjee et al.7 and Stern and

Bala10 provide general background on optical net-

works. Cosares et al.,11 Doshi and Harshavardhana,12

and Doshi, Dravida, and Harshavardhana13 describe

recent work on software tools for broadband network

design.

Panel 1. Abbreviations, Acronyms, and Terms

APS—automatic protection switching
CGI—common gateway interface
CGI.pm—CGI Perl module
CPAN—Comprehensive Perl Archive Network
DWDM—dense wavelength division multi-

plexing
E-OSPF—extended open shortest path first
I/O—input/output
ID—identification
LP—linear programming
MPlS—multiprotocol lambda switching
NSF—National Science Foundation
OC-192—optical carrier digital signal rate of

9.953 Gb/s in a SONET system
ONN—optical network navigator
OTU—optical terminating unit
OXC—optical cross connect
PC—personal computer
Perl—Practical Extraction Report Language
SDH—synchronous digital hierarchy
SONET—synchronous optical network

84 Bell Labs Technical Journal ◆ January–June 2001

sion occurs on the back-up path until failure), for each

wavelength, the equipment used at end nodes per-

forms an operation identical to the automatic protec-

tion switching (APS) available in the earlier SONET

and synchronous digital hierarchy (SDH) hardware

technologies (this is called 1 : 1 protection). The speed of

recovery is thus a few tens of milliseconds. The solu-

tion methodology for both 1 + 1 and 1 : 1 protection

consists of finding a disjoint pair of active and protec-

tion paths for each demand, aggregating these to

obtain the total number of wavelengths on each fiber,

and then determining the cost of the overall design.

Phase 1 can be carried out in at least two ways. For

example, each demand can be routed on its “shortest

path” (by counting hops or distances, or by using an

adaptive cost metric that keeps track of the “fill” of a

fiber), and dedicated protection wavelengths can be

routed over the disjoint residual graph. Alternatively,

all node pairs with their disjoint routes can be routed

simultaneously using a cost-optimization approach.

We give a heuristic routing algorithm for the 1 + 1

or 1 : 1 protection scheme. The key idea of this algo-

rithm is to define an iterative shadow cost for each

network resource, then route each demand along its

least-cost feasible path. The cost model is as follows:

1. Cost of l-channel. Each l-channel requires a channel

in a fiber. To optimize fiber usage, the use of

l-channels in some existing fibers is encouraged.

This is achieved with a l-channel cost of the form

,

where is the marginal cost of unit l-channel,

is the length of the link, is the number of

l-channels in use on link (i, j), W is the number

of l-channels that can be carried by a fiber,

is the cost per unit length of fiber, and

depends on whether a wavelength converter

existed. In the case of wavelength continuity

(no converter at any node), when the wave-

length l is currently not available on link (i, j),

; otherwise, and t is set em-

pirically. The shape of as a function of is

shown in Figure 2.

2. Cost of port. Each end of a l-channel requires a

port on an optical cross connect (OXC) installed

at the corresponding node. Each OXC may con-

tain a finite number, X, of ports. Similar to the

l-channel cost, port cost can be given in the form

, where is

the marginal cost of a port at node i, is the

number of ports in use at node i, X is the total

number of ports in an OXC, is the cost per

OXC, and t is selected empirically.

3. Cost of amplifier. Assume that an amplifier is

needed for each given length, La, of fiber. The

amplifier cost can be integrated into the l-channel

cost if we redefine the unit distance cost ascf

pOXC

ui

xixi 5
pOXC

X
a X 2 ui mod 1X2
1ui mod 1X2 1 12t 1 1b

wijyij

aij 1l2 5 1aij 1l2 5 0

aij 1l2pf

wijlij

yij

yij 1wij,l2 5
pflij

W
a W 2 aij 1l2wij mod 1W2
1aij 1l2wij mod 1W2 1 12t 1 1b

6

5

1

3

2

8

7

4

Figure 1.
Diversely routed protection (dotted line) wavelengths for
demands between node pairs 1&2, 2&4, and 3&8 using
active (solid line) wavelengths (both types can share
fiber—for example, on links 1-3 and 2-3).

Bell Labs Technical Journal ◆ January–June 2001 85

(Cost of regenerators is added similarly in

SPIDER.)

4. Cost of transmitters. Since the number of transmit-

ters needed depends only on the total number of

demands rather than the routing algorithms, we

ignore the cost of transmitters in the routing pro-

cedure. However, it will be counted in the total

network cost computation.

Using the cost model given above, we can give the

algorithm for dedicated protection as follows:

1. Generate candidate ring list. For each demand in the

demand list, generate k shortest cycles (rings)

passing through the two end nodes of the

demand. A modified version of either the

A*Prune algorithm14 or the Suurballe-Tarjan

algorithm15 can be used to generate such k rings.

All the generated rings are listed by their increas-

ing lengths.

2. List candidate path pairs for each demand. For each

ring in the ring list, generate two path pairs along

the ring if both end nodes of the demand are on

the ring. At most, 2R such path pairs for each

demand can be generated, where R is the total

number of rings in the ring list.

3. Compute/update the marginal cost for each candidate

path pair. The marginal cost of a candidate path

pair p is the sum of the shadow costs of all

resources required by p and can be defined as

.

4. Order the demand list. The demand list can be in

random order.

5. Perform one-round routing. Do the following steps

for each demand in the demand list:

a. Remove the route assigned to the demand if it

has any, and free all the resources acquired by

the demand.

b. Update the marginal cost for all candidate path

pairs affected by the removed routes.

c. Route the demand along its least-cost path

pair. This includes finding the least-cost path

pair and reserving all necessary resources (such

as wavelengths and ports) along the path pair.

d. Update the marginal cost for all candidate path

pairs affected by the previous step.

6. Fine-tune by loop routing. Repeat the procedure of

one-round routing until a converged routing is

reached. A routing is considered to be converged

if the total network cost given by the current-

round routing is the same as that given by the

previous-round routing.

Shared Protection Using Logical Rings
In this architecture, node pairs are grouped into

logical DWDM rings, each of which carries no more

than the predefined number of wavelengths per fiber

for active as well as protection wavelengths. Active

paths are defined for all node pairs on the same logical

C 1p2 5 a1i,j2Pp

1yij 1 xi 1 xj21 cost of amplifier / La.

cf 5 unit length cost of fiber

yij(wij, λ):
Weight function

t = 2.2

t = 0

pfl i j: Cost of new fiber

pfl i j/ W:
Cost of adding a
new λ-channel

0 1 2 3 W (one fiber) 2W Number of
λ-channels used

Wij

Figure 2.
Function of l-channel cost yij based on utilization wij and iteration parameter t.

86 Bell Labs Technical Journal ◆ January–June 2001

ring, and protection wavelengths are reserved in the

complementary routes on the ring for each node pair,

as shown in Figure 3. The number of protection

wavelengths for each demand is thus the same as the

number of active wavelengths used for carrying the

demands allocated to each ring. However, nonoverlap-

ping demands on the same ring can share protection

wavelengths. For example, demands between nodes

1-3 and 3-2 can share protection wavelengths on the

ring 1-3-2-5-6-1. The rings 1-4-7-2-5-6-1 and 1-3-2-

5-6-1 can share fibers on links 2-5, 5-6, and 6-1.

Although in principle it is possible to share protection

wavelengths across rings using OXCs, we do not use

such sharing due to the complexity of recovery when

failures occur.

The scheme for recovery from failure is only

somewhat more complex than dedicated protection,

described above. Similar to dedicated protection, only

the end nodes of each wavelength affected by the fail-

ure need to take care of the failure (~10 ms). Once a

failure condition is recognized, the switch over to pro-

tection wavelengths is made. In our logical ring design

solution, each demand is mapped to a single ring.

Therefore, it will not be necessary to coordinate multi-

ple rings for recovery. The single ring autorecovery

takes ~50 ms, allowing for ~40-ms cross-connect

remapping in the intermediate nodes. OXCs are

needed for autorecovery on each logical ring and for

sharing of fibers. Without fiber sharing, wavelength-

selective cross connects would be adequate. Using the

same shadow cost as in the previous section, the rout-

ing algorithm for logical rings is given as follows:

1. Generate candidate ring list. Use the same procedure

as that used for the dedicated protection algo-

rithm given in the “1 + 1 Dedicated Protection”

section.

2. List candidate paths for each demand. For each ring

in the ring list, generate two paths along the ring

if both end nodes of the demand are on the ring.

At most, 2R such paths for each demand can be

generated, where R is the total number of rings in

the ring list.

3. Compute/update the marginal cost for each candidate

path. The marginal cost of a candidate path

retrieved from ring r is defined as

.

Here, is 1 if is the first path to invoke a

new protection channel; otherwise, it is 0.

4. Order the demand list. The demand list is preferred

in the decreasing order of the length of its short-

est rings so that the demand which invokes a

larger ring is routed first.

5. Perform one-round routing. Do the following steps

for each demand in the demand list:

a. Let d be the demand to be routed.

b. If d has already been assigned a route p,

remove route p and free all the resources

acquired by p. Assume p is originally protected

by the ring protection channel r. Remove r if

there are no other working channels to be pro-

tected by r.

c. Update the marginal cost for all candidate

paths affected by the removed routes.

d. Route the demand along its least-cost ring

path. This includes finding the least-cost ring

path and claiming all necessary resources along

the ring path.

e. Update the marginal cost for all candidate ring

paths affected by the routing procedure (step 3).

6. Fine-tune by loop routing. Use the same procedure

as that used for the dedicated protection algo-

prd 1r,p2
1 d 1r,p2 a1i,j2Pr

1yij 1 xi 1 xj2
C 1r,p2 5 a1i,j2Ppr

1yij 1 xi 1 xj2

pr

6

5

1

3

2

8

7

4

Figure 3.
Shared-protection wavelengths for demands between
1&3 and 3&2 on ring 1-3-2-5-6-1, and shared fibers on
links 2-5, 5-6, and 6-1 for the rings 1-4-7-2-5-6-1 and
1-3-2-5-6-1.

Bell Labs Technical Journal ◆ January–June 2001 87

rithm given in the “1 + 1 Dedicated Protection”

section.

Both dedicated protection and logical ring protec-

tion algorithms can also have variant versions, such as

shortest-path routing or wavelength-continuity rout-

ing. The shortest-path routing version routes all

demands along their shortest paths. The wavelength-

continuity case can be handled by selecting the appro-

priate value of in the cost model.

1 : N Protection on Single Demand
A computationally simple method for the shared-

protection mesh network design can be obtained by

considering shared-protection routing for single point-

to-point demands. We first address only the sharing

among multiple candidate paths between the source

and the destination for the single demand under con-

sideration, as shown in Figure 4.

However, these single-demand solutions can sub-

sequently be combined to account for sharing across

demands. The procedure can thus be used in designing

a reliable network from the start (“greenfield” sce-

nario), and it provides a fast and approximate solution

to a more comprehensive mesh design to be discussed

in the next subsection. We refer to this algorithm as

the 1 : N protection algorithm in our numerical results

later.

Consider the restoration-adapted version of the

standard multicommodity flow problem:

(1)

which seeks to minimize the total wavelength distance

traversed in the network while protecting against sin-

gle link/node failures. As explained earlier, we focus

on a single source-destination pair s-t, which is

assumed multiply connected by N node-disjoint candi-

date paths, each path i with a given cost ci of carrying

unit flow. The costs may be ordered as c1 ≤ c2 ≤ ≤ cN.

For single-path failure reliability, it is easy to see that

—that is, the set of candidate paths may be

pruned in this manner without loss of optimality. We

seek to route, at minimum cost, a total demand D

between s and t along the paths so that service is not

interrupted by single-path failure. This problem has

the following simple linear programming (LP) formu-

lation directly derived from (1) above:

. (2)

Letting , the above LP formulation

is written as a classical knapsack problem for fixed D´:

(3)

It can be shown that (3) has the following simple

solution: Let .

Further, a simple search over D´:

produces the globally optimal xk independent of

whether or not they are restricted to take integer val-

ues. The end result of this procedure is that the opti-

mal set of chosen paths for large demands will satisfy

. This relation has the interesting

interpretation that the optimal solution, independent

of D (for large D), chooses to add new paths to route

the demand only until the incremental additional cost

of unit restoration capacity continues to decrease,

1

K 2 1
 a

K

k51

ck , cK11

D / 1N 2 12 # D9 # D

xK 5 D 2 1K 2 22D9 .

xk 5 D9 4 k , K ; xk 5 0 4 k . K ;

K 5 <1 1 D / D9=
0 # xk # D9 4 j P51,2,...,N6 .

Minimize a
N

k51

ckxk subject to a
N

k51

xk 5 D 1 D9,

a
N

k51

xk 5 D 1 D9

4 j P51,2,...,N6
 a

N

k51, k2 j

xk $ D, xk $ 0Minimize a
N

k51

ckxk subject to

cN # c1 1 c2

Subject to a
p9PPk , p92p

xp9 $ dk 4kPK, 4pPPk

Minimize a
ePE

le*le

aij 1l2

6

5

1

3

2

8

7

4

1/3
1/3

1/3 1/3

Figure 4.
Short active (solid) paths and longer restoration (dotted)
path for demand between nodes 1 and 2 (fractions
denote the demand carried by the respective paths).

88 Bell Labs Technical Journal ◆ January–June 2001

beyond which it load balances among the previously

chosen paths. This implies (except for integrality of

flows) equal allocation of flows to the set of chosen

paths. It is also possible to show that complete load

balancing over all paths, that is, the choice

is never more than a factor of 2 in

total cost from the optimal solution. Finally, all of the

above conclusions can be generalized for the cases of

reliability against multiple failures, individual capacity

limits for each path, variable degrees of protection

ranging from full backup of the affected demand to a

smaller percentage, and differing fixed installation

costs for each path.

Motivated by the above-described tractability of

the single-demand routing problem, we propose the

following heuristic solution to the more general shared

mesh network design that accounts for sharing across

demands. The solution is as follows:

1. Solve the routing problem for each demand

sequentially using a precomputed set of paths.

2. Choose the lowest-cost K – 1 paths as primary

paths for each demand.

3. Cumulate the primary flows on each link to

determine its primary capacity.

4. To compute total link capacities, fail one

link/node at a time and determine the maximum

net flow on surviving links when affected flows

are routed on their respective Kth paths.

This algorithm provides a limited form of sharing

between demands, as well as between routes for a

given demand, and produces a suboptimal approxima-

tion to the fully shared mesh network design.

However, it provides a simple solution to the routing

and restoration problem that is easy to compute,

update with new demands, and manage when failures

occur. Note that only the demands affected by a partic-

ular failed link/node need to be rerouted, and, further,

the rerouting for the affected set demands is always

the same, thus making fault isolation unnecessary.

When the demands are small and grooming/packing

efficiency is important, it is possible to adapt the

heuristic to pack more efficiently by altering the choice

of primary paths without losing the desirable features

of the result.

Optimal Shared-Protection/Mesh Design Using Mixed-
Integer Linear Programming

This architecture generalizes the shared-protection

ring scheme described above without explicit parti-

tioning into rings. As before, active and restoration

paths are constructed for all node pairs, but the

restoration capacities, computed as the maximum

number of wavelengths required on each link when a

single failure occurs, are fully shared. This scheme

optimizes the redundant (or spare) capacity require-

ments but has increased restoration complexity com-

pared to the ring method. Figure 5 shows a simple

example in which protection path 2-3-1-8 for demand

2-8 on path 2-8, protection path 2-3-1-4 for demand

2-4 on path 2-7-4, and the active path 1-3-2 for

demand 1-2 on path 1-3-2 all can share wavelengths

on edges 2-3 and 3-1.

This scheme requires careful preplanning for an

efficient implementation. Each failure invokes an opti-

mally recomputed reconfiguration map at each node,

with possible wavelength conversion to avoid collision

on the same set of links during path restoration events.

The maps can be precomputed using optimization. The

objective is to minimize the total number of wave-

lengths needed. The resulting maps are stored in each

xk 5 <D / 1N 2 12 = ,

6

5

1

3

2

8

7

4

Figure 5.
Active and restoration paths and wavelengths for
demands between nodes 1-2 (1-3-2 and 1-6-5-2), 2-4
(2-7-4 and 2-3-1-4), and 2-8 (2-8 and 2-3-1-8).

Bell Labs Technical Journal ◆ January–June 2001 89

OXC. Path restoration is not conditional on isolation of

fault: by using multiple alternative disjoint protection

paths for each active path, the end nodes initiate the

recovery procedure once the signal loss is registered,

and the disjointness of restoration routes ensures their

availability when the single failure condition disables

the normal route(s). Once the end nodes encounter a

failure condition on a path (~10 ms), they communi-

cate the restoration routes of the wavelengths to be

restored to each intermediate OXC on alternative

paths and the maps to be uploaded by each OXC

(40 to 80 ms). These maps change, often only incre-

mentally, when new demands are added. In the case

of topology changes, all active and back-up routes may

require updating, but topology changes surely affect

other architectures as well. To reuse and extend the

notation introduced in the previous sections, let

N = set of all network nodes

E = set of all network edges

K = set of all node pairs

P = set of all paths for all node pairs

D = set of all node-pair demands

= demand for node pair k

= flow (in units of l) assigned to path p

= set of all paths for node pair k, assumed to

be (node) edge disjoint

= set of all paths that include edge e

= capacity (in number of wavelengths) on

edge e

= distance of edge e

= flow (in units of l) assigned to path p when

edge f is in failure mode.

To ensure that bidirectional demands are

routed the same way, we restrict to .

Furthermore, to reduce problem dimensionality, we

include a path in P only if its end nodes have demand.

To ensure that restoration from failures does not

require fault isolation, we assume that paths in each

are disjoint for each commodity k. Therefore, when an

end node pair recognize a fault in (one of) their pri-

mary path(s), the node pair initiate restoration over

the remaining paths, which, due to their being disjoint

from the failed path, must be operational in cases of

single (link) failures.

To see how the mesh network should be designed

and its demand routed using the above notation, con-

sider the following problem:5

These conditions ensure that:

1. Demand for each node pair k is met and

2. Link capacities are not exceeded.

Thus, any allocation of flow to path p that meets

conditions 1 and 2 is considered feasible. To avoid

solutions with meandering paths—those that either

are unusually long or visit the same node more than

once—the set of paths P needs to be carefully gener-

ated. Examples include paths that do not exceed pre-

specified hop counts or distance limits between their

end nodes. Further, more careful path generation

reduces the problem complexity, as will be shown in

the following discussion. In general, K-disjoint paths

that meet path qualifications are generated for each

node pair with nonzero demand for a sufficiently

large K. The mesh network routing problem can be for-

mulated according to a variety of criteria using the

foregoing notation. For example, it may be important

to route as much of the demand as possible on the

shortest possible routes. In this case, the natural crite-

rion would be the sum of wavelengths times the dis-

tance each wavelength traverses. Alternatively, it may

be desired to spread the load as evenly as possible so

that all the edges in the network carry more or less the

same number of wavelengths. For the latter criterion,

the following formulation results:

P1:(even_load = L)

Constraint set 1 ensures that demands (in number

of wavelengths) are met for each node pair, and con-

straint set 2 guarantees that link/DWDM capacities are

132 a
pPQe

xp # L 4ePE

122 a
pPQe

xp # Ce 4ePE

112 a
pPPk

xp $ dk 4kPK

Subject to:

Minimize L

xp

122 a
pPQe

xp # Ce , each ePE

112 a
pPPk

xp $ dk , each kPK

P0: Find xp 4pPP

Pk

i , j1i,j2PK

yf
p

le

Ce

Qe

Pk

xp

dk

90 Bell Labs Technical Journal ◆ January–June 2001

not exceeded. Constraint set 3 evens out the load on

the network. The same routing design problem with

the minimum sum of wavelength distances as the

objective function is as follows:

Constraint set 3 for P2 counts the number of

wavelengths used on each edge within the objective

function. For the mesh network restoration problem,

the same set of objective functions as P1 and P2 apply.

This time, however, additional constraints needed to

ensure 100% protection against failure are also pro-

vided. Let denote the overflow assignment of wave-

lengths to path p when edge f is in “fail” condition.

Then, the assignment of normal routes and restora-

tion routes for the minimized sum of wave-

length*distance objective (as in P2) is given by the

solution of

We refer to this formulation as the restoration

problem. Note that in this formulation, a large number

of reconfigurations may be necessary for each failure

condition, since the overflow variables are only con-

strained to meet demand and not exceed edge capaci-

ties. To enforce reconfiguration only for routes affected

by the failure condition, a slightly different set of con-

straints is needed. This formulation is given below:

Note that in formulation P4 of the restoration

problem, we have also allowed a more general recov-

ery percentage for each node pair k than recovery of

all paths disrupted by each link failure, = 1 or 100%

recovery, which is what was done in P3. However, this

extension adds no complexity to the problem and sub-

stantially simplifies the execution of restoration. The

above formulation can be further enriched to allow for

situations in which fault localization is difficult or too

time consuming to achieve (this is done in SPIDER).

However, these models give a sufficient description to

illustrate the necessary tradeoffs between restoration

efficiency and time, as described in the “Examples of

Network Design and Numerical Results” section.

Software Architecture for SPIDER
As we have shown, there are a variety of design,

routing, and protection schemes for optical core net-

works. It is likely that, in the near future, hybrids or

even new schemes will be invented and implemented

by Lucent Technologies and other manufacturers.

Since SPIDER aims to accurately model current and

future routing schemes, protection schemes, and pro-

tocols, its software needs to be highly flexible and

modular. This calls for separation of application,

input/output (I/O), visualization, and computational

engines. To this end, the SPIDER application was built

of five parts:

• A text-based (comma-separated value) front

rk

rk

152 a
pPQe2Qf

yf
p 1 a

pPPk2Qf

xp # le 4e 2 fPE

142 a
pPPk2Qf

yf
p 1 a

pPPk2Qf

xp $ dkrk 4fPE, 4kPK

132 le # Ce 4fPE

122 a
pPQe

xp # le 4ePE

112 a
pPPk

xp $ dk 4kPK

Subject to:

Minimize a
ePE

le*le

P4: 1l*distance2

162 le # Ce 4fPE

152 a
pPQe2Qf

yf
p # le 4e 2 fPE

142 a
pPPk2Qf

yf
p $ dk 4fPE, kPK

132 a
pPQe

xp # le 4ePE

122 a
pPQe

xp # Ce 4ePE

112 a
pPPk

xp $ dk 4kPK

Subject to:

Minimize a
ePE

le*le

P3: 1l*distance2

yf
p

xp

yf
p

132 le # Ce 4ePE

122 a
pPQe

xp # le 4ePE

112 a
pPPk

xp $ dk 4kPK

Subject to:

Minimize a
ePE

le*le

P2: 1l*distance2

Bell Labs Technical Journal ◆ January–June 2001 91

end for network and data I/O,

• A graphical (Java) front end for visualization

and graphical I/O,

• A common gateway interface (CGI)-scripted

Web interface in Practical Extraction Report

Language (Perl) for client/server architecture,

• Back-end glue in Perl, and

• Back-end algorithm processing in C where

heavy-duty optimization processing is imple-

mented.

Evolution
At first, we solved the algorithmic problems

using C, and, in some instances, we used third-party

software such as MINOS16 and CPLEX.17 Following

test runs and verification of designs, we initiated

implementation of the Java front end to allow for

graphical entry and visualization of the network. We

implemented the original front end as a standalone

Java 1 application. We were less than thrilled with the

challenges of implementing a graphical interface on

the Java 1 base and eventually learned that this front

end was not well matched to the needs of the

intended users of the application.

What the users wanted was to be able to collect

their network definitions in spreadsheets using the

Microsoft* Excel application and then feed the spread-

sheet data to SPIDER. We also realized that delivering

the application as something to install on a personal

computer (PC) would leave us with configuration

management problems. Our preference was to keep

the application on a central server and provide access

to it via Web browsers. We have been reasonably

pleased with the result of that decision but have found

there are still challenges due to the variety of Web

browsers in use. We had read elsewhere18 of the dan-

gers of an application getting too close to the propri-

etary formats of Excel. To avoid this problem, we

opted for a particularly simple format that Microsoft

calls comma-separated value (CSV) or, simply, a “flat file”

format. We believe this format will likely remain

usable without problems for us as Microsoft potentially

makes changes to Excel in future releases.

The next problem to solve was how to interact

with the user to transfer his/her spreadsheet data over

to our application on its central server. Since we did

not have a lot of prior experience implementing Web-

based applications, and this did not look like it should

be a rare aspect of such applications, we did not want

to “reinvent the wheel.” We looked for standards and

found RFC1867.19 Without too much more searching,

we located an inexpensive commercial product that

implemented that standard in a Java applet.20 The

vendor, Infomentum, made a free evaluation period

for its software available to us.

Unfortunately, we encountered problems during

the evaluation. Source code for the product was not

available to us, so we turned to the prospective sup-

plier for help. They were responsive to e-mail but

unable to determine the cause of our difficulties. We

suspect the troubles were caused by variations in Java

implementation from PC to PC. Even when the same

browser is used (for example, Microsoft Internet

Explorer), there are still more versions of that browser

and the underlying Java implementation than we

want to have to consider. The experience leaves us

questioning the viability of the hoped-for market in

applets,20 at least for the case of applets sold as “black

boxes” without access to the source code.

Fortunately, we found an open source implemen-

tation of RFC1867 in the CGI Perl module (CGI.pm)21

and enough documentation to be able to figure out

how to make it work.22 The CGI.pm implementation

of RFC1867 did not quite do everything that was pro-

vided by the Infomentum product, but it was good

enough and seemed much more stable in our testing.

Later, we decided that the application needed a visual

display of its results and returned to Java for that dis-

play. This time we used Sun Microsystems’ Java 2

plug-in within the browser. The libraries for graphical

display generation in Java 2 were much more satisfac-

tory, and we are hoping the users will be able to han-

dle the “automatic” installation of the plug-in to their

browsers.

Security
There are obvious concerns associated with mak-

ing an application available on the Web. Deploying it

on a Web server inside the Lucent firewall would

block access from the world at large but would still

make our application accessible to more than 100,000

Lucent associates and potential users. Since we were

92 Bell Labs Technical Journal ◆ January–June 2001

unprepared to vouch for everyone with computer

access within Lucent, we needed a way to contain the

application. Our standard Web server in Lucent’s

Mathematical Sciences Research Center runs on a

computer that allows a user ID of “nobody.” That

would not do for all of our applications (such as

CPLEX,17 for example, since its license only allows it to

run on a Lucent computer with a specific licensed

name). Therefore, we needed a Web server that could

have access to the third-party software. Our solution

was to set up a new user ID, “SPIDER,” and an Apache

Web server on a PC running Linux* in our lab. Since

the Web server is strictly for our application, it can run

with the SPIDER user ID. We then needed to make

sure that the SPIDER user ID is only able to access

software and data we do not need to protect from the

vast Lucent internal user community. This met our

objective of not having to administer user accounts,

but we recognize that the system is possibly more

“open” than our users might want it to be.

Lessons Learned
The old adage, “Plan to throw one away,” is

applicable here. In fact, when learning a new language

with the complexity of Java, you may be well advised

to plan to throw more than one away. Time spent

searching for standards and available libraries instead

of “reinventing the wheel” is time well spent. “Black-

box” third-party software is more challenging to live

with than open source libraries. We still “have our

fingers crossed” about how well Java will work out

for us in the field—a maze of twisty virtual machines,

all different.

The project needs to have control of its environ-

ment. The Linux base for our front end was invaluable

to us. We were able to tweak the Web server configu-

ration and update the Perl libraries with new modules

from the Comprehensive Perl Archive Network

(CPAN) as we needed them, without having to push

for time from people outside of our project to make

those updates for us. “We would like to try this new

library” is not a request that typically gets high-priority

attention from overburdened system administrators.

The downside is that it means our project must con-

tinue to pay attention to system administration of

Linux into the future. Keeping a Linux box up to date

with security updates is nontrivial work.

In retrospect, we should have set up more than

one instance of our application. With real users, it is

impractical to make and test changes. A simple first

step would be to modify all hard-coded paths.

Examples of Network Design and Numerical
Results

An idealized National Science Foundation (NSF)

backbone network was assumed to consist of 10 nodes

and 17 fiber-optic links, as shown in Figure 6. The

variable link thickness is proportional to the number

of wavelengths/fibers through it, as shown when the

cursor is positioned on the Seattle-Chicago link (red).

The topology and load data for a SPIDER study of this

network are shown in Tables I and II. Network visu-

alization in SPIDER is shown in Figure 7.

To illustrate SPIDER, this network was designed

under five different protection plan alternatives,

ranging from no-protection shortest-path routing

(base) to a complete mesh with shared protection.

The results are presented in Table III. This compara-

tive study assumed the following costs and associated

parameters:

80 = number of bidirectional wavelengths per

fiber pair

$100K to $1M = cost of OXCs without any

ports/plug-ins

256 = size of OXC (maximum number of

wavelength-pair terminations)

$5K = cost of optical terminating unit (OTU) used

for signal regeneration and wavelength

conversion

$1.5K = cost of general-purpose 10G fiber pair

per km (including amplifiers)

$100K = cost of a pair of DWDM multiplexers

$50K = cost of regenerators per fiber pair

600 km = regeneration distance

Our experiments assumed the presence of OXCs

at each node, which are almost certainly required for

robustness and flexibility in the core of all-optical net-

works. Under this assumption, mesh-restoration-

based shared-protection architectures seem to be the

most cost effective and efficient. From the standpoint

of recovery time, dedicated protection solutions, for

Bell Labs Technical Journal ◆ January–June 2001 93

the immediate future, have an advantage over alter-

native designs, with the shared-protection ring-based

designs closely behind. Mesh restoration, however, is

likely to be the architecture of choice in the future

due to its greater flexibility and faster provisioning.

We also observed that the solutions differ substan-

tially in their efficiency of use of the wavelength

resource (l-efficiency), which is the total number of

wavelengths (or l*km) used to route demands

divided by the total number of wavelengths (or l*km)

needed for both routing and 100% protection against

single failures (row 5 in Table III). Thus, we observe a

Node Node Distance (km) Spare ls Node Node Distance (km) Spare ls

Seattle Chicago 1,200 0 Dallas Kansas 300 0

Seattle Stockton 800 0 Dallas D.C. 800 0

Stockton Chicago 1,400 0 Dallas Atlanta 600 0

Stockton Cheyenne 600 0 Chicago Kansas 300 0

Stockton D.C. 2,000 0 Kansas D.C. 600 0

Stockton Rialto 300 0 Chicago Philadelphia 800 0

Rialto Dallas 800 0 Philadelphia D.C. 150 0

Cheyenne Kansas 400 0 D.C. Atlanta 800 0

Table I. Fiber network topology with distances and spare capacity on each link.

Figure 6.
An idealized NSF backbone network designed for 5 to 20 OC-192 circuits between all node pairs.

94 Bell Labs Technical Journal ◆ January–June 2001

Seattle Stockton Rialto Cheyenne Chicago Kansas Dallas Philadelphia D.C. Atlanta

Seattle 20 20 10 10 10 10 20 20 15

Stockton 20 10 10 10 10 20 20 15

Rialto 10 10 10 10 20 20 15

Cheyenne 5 5 5 10 10 10

Chicago 10 10 20 20 20

Kansas 5 10 10 10

Dallas 10 20 10

Philadelphia 20 20

D.C. 20

Atlanta

Table II. Projected node-pair demands in units of OC-192 (demand is assumed symmetric; the lower triangular portion is
not shown).

Figure 7.
Network visualization in SPIDER showing how each lightpath (blue) is routed together with its protection (possibly
shared) lightpath (green).

reverse relationship between efficiency and cost ratio

(row 12 in Table III) on the one hand and recovery

speed on the other, which leads to natural differentia-

tion of lightpath services based on the required grade

of protection.

Conclusions
SPIDER is a software tool for network design cost

optimization and comparative routing as well as pro-

tection performance evaluation of opaque and trans-

parent optical core networks. It currently includes

Bell Labs Technical Journal ◆ January–June 2001 95

novel and very efficient implementations of path-

based restoration algorithms for wavelength routing

and protection under single-physical-layer network

failures. The modularized Java-based visualization, the

browser-based graphical user interface (GUI), and the

library of routing and network design engines in

C/C++ provide a flexible platform from which to eval-

uate and compare different designs and capacity

expansions as well as make informed decisions for

specific networks. The flexible linkage between the

routing/design engines and the visualization modules

makes it possible to add new routing engines easily as

needed. As an example, we expect to add the specific

instances of algorithms used in Lucent’s centralized

(SoftWave) and decentralized (ONN) routing schemes

to SPIDER in the near future.

The examples in the previous section illustrate the

kinds of tradeoffs that exist for routing and protection

in next-generation all-optical networks. As the degree

of protection sharing increases from purely 1 + 1 dedi-

cated protection, the network efficiency increases and

the overall network cost decreases, but intelligent

near-real-time provisioning of lightpaths will be

needed to take advantage of this added efficiency. The

increase in restoration time is moderate and well

within the accepted thresholds in optical networking.

Of course, for any specific lightpath and grade of pro-

tection, the appropriate protection will be utilized.

These are near-real-time issues that link SPIDER to

lightpath provisioning systems, such as SoftWave, with

significant implications for emerging applications, such

as bandwidth trading.

The most recent additions to SPIDER include

two modules for transparent and partially transpar-

ent routing with use of wavelength-selective cross

connects and an optimization module for ultralong-

reach transport systems. Preliminary studies show

“selective transparency” to hold much promise for

post-opaque optical design in future generations of

networks.

No protection 1 + 1 protection 1 : N protection Shared- Shared-
protection ring protection mesh

Equipment/cost Number Cost ($) Number Cost ($) Number Cost ($) Number Cost ($) Number Cost ($)
of units of units of units of units of units

Bidirectional ls 1,215 N/A 3,081 N/A 3,117 N/A 2,739 N/A 1,967 N/A

Bidirectional l*km 688K N/A 1,837K N/A 1,799K N/A 1,687K N/A 1,270K N/A

l-efficiency 100% ~40% ~40% ~40% ~60%

Optical cross connects 20 2,000K 34 3,400K 34 3,400K 30 3,000K 25 2,500K

Bidirectional OTUs 3,640 18,200K 7,372 36,860K 7,444 37,220K 6,688 33,440K 5,144 25,720K

DWDM MUX pairs 23 2,300K 43 4,300K 45 4,500K 39 3,900K 27 2,700K

Bidirectional fiber km 14,200 21,300K 26,450 39,675K 27,400 41,100K 24,450 36,675K 16,700 25,050K

Regenerators 10 500K 19 950K 20 1,000K 18 900K 12 600K

Total costs N/A 44,300K N/A 85,185K N/A 87,220K N/A 77,915K N/A 56,570K

Cost ratio 1 1.9 1.9 1.7 1.2

Operational complexity None Easy Moderate Moderate Complex

Real-time provisioning Simple Impractical Easy Easy Easy

Restoration time N/A ~10 to 100 ms ~50 to 100 ms ~50 to 100 ms ~50 to 200 ms
(including end-to-end
propagation delays)

Table III. Comparison of five distinct designs using SPIDER.

DWDM – Dense wavelength division multiplexing

MUX – Multiplexer

OTU – Optical translator unit

96 Bell Labs Technical Journal ◆ January–June 2001

Acknowledgments
We wish to thank Debasis Mitra of Bell Labs as

well as K. G. Ramakrishnan and Eric Bouillet, formerly

of Bell Labs, for their substantial contributions to the

SPIDER effort; Thomas Mueller of Lucent’s Optical

Networking Group as well as Deirdre Doherty and

Mohcene Mezhoudi of Bell Labs Advanced Tech-

nologies for providing much perspective on network

provider needs; and Bharat Doshi of Bell Labs for help-

ful and detailed comments on an earlier draft of this

paper.

*Trademarks
Java is a trademark of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Microsoft is a registered trademark of Microsoft
Corporation.

References
1. B. T. Doshi, S. Dravida, P. Harshavardhana,

O. Hauser, and Y. Wang, “Optical Network
Design and Restoration,” Bell Labs Tech. J.,
Vol. 4, No. 1, Jan.–Mar. 1999, pp. 58–84.

2. B. Rajagopalan, D. Pendarakis, D. Saha,
R. S. Ramamoorthy, and K. Bala, “IP over
Optical Networks: Architectural Aspects,” IEEE
Commun. Mag., Vol. 38, No. 9, Sept. 2000,
pp. 94–102.

3. G. R. Ritchie, “SONET Lays the Roadbed for
Broadband Networks,” Networking Management,
Vol. 8, No. 3, Mar. 1990, pp. 30–35.

4. F. Tillerot, E. Didelet, A. Daviaud, and
G. Claveau, “Efficient Network Upgrade Based
on a WDM Optical Layer with Automatic
Protection Switching,” Optical Fiber Commun.
Conf. (OFC ’98) Tech. Digest, San Jose, Calif.,
Feb. 22–27, 1998, pp. 296–297.

5. K.-C. Lee and V. O. K. Li, “A Circuit Rerouting
Algorithm for All-Optical Wide-Area Networks,”
Proc. IEEE Conf. on Computer Commun.
(INFOCOM ‘94), Toronto, June 1994, pp. 954–961.

6. R. Irascho and W. Grover, “Optimal Capacity
Placement for Path Restoration in STM or ATM
Mesh-Survivable Networks,” IEEE/ACM Trans.
on Networking, Vol. 6, No. 3, June 1998,
pp. 325–336.

7. B. Mukherjee, S. Ramamurthy, D. Banerjee,
and A. Mukherjee, “Some Principles for
Designing a Wide-Area Optical Network,” Proc.
IEEE Conf. on Computer Commun. (INFOCOM ‘94),
Toronto, June 12–16, 1994, pp. 110–119.

8. I. Saniee, “Optimal Routing Designs in Self-
Healing Communications Networks,” Intl. Trans.

in Operations Research, Vol. 3, No. 2, Apr. 1996,
pp. 187–195.

9. K. Bala, E. Bouillet, and G. Ellinas, “Benefits of
Minimal Wavelength Interchange in WDM
Rings,” Optical Fiber Commun. Conf. (OFC ’97)
Tech. Digest, Dallas, Tex., Feb. 16–21, 1997,
pp. 120–121.

10. T. E. Stern and K. Bala, Multiwavelength Optical
Networks: A Layered Approach, Addison-Wesley,
Reading, Mass., 1999.

11. S. Cosares, D. N. Deutsch, I. Saniee, and
O. J. Wasem, “SONET Toolkit: A Decision
Support System for Designing Robust and Cost-
Effective Fiber-Optic Networks,” Interfaces,
Vol. 25, No. 1, Jan.–Feb. 1995, pp. 20–40.

12. B. T. Doshi and P. Harshavardhana, “Broadband
Network Infrastructure of the Future: Roles of
Network Design Tools in Technology
Deployment Strategies,” IEEE Commun. Mag.,
Vol. 36, No. 5, May 1998, pp. 60–71.

13. B. T. Doshi, S. Dravida, and P. Harshavardhana,
“Overview of INDT: A New Tool for Next-
Generation Network Design,” Proc. IEEE Global
Telecommun. Conf. (GLOBECOM ’95), Vol. 3,
Singapore, Nov. 13–17, 1995, pp. 1942–1946.

14. G. Liu and K. G. Ramakrishnan, “A*Prune: An
Algorithm for Finding K Shortest Paths Subject
to Multiple Constraints,” Proc. IEEE Conf. on
Computer Commun. (INFOCOM ’01), Anchorage,
Alas., Apr. 22–26, 2001.

15. J. W. Suurballe and R. E. Tarjan, “A Quick
Method for Finding Shortest Pairs of Disjoint
Paths,” Networks, Vol. 14, No. 2, Summer 1984,
pp. 325–336.

16. <http://www.sbsi-sol-optimize.com>.
17. <http://www.ilog.com/products/cplex/>.
18. <http://www.fourmilab.ch/hackdiet/palm/>.
19. E. Nebel and L. Masinter, “Form-Based File

Upload in HTML,” IETF RFC 1867, Nov. 1995,
<http://www.ietf.org/rfc/rfc1867.txt>.

20. <http://www.infomentum.com/activefile/>.
21. <http://www.wiley.com/compbooks/stein/>.
22. L. Stein, Official Guide to Programming with

CGI.pm, John Wiley, New York, 1998.

(Manuscript approved April 2001)

R. DREW DAVIS, a member of technical staff in the Mathe-
matics of Networks and Systems Research
Department at Bell Labs in Murray Hill,
New Jersey, is working on software design
and implementation for telecommunication
networks. He holds a B.S. in industrial engi-

neering and operations research from Cornell University
in Ithaca, New York, and an M.S. in computer, informa-

Bell Labs Technical Journal ◆ January–June 2001 97

tion, and control engineering from the University of
Michigan in Ann Arbor.

KRISHNAN KUMARAN is a member of technical staff
in the Mathematics of Networks and
Systems Research Department at Bell Labs
in Murray Hill, New Jersey. He holds a
B.Tech. degree in mechanical engineering
from the Indian Institute of Technology in

Madras and a Ph.D. in physics from Rutgers University
in New Brunswick, New Jersey. Dr. Kumaran’s interests
are in modeling, analysis, and simulation of resource
management and scheduling issues in communication
networks.

GANG LIU was formerly a member of technical staff in
the Mathematics of Networks and Systems
Research Department at Bell Labs in Murray
Hill, New Jersey, where he worked on opti-
cal network design and planning, routing
algorithms, optimization techniques, and

economic modeling and strategy analysis for telecom-
munication networks. He holds a B.S. in mechanical
engineering from China University of Science and
Technology in Hefei, an M.S. in optics from Peking
University in Beijing, and an M.S. in computer science
from Columbia University in New York.

IRAJ SANIEE, a technical manager in the Mathematics
of Networks and Systems Research Depart-
ment at Bell Labs in Murray Hill, New Jersey,
holds B.A. and M.A. degrees in mathematics
and a Ph.D. in operations research and con-
trol from Cambridge University in England.

Dr. Saniee’s current research projects are in approxima-
tion and optimization techniques, data networking,
algorithms for routing and protection in optical net-
works, multiscaling models of data networks, VoIP
traffic and congestion modeling, and network design.
He was the leader of the team that received INFORM’s
Franz Edelman Runner-Up Award in 1994. ◆

