
Transfer Functions

The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace
Transform of the input, i.e., Y (s)/U(s). Denoting this ratio by G(s), i.e.,

G(s) = Y (s)/U(s)

we represent the linear system as

In this representation, the output is always the Transfer function times the input

Y (s) = G(s)U(s).

Example: Suppose a linear system is represented by the differential equation

d2y

dt2
+ a1

dy

dt
+ a0y = u

s2Y (s) + a1sY (s) + a0Y (s) = U(s).

Taking Laplace Transforms with zero initial conditions,

(s2 + a1s+ a0)Y (s) = U(s)

we see that the transfer function is

G(s) =
Y (s)
U(s)

=
1

s2 + a1s+ a0
.

Remarks:

– The transfer function is always computed with all initial conditions equal to zero.

– The transfer function is the Laplace Transform of the impulse response function.

[To see this, set U(s) = 1.]
The transfer function of any linear system is a rational function

G(s) =
n(s)
d(s)

=
bms

m + · · ·+ b1s+ b0
ansn + · · ·+ a1s+ a0

where n(s), d(s) are the numerator and denominator polynomials of G(s), respectively

– G(s) is proper if

m = deg n(s) ≤ n = deg d(s)

– G(s) is strictly proper if m < n.

– For a proper or strictly proper rational function, the difference α = n−m is called the relative degree of
the transfer function.
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– The denominator polynomial d(s) is called the characteristic polynomial. The roots of d(s) are the poles
of G(s). The roots of n(s) are the zeros of G(s). Assuming that n(s) and d(s) have no common factors
then G(s) has n finite poles and m finite zeros in the complex plane.

We will see that the location of the poles and zeros of G(s) completely determine the behavior of the linear
system.

A strictly proper transfer function always satisfies G(s)→ 0 as s→∞.
Example:

s

s2 + 1
=

1/s
1 + 1/s

→ 0

as s→∞. We say that G(s) has a zero at s =∞. In fact, G(s) has α = n−m “zeros at ∞.” In this way a
proper transfer function has exactly n-poles and n-zeros counting zeros at infinity.
Example:

G(s) =
s+ 1

s(s+ 2)(s+ 3)
.

Then G(s) has poles at s = 0,−2,−3 and zeros at s = −1,∞,∞ since the relative degree is α = 2.

Standard Forms of Feedback Control Systems

Consider the block diagram shown below:

This is the standard cascade compensation, unity feedback system.

G(s) = plant transfer function

H(s) = compensator transfer function

R(s) = reference input

C(s) = output

E(s) = R(s)− C(s) = error signal or actuating signal

The product G(s)H(s) is called the open loop transfer function or forward transfer function

– The plant transfer function is determined from the physical models of the system.

– The compensator transfer function is to be designed by us.

The block diagram

represents the equations

C(s) = G(s)H(s)E(s)

E(s) = R(s)− C(s)

= R(s)−G(s)H(s)E(s).
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Therefore,

E(s) =
1

1 +G(s)H(s)
R(s)

and

C(s) =
G(s)H(s)

1 +G(s)H(s)
R(s).

The transfer function G(s)H(s)
1+G(s)H(s) is called the closed loop transfer function. The transfer function 1

1+G(s)H(s)

is called the system sensitivity function. Typically R(s) represents the ‘desired output’ and the control design
problem is, given G(s), design H(s) so that C(s) ≈ R(s), or equivalently so that E(s) ≈ 0. We see that, to
do this we should have 1

1+G(s)H(s) ≈ 0 and G(s)H(s)
1+G(s)H(s) ≈ 1. We will develop techniques to do this. In some

cases the compensator H(s) might be given in the ‘feedback path’ instead of in cascade with the plant

This forms a non-unity feedback system. In this case the open loop transfer function

G(s)H(s) =
B(s)
E(s)

.

The actual signal is

E(s) = R(s)−B(s)

= R(s)−H(s)C(s).

Note in this case that the actuating signal is no longer the same as the error signal, R(s) − C(s). In fact,
the error signal is not physically present in the block diagram in the case of non-unity feedback. It is easy
to show that the closed loop transfer function now is

G(s)
1 +G(s)H(s)

and the sensitivity function is the same.

Block Diagram Reduction

A general linear control system may be built up from many interconnected subsystems, each of which is a
system by itself, and, hence, represented by a transfer function. We need ways to reduce a complicated block
diagram to a simpler form, for example, the linear system
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is not in standard form.
What is the closed loop transfer function C(s)/R(s)?
In order to answer this, we need to develop a ‘Block Diagram Algebra’ to replace complex blocks by

equivalent, but simpler blocks.
1) Series (Cascade) Connection

This is equivalent to:

Proof: Note that the original block diagram represents the equations

Y1 = G1(s)Y2

Y2 = G2(s)X.

Substituting for Y2 in the first equation gives

Y1 = G1(s)G2(s)X

which is represented by the second block diagram.
Remarks: Notice that the intermediate signal Y2(s) is lost, i.e., it does not appear in the equivalent block
diagram.
2) Parallel Connection

Y (s) = G1(s)x(s) +G2(s)x(s)

= (G1(s) +G2(s))x(s).

Therefore the equivalent block diagram representation is

3) Feedback Connection

a) unity feedback

is equivalent to
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b non-unity feedback

is equivalent to

Example: Find the closed transfer function C(s)
R(s)

Step 1)

Step 2)

Finally

C(s)/R(s) =
G1G2H2
1+G1H1

1 + G1G2H2
1+G1H1

=
G1G2H2

1 +G1H1 +G1G2H2

4) Moving a Pick-Off Point

a) ahead of a block

(I)

is equivalent to

(II)

provided H2 = H1/G2.
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Proof: In diagram (I) we have

Y2 = H1X2

In diagram (II) we have

Y2 = H2Y1 = H2G2X2

Therefore

H1 = H2G2

or

H2 = H1/G2

b)

Find C(s)/R(s) = T (s)

Step 1: Move pick-off point ahead of G3.

Step 2: Combine cascade of G2 and G3 and eliminate the upper feedback loop.

Step 3: Simplify cascade connection and eliminate the final non-unity feedback loop.

G1G2G3
1+G2G3H1

1 + G1G2G3
1+G2G3H1

· H2
G3

=
G1G2G3

1 +G2G3H1 +G1G2H2

= T (s).

There are other rules for moving summing junctions, etc. The important point to remember is that the block
diagram is a representation of algebraic equation so the equivalent block diagram can always be reproduced
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from the equations.

Summary of Block Diagram Algebra
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