Transfer Functions

$$U(s) \longrightarrow S \longrightarrow Y(s)$$

The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y(s)/U(s). Denoting this ratio by G(s), i.e.,

$$G(s) = Y(s)/U(s)$$

we represent the linear system as

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

In this representation, the output is always the Transfer function times the input

$$Y(s) = G(s)U(s).$$

Example: Suppose a linear system is represented by the differential equation

$$\frac{d^2y}{dt^2} + a_1\frac{dy}{dt} + a_0y = u$$

$$s^{2}Y(s) + a_{1}sY(s) + a_{0}Y(s) = U(s).$$

Taking Laplace Transforms with zero initial conditions,

$$(s^2 + a_1 s + a_0)Y(s) = U(s)$$

we see that the transfer function is

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 + a_1 s + a_0}$$

Remarks:

- The transfer function is always computed with all initial conditions equal to zero.

- The transfer function is the Laplace Transform of the impulse response function.

[To see this, set U(s) = 1.]

The transfer function of any linear system is a rational function

$$G(s) = \frac{n(s)}{d(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$

where n(s), d(s) are the numerator and denominator polynomials of G(s), respectively

-G(s) is proper if

$$m = \deg n(s) \le n = \deg d(s)$$

- -G(s) is strictly proper if m < n.
- For a proper or strictly proper rational function, the difference $\alpha = n m$ is called the *relative degree* of the transfer function.

- The denominator polynomial d(s) is called the *characteristic polynomial*. The roots of d(s) are the *poles* of G(s). The roots of n(s) are the zeros of G(s). Assuming that n(s) and d(s) have no common factors then G(s) has n finite poles and m finite zeros in the complex plane.

We will see that the location of the *poles* and *zeros* of G(s) completely determine the behavior of the linear system.

A strictly proper transfer function *always* satisfies $G(s) \to 0$ as $s \to \infty$. Example:

$$\frac{s}{s^2+1} \quad = \quad \frac{1/s}{1+1/s} \to 0$$

as $s \to \infty$. We say that G(s) has a zero at $s = \infty$. In fact, G(s) has $\alpha = n - m$ "zeros at ∞ ." In this way a proper transfer function has *exactly n*-poles and *n*-zeros counting zeros at infinity. **Example:**

$$G(s) = \frac{s+1}{s(s+2)(s+3)}$$

Then G(s) has poles at s = 0, -2, -3 and zeros at $s = -1, \infty, \infty$ since the relative degree is $\alpha = 2$.

Standard Forms of Feedback Control Systems

Consider the block diagram shown below:

This is the standard cascade compensation, unity feedback system.

The product G(s)H(s) is called the open loop transfer function or forward transfer function

- The plant transfer function is determined from the physical models of the system.

- The compensator transfer function is to be designed by us.

The block diagram

represents the equations

$$C(s) = G(s)H(s)E(s)$$

$$E(s) = R(s) - C(s)$$

$$= R(s) - G(s)H(s)E(s).$$

Therefore,

$$E(s) = \frac{1}{1 + G(s)H(s)}R(s)$$

and

$$C(s) = \frac{G(s)H(s)}{1+G(s)H(s)}R(s).$$

The transfer function $\frac{G(s)H(s)}{1+G(s)H(s)}$ is called the *closed loop transfer function*. The transfer function $\frac{1}{1+G(s)H(s)}$ is called the system sensitivity function. Typically R(s) represents the 'desired output' and the control design problem is, given G(s), design H(s) so that $C(s) \approx R(s)$, or equivalently so that $E(s) \approx 0$. We see that, to do this we should have $\frac{1}{1+G(s)H(s)} \approx 0$ and $\frac{G(s)H(s)}{1+G(s)H(s)} \approx 1$. We will develop techniques to do this. In some cases the compensator H(s) might be given in the 'feedback path' instead of in cascade with the plant

This forms a non-unity feedback system. In this case the open loop transfer function

$$G(s)H(s) = \frac{B(s)}{E(s)}.$$

The actual signal is

$$E(s) = R(s) - B(s)$$

= $R(s) - H(s)C(s)$.

Note in this case that the actuating signal is no longer the same as the error signal, R(s) - C(s). In fact, the error signal is not physically present in the block diagram in the case of non-unity feedback. It is easy to show that the closed loop transfer function now is

$$\frac{G(s)}{1 + G(s)H(s)}$$

and the sensitivity function is the same.

Block Diagram Reduction

A general linear control system may be built up from many interconnected subsystems, each of which is a system by itself, and, hence, represented by a transfer function. We need ways to reduce a complicated block diagram to a simpler form, for example, *the linear system*

is not in standard form.

What is the closed loop transfer function C(s)/R(s)?

In order to answer this, we need to develop a 'Block Diagram Algebra' to replace complex blocks by equivalent, but simpler blocks.

1) Series (Cascade) Connection

$$\chi(s) \longrightarrow \overbrace{\mathcal{G}_{a}(s)}^{Y_{a}(s)} \overbrace{\mathcal{G}_{l}(s)}^{Y_{a}(s)} \xrightarrow{Y_{l}(s)}$$

This is equivalent to:

$$\chi(s) \longrightarrow \overline{G_1(s) \ G_2(s)} \longrightarrow Y_1(s)$$

Proof: Note that the original block diagram represents the equations

$$Y_1 = G_1(s)Y_2$$
$$Y_2 = G_2(s)X.$$

Substituting for Y_2 in the first equation gives

$$Y_1 = G_1(s)G_2(s)X$$

which is represented by the second block diagram.

Remarks: Notice that the intermediate signal $Y_2(s)$ is lost, i.e., it does not appear in the equivalent block diagram.

2) Parallel Connection

$$Y(s) = G_1(s)x(s) + G_2(s)x(s) = (G_1(s) + G_2(s))x(s).$$

Therefore the equivalent block diagram representation is

$$X(s) \longrightarrow \overline{G_1(s) + G_2(s)} \longrightarrow Y(s)$$

3) Feedback Connection

a) unity feedback

$$X \xrightarrow{+} G(s) \longrightarrow Y$$

is equivalent to

$$X \longrightarrow \overbrace{I \stackrel{G(s)}{+} G(s)} \xrightarrow{Y}$$

 ${\bf b}$ non-unity feedback

is equivalent to

$$X \longrightarrow \overbrace{j \stackrel{G(s)}{-} G(s)}^{G(s)} H(s) \longrightarrow Y$$

Example: Find the closed transfer function $\frac{C(s)}{R(s)}$

$$R(i) \xrightarrow{\bullet} (\underline{H}_{i}(s)) \xrightarrow{\bullet} (\underline{G}_{i}(0) \xrightarrow{\bullet} (\underline{G}_{i}(s)) \xrightarrow{\bullet} C(i)$$

Step 1)

$$R \xrightarrow{G_2 H_2} \xrightarrow{G_1} I + G_1 H_1 \rightarrow C$$

Step 2)

Finally

$$C(s)/R(s) = \frac{\frac{G_1G_2H_2}{1+G_1H_1}}{1+\frac{G_1G_2H_2}{1+G_1H_1}}$$

= $\frac{G_1G_2H_2}{1+G_1H_1+G_1G_2H_2}$

4) Moving a Pick-Off Point

a) ahead of a block

is equivalent to

$$X_{1} \longrightarrow \overbrace{G_{1}}^{X_{2}} \xrightarrow{X_{2}} \overbrace{G_{2}}^{X_{2}} \xrightarrow{Y_{1}} Y_{1}$$

$$Y_{2} \longleftarrow \overbrace{H_{2}}^{X_{2}} \longleftarrow$$

(II)

(I)

provided $H_2 = H_1/G_2$.

Proof: In diagram (I) we have

$$Y_2 = H_1 X_2$$

In diagram (II) we have

$$Y_2 = H_2 Y_1 = H_2 G_2 X_2$$

 $H_1 = H_2 G_2$

Therefore

or

$$H_2 = H_1/G_2$$

b)

Find
$$C(s)/R(s) = T(s)$$

$$R(s) \longrightarrow \overline{T(s)} \longrightarrow C(s)$$

Step 1: Move pick-off point ahead of G_3 .

$$R \xrightarrow{f}_{G_1} \xrightarrow{f}_{G_2} \xrightarrow{f}_{G_3} \xrightarrow{f}_{G$$

Step 2: Combine cascade of G_2 and G_3 and eliminate the upper feedback loop.

$$R \xrightarrow{*} G_{1} \xrightarrow{} G_{2} \xrightarrow{} I + G_{2} \xrightarrow{} G_{3} \xrightarrow{} C$$

Step 3: Simplify cascade connection and eliminate the final non-unity feedback loop.

$$= \frac{\frac{G_1G_2G_3}{1+G_2G_3H_1}}{G_1G_2G_3H_1} \cdot \frac{H_2}{G_3}}{\frac{G_1G_2G_3}{1+G_2G_3H_1} \cdot \frac{H_2}{G_3}}$$

=
$$\frac{G_1G_2G_3}{1+G_2G_3H_1 + G_1G_2H_2}$$

=
$$T(s).$$

There are other rules for moving summing junctions, etc. The important point to remember is that the block diagram is a representation of algebraic equation so the equivalent block diagram can always be reproduced

from the equations.

	Original Block Diagrams	Equivalent Block Diagrams
1		$A \xrightarrow{A-\frac{B}{G}} G \xrightarrow{AG-B}$ $\xrightarrow{B}_{G} \xrightarrow{1} \frac{1}{G} \xrightarrow{B}$
2		
3		$A \longrightarrow G \longrightarrow AG$ $AG \longrightarrow G$ $AG \longrightarrow G$
4		
5		$A \xrightarrow{G_1} B$

Summary of Block Diagram Algebra

Transformation		Equation	Block Diagram	Equivalent Block Diagram
1	Combining Blocks in Cascade	$\mathbf{I}' = (P_1 P_2) \mathbf{X}$	<u>x</u>	<u>x</u> <u>y</u>
2	Combining Blocks in Parallel: or Eliminating a Forward Loop	$Y = P_1 X = P_2 X$		$\frac{X}{P_1 = P_1} = \frac{Y}{P_1}$
3	Removing a Block from a Forward Path	$Y = P_1 X \pm P_2 X$	[
4	Eliminating a Feedback Loop	$Y = P_1(X = P_2Y)$		$\frac{X}{1 = P_1 P_2}$
5	Removing a Block from a Feedback Loop	$Y = P_1(X = P_2Y)$		X -

	Transformation	Equation	Block Diagram	Equivalent Block Diagram
60	Rearranging Summing Points	$Z = W \pm X \pm Y$		$\frac{W + + + z}{y} = z$
65	Rearranging Summing Points	Z = W = X = Y	$\frac{W + + + + + z}{x} = z$	$\frac{W}{x} \rightarrow \frac{z}{x}$
7	Moving a Summing Point Ahead of a Block	Z = PX = Y		$\begin{array}{c} x \rightarrow \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
8	Moving a Summing Point Beyond a Block	$Z = P[X \pm Y]$		<u>x</u> <u>r</u> <u>r</u>
9	Moving a Takeoff Point Abead of a Block	Y = PX	<u>x</u> <u>y</u>	x y p
10	Moving a Takeoff Point Beyond a Block	Y = PX		хр хр
11	Moving a Takeoff Point Ahead of a Summing Point	$Z = X \pm Y$		
12	Moving a Takeoff Point Beyond a Summing Point	Z = X = Y		