Transfer Functions

$$
U(s) \rightarrow S \rightarrow Y(s)
$$

The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., $Y(s) / U(s)$. Denoting this ratio by $G(s)$, i.e.,

$$
G(s)=Y(s) / U(s)
$$

we represent the linear system as

$$
U(s) \longrightarrow G(s) \longrightarrow Y(s)
$$

In this representation, the output is always the Transfer function times the input

$$
Y(s)=G(s) U(s)
$$

Example: Suppose a linear system is represented by the differential equation

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+a_{1} \frac{d y}{d t}+a_{0} y=u \\
s^{2} Y(s)+a_{1} s Y(s)+a_{0} Y(s)=U(s)
\end{gathered}
$$

Taking Laplace Transforms with zero initial conditions,

$$
\left(s^{2}+a_{1} s+a_{0}\right) Y(s)=U(s)
$$

we see that the transfer function is

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{s^{2}+a_{1} s+a_{0}}
$$

Remarks:

- The transfer function is always computed with all initial conditions equal to zero.
- The transfer function is the Laplace Transform of the impulse response function.
[To see this, set $U(s)=1$.]
The transfer function of any linear system is a rational function

$$
G(s)=\frac{n(s)}{d(s)}=\frac{b_{m} s^{m}+\cdots+b_{1} s+b_{0}}{a_{n} s^{n}+\cdots+a_{1} s+a_{0}}
$$

where $n(s), d(s)$ are the numerator and denominator polynomials of $G(s)$, respectively

- $G(s)$ is proper if

$$
m=\operatorname{deg} n(s) \leq n=\operatorname{deg} d(s)
$$

- $G(s)$ is strictly proper if $m<n$.
- For a proper or strictly proper rational function, the difference $\alpha=n-m$ is called the relative degree of the transfer function.
- The denominator polynomial $d(s)$ is called the characteristic polynomial. The roots of $d(s)$ are the poles of $G(s)$. The roots of $n(s)$ are the zeros of $G(s)$. Assuming that $n(s)$ and $d(s)$ have no common factors then $G(s)$ has n finite poles and m finite zeros in the complex plane.

We will see that the location of the poles and zeros of $G(s)$ completely determine the behavior of the linear system.

A strictly proper transfer function always satisfies $G(s) \rightarrow 0$ as $s \rightarrow \infty$.

Example:

$$
\frac{s}{s^{2}+1}=\frac{1 / s}{1+1 / s} \rightarrow 0
$$

as $s \rightarrow \infty$. We say that $G(s)$ has a zero at $s=\infty$. In fact, $G(s)$ has $\alpha=n-m$ "zeros at ∞." In this way a proper transfer function has exactly n-poles and n-zeros counting zeros at infinity.
Example:

$$
G(s)=\frac{s+1}{s(s+2)(s+3)}
$$

Then $G(s)$ has poles at $s=0,-2,-3$ and zeros at $s=-1, \infty, \infty$ since the relative degree is $\alpha=2$.

Standard Forms of Feedback Control Systems

Consider the block diagram shown below:

This is the standard cascade compensation, unity feedback system.

$$
\begin{aligned}
G(s) & =\text { plant transfer function } \\
H(s) & =\text { compensator transfer function } \\
R(s) & =\text { reference input } \\
C(s) & =\text { output } \\
E(s)=R(s)-C(s) & =\text { error signal or actuating signal }
\end{aligned}
$$

The product $G(s) H(s)$ is called the open loop transfer function or forward transfer function

- The plant transfer function is determined from the physical models of the system.
- The compensator transfer function is to be designed by us.

The block diagram

represents the equations

$$
\begin{aligned}
C(s) & =G(s) H(s) E(s) \\
E(s) & =R(s)-C(s) \\
& =R(s)-G(s) H(s) E(s)
\end{aligned}
$$

Therefore,

$$
E(s)=\frac{1}{1+G(s) H(s)} R(s)
$$

and

$$
C(s)=\frac{G(s) H(s)}{1+G(s) H(s)} R(s)
$$

The transfer function $\frac{G(s) H(s)}{1+G(s) H(s)}$ is called the closed loop transfer function. The transfer function $\frac{1}{1+G(s) H(s)}$ is called the system sensitivity function. Typically $R(s)$ represents the 'desired output' and the control design problem is, given $G(s)$, design $H(s)$ so that $C(s) \approx R(s)$, or equivalently so that $E(s) \approx 0$. We see that, to do this we should have $\frac{1}{1+G(s) H(s)} \approx 0$ and $\frac{G(s) H(s)}{1+G(s) H(s)} \approx 1$. We will develop techniques to do this. In some cases the compensator $H(s)$ might be given in the 'feedback path' instead of in cascade with the plant

This forms a non-unity feedback system. In this case the open loop transfer function

$$
G(s) H(s)=\frac{B(s)}{E(s)}
$$

The actual signal is

$$
\begin{aligned}
E(s) & =R(s)-B(s) \\
& =R(s)-H(s) C(s)
\end{aligned}
$$

Note in this case that the actuating signal is no longer the same as the error signal, $R(s)-C(s)$. In fact, the error signal is not physically present in the block diagram in the case of non-unity feedback. It is easy to show that the closed loop transfer function now is

$$
\frac{G(s)}{1+G(s) H(s)}
$$

and the sensitivity function is the same.

Block Diagram Reduction

A general linear control system may be built up from many interconnected subsystems, each of which is a system by itself, and, hence, represented by a transfer function. We need ways to reduce a complicated block diagram to a simpler form, for example, the linear system

is not in standard form.
What is the closed loop transfer function $C(s) / R(s)$?
In order to answer this, we need to develop a 'Block Diagram Algebra' to replace complex blocks by equivalent, but simpler blocks.

1) Series (Cascade) Connection

$$
x(s) \longrightarrow G_{2}(s) \xrightarrow{y_{2}(s)} G_{1}(s) \longrightarrow y_{1}(s)
$$

This is equivalent to:

$$
x(s) \longrightarrow G_{1}(s) G_{2}(s) \longrightarrow Y_{1}(s)
$$

Proof: Note that the original block diagram represents the equations

$$
\begin{aligned}
& Y_{1}=G_{1}(s) Y_{2} \\
& Y_{2}=G_{2}(s) X .
\end{aligned}
$$

Substituting for Y_{2} in the first equation gives

$$
Y_{1}=G_{1}(s) G_{2}(s) X
$$

which is represented by the second block diagram.
Remarks: Notice that the intermediate signal $Y_{2}(s)$ is lost, i.e., it does not appear in the equivalent block diagram.
2) Parallel Connection

$$
\begin{aligned}
Y(s) & =G_{1}(s) x(s)+G_{2}(s) x(s) \\
& =\left(G_{1}(s)+G_{2}(s)\right) x(s)
\end{aligned}
$$

Therefore the equivalent block diagram representation is

$$
X(s) \longrightarrow G_{1}(s)+G_{2}(s) \longrightarrow Y(s)
$$

3) Feedback Connection

a) unity feedback

is equivalent to

b non-unity feedback

is equivalent to

Example: Find the closed transfer function $\frac{C(s)}{R(s)}$

Step 1)

Step 2)

Finally

$$
\begin{aligned}
C(s) / R(s) & =\frac{\frac{G_{1} G_{2} H_{2}}{1+G_{1} H_{1}}}{1+\frac{G_{1} G_{2} H_{2}}{1+G_{1} H_{1}}} \\
& =\frac{G_{1} G_{2} H_{2}}{1+G_{1} H_{1}+G_{1} G_{2} H_{2}}
\end{aligned}
$$

4) Moving a Pick-Off Point
a) ahead of a block

is equivalent to

provided $H_{2}=H_{1} / G_{2}$.

Proof: In diagram (I) we have

$$
Y_{2}=H_{1} X_{2}
$$

In diagram (II) we have

$$
Y_{2}=H_{2} Y_{1}=H_{2} G_{2} X_{2}
$$

Therefore

$$
H_{1}=H_{2} G_{2}
$$

or

$$
H_{2}=H_{1} / G_{2}
$$

b)

Find $C(s) / R(s)=T(s)$

Step 1: Move pick-off point ahead of G_{3}.

Step 2: Combine cascade of G_{2} and G_{3} and eliminate the upper feedback loop.

Step 3: Simplify cascade connection and eliminate the final non-unity feedback loop.

$$
\begin{aligned}
& \frac{\frac{G_{1} G_{2} G_{3}}{1+G_{2} G_{3} H_{1}}}{1+\frac{G_{1} G_{2} G_{3}}{1+G_{2} G_{3} H_{1}} \cdot \frac{H_{2}}{G_{3}}} \\
= & \frac{G_{1} G_{2} G_{3}}{1+G_{2} G_{3} H_{1}+G_{1} G_{2} H_{2}} \\
= & T(s) .
\end{aligned}
$$

There are other rules for moving summing junctions, etc. The important point to remember is that the block diagram is a representation of algebraic equation so the equivalent block diagram can always be reproduced
from the equations.

	Original Block Diagrams	Equivalent Block Diagrams
1		
2		
3		
4		
5		$A-\frac{G_{1}}{1+G_{1} G_{2}}{ }^{B}$

Summary of Block Diagram Algebra

	Transformation	Equation	Bleck Diagram	Equivalent Block Diagram
60	Rearranging Summing Points	$z=W=X \pm Y$		
6b	Rearrangine Summing Points	$\boldsymbol{z}=\boldsymbol{W}=\boldsymbol{X}=\boldsymbol{Y}$		
7	Moving a Summing Point Ahead of a Block	$\boldsymbol{Z}=P \mathbf{P}=\boldsymbol{Y}$		
8	Moving a Summing Point Besond a Block	$z=P[X=Y]$		
9	Moving a Takeort Point Abead of a Block	$\boldsymbol{Y}=\boldsymbol{P X} \boldsymbol{X}^{\because}$		
10	Moving a Takeor Point Beyond a Block	$\boldsymbol{Y}=\boldsymbol{P} \boldsymbol{X}$		
11	Moving a Takeota Point Ahead of a Summiag Point	$z=X \pm Y$		
12	Moving a Takeoll Point Beyond a Suramiar Point	$z=X=Y$		

