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Mechanics of Discontinuous Faults

P. SEGALL' AND D. D. POLLARD

U.S. Geological Survey, Menlo Park, California 94025

Fault traces consist of numerous discrete segments, commonly arranged as echelon arrays. In some
cases, discontinuities influence the distribution of slip and seismicity along faults. To analyze fault seg-
ments, we derive a two-dimensional solution for any number of nonintersecting cracks arbitrarily located
in a homogeneous elastic material. The solution includes the elastic interaction between cracks. Crack
surfaces are assumed to stick or slip according to a linear friction law. For an array of echelon cracks the
ratio of maximum slip to array length sngmﬁcantly underestimates the difference between the driving
stress and frictional resistance. The ratio of maximum slip to crack length slightly overestimates this dif-
ference. Stress distributions near right- and left-stepping echelon discontinuities differ in two 1mportant
ways. For right lateral shear and left-stepping cracks, normal tractions on the overlapped crack ends in-
crease and inhibit frictional sliding, whereas for right-stepping cracks, normal tractions decrease and fa-
cilitate sliding. The mean compressive stress between right-stepping cracks also decreases and promotes
the formation of secondary fractures, which tend to link the cracks and allow slip to be transferred
through the discontinuity. For left-stepping cracks the mean stress increases; secondary fracturing is
more restricted and tends not to link the cracks. Earthquake swarms and aftershocks cluster near right
steps along right lateral faults. Our results suggest that left steps store elastic strain energy and may be

INTRODUCTION

Field studies have demonstrated that faults are discontin-
uous geologic features consisting of numerous discrete seg-
ments [Brown, 1970; Vedder and Wallace, 1970; Sharp, 1972;
Clark, 1973]. Even in cross section, fault geometries are quite
complex; individual segments have different lengths and ori-
entations and may transect or truncate adjacent segments [Bo-
nilla, 1979). Commonly, fault segments form an echelon array
with individual segments nearly parallel with the general
trend of the fault. Echelon patterns are characterized as left
stepping or right stepping by viewing the segments along
trend and noting whether one must step to the left or right to
reach the next segment. Discontinuous fault traces occur at all
length scales, from fault segments ~100 km long on the Anat-
oli fault [4llen, 1968; Dewey, 1976] and those 1-20 km long on
the San Andreas fault, through those tens of meters long in
the San Rafael desert [4ydin, 1977], to those meters or cen-
timeters long in mining-induced normal faults observed in
South African gold mines [Gay and Ortlepp, 1979; McGarr et
al., 1979a}. Discontinuities are characteristic of dip slip as well
as strike slip faults and are independent of length scale, rock
properties, total fault slip, and tectonic setting. Discontinuities
are, indeed, a fundamental feature of faults.

Both geologic and geophysical evidence indicates that dis-
continuities play an important role in the kinematics and dy-
namics of the faulting process. The distribution of slip follow-
ing earthquakes often indicates that segments behave as
discrete slipping surfaces. For example, following the 1968
Borrego Mountain [Clark, 1972, Figure 32] and 1966 Park-
field, California [Lindh and Boore, 1980, Figure 5], earth-
quakes, slip went to zero at the end of segments and was max-
imal near the middle of segments.

Observations of surface deformation, accumulated during
many episodes of slip, associated with echelon offsets suggest
a marked difference in behavior between left- and right-step-
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sites of large earthquakes. Opposite behavior results if the sense of shear is left lateral.

ping offsets. For right lateral shear, left steps tend to produce
local upwarps, while right steps produce ‘pull apart’ basins, or
‘rhomb grabens.” An example of a left step on a right lateral
fault is found along the northwest-striking Coyote Creek fault
in southern California. The 1968 Borrego Mountain earth-
quake broke the surface along three segments of the Coyote
Creek fault [Clark, 1972). Between the ~10-km long northern
and central segments, sedimentary strata are warped into an
anticlinal dome, known as the Ocotillo Badlands [Sharp and
Clark, 1972], with a topographic relief of ~200 m above the
surrounding desert (Figure 1). An example of a right step on a
right lateral fault occurs near the town of Brawley, California
(Figure 2). The Imperial fault extends for ~60 km to the
southeast into Baja California. From geophysical evidence,
including seismic and geodetic data [Johnson and Hadley,
1976}, the Brawley fault is inferred to extend ~30 km to the
northwest. The right step between these faults is ~6 km. A
topographic depression, with ~10 m of relief, known as Mes-
quite Lake is located within the right step. It is bounded on
the east by the north-striking end of the Brawley Fault [Sharp,
1976] and on the southwest and northwest by the Imperial
fault and by the north-striking terminal branches of the Impe-
rial fault, respectively. Rhombic depressions similar to Mes-
quite Lake are quite common [Clayton, 1966; Tchalenko and
Ambraseys, 1970]. Rodgers [1980] has investigated the devel-
opment of such basins by considering the surface deformation

: near two offset dislocations.

Seismologic evidence indicates that surface fault geometries
may extend to appreciable depths [Aki, 1978]. For example,
the distribution of aftershocks from the Parkfield earthquake
reflects the 1-km right-stepping echelon discontinuity of the
surface fault trace [Eaton et al., 1970]. The aftershock focal
depths are between 3 km and 15 km. Bakun et al. [1980] point
out the close correlation between the fault trace geometry and
epicenter locations, rupture directivity, and aftershock cluster-
ing in their study of the 1973 Cienega Road earthquake. This
correlation suggests that discontinuities of several hundred
meters in the surface trace extend to depths of 5-8 km.

Mechanical analyses of faulting must include specification
of the following: (1) the geometry of the region, (2) appropri-
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Fig. 1. Coyote Creek fault and Ocotillo Badlands in southern California. Contours indicate present elevation in feet,
light lines represent traces of fold axes [after Sharp and Clark, 1972].

ate boundary and initial conditions, and (3) the constitutive
behavior of all parts of the body. Considerable attention has
been given to the constitutive behavior of the fault zone [Rud-
nicki, 1977; Dieterich, 1978; Stuart, 1979; Stuart and Mavko,
1979] and to boundary conditions specified as, for example,
the level of tectonic stress or rate of plate motion [Lachen-
bruch and Sass, 1973; Hanks, 1977, Zoback and Roller, 1979].
Although geologists have described the geometry of faults in
some detail [Wallace, 1973; Bonilla, 1979; Wallace and Morris,
1979], relatively little has been done to relate this geometry to
the faulting process. Most workers have modeled the fault as a
simple crack or dislocation [Weertman, 1965; Chinnery, 1968]
or ellipsoidal inclusion [Brady, 1975; Rudnicki, 1977]. The
principal objective of this paper is to present and discuss a
model of a discontinuous fault composed of interacting seg-
ments. For tractibility, certain simplifying assumptions about
the nature of the boundary conditions and the constitutive be-
havior are made.

The processes. responsible for the formation of discontin-
uous faults are largely unknown and will not be considered
here; rather, we investigate the consequences of preexisting
discontinuities on stress and displacement fields in faulted re-
gions. A general method for analyzing the elastic interaction

of multiple cracks is outlined. The accuracy of the method is
investigated by comparing computed results with those for a

special case for which a closed-form solution is known. We

then identify and explore two important effects of interaction
for representative geometries. First, the importance of inter-
action in determining the distribution of tractions on cracks
with frictional boundary conditions is examined. Next, the
stress distribution in the region between cracks is studied. We
also investigate the effect of multiple segments on the average
stress change on the fault. These results are used to draw sev-
eral general conclusions about the role of geometry in fault
mechanics.

METHOD OF ANALYSIS

Each fault segment is analyzed as a discrete planar crack of
fixed length and orientation in a homogeneous, linear elastic
material. The far-field stress state is assumed to be spatially
uniform, and the cracks are in static equilibrium. Because the
stresses due to an individual crack, in an arbitrary array of
cracks, decay with distance from the crack, the elastic inter-
action between cracks becomes less important at large separa-
tions. As a preliminary step, we estimate the range of crack
separations for which the interaction is important.
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Fig. 2. Brawley and Imperial faults in Imperial Valley, California.
Heavy lines denote major faults, dashed where inferred. The northern
branches of the Imperial fault are illustrated as normal faults; in fact,
the fault gradually changes character from strike-slip to oblique-slip
to normal-slip. Topographic contours (light lines) delineate closed de-
pression centered around Mesquite Lake [after Johnson and Hadley,
1976].

Strength of Crack Interaction

In two dimensions a crack is a line segment on which cer-
tain stress and displacement boundary conditions are satis-
fied. For an open crack, all tractions vanish on the line seg-
ment. The elastic fields are found by resolving the applied
stresses acting on the line segment without the crack present
o, then adding the internal stresses that equal the negative of
the applied stresses on the line segment and decay to zero at

(a)
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infinity. If the crack is isolated and the applied stresses o, are
uniform, the appropriate set of internal stresses is easily found
[cf. Paris and Sih, 1965]. If, however, additional cracks are in-
troduced, the elastic fields will be modified by interaction be-
tween cracks. In this case the resolved stress on the line seg-
ment becomes 0" + &y, where 6, are the nonuniform stresses
contributed by all other cracks in the body. Interaction is im-
portant where the stresses due to other cracks make up a sig-
nificant fraction of the total stress on a given crack, that is,
when 6, is some fraction € of ¢,/

A mode III crack can be thought of as a model of a strike
slip fault of length that is much greater than depth a (Figure
3a). The stress distribution around a crack of half-length a
parallel to the x axis and subjected to an antiplane stress o,.”
can be written as [Paris and Sih, 1965]

o,. +io,, = 0,," [1 — (a/&* M

where £ = x + iy = r exp (if)), r is the radial distance from the
crack center, and @ is the angle measured counterclockwise
from the crack plane. For (a/£) < 1, i.e., for distances greater
than the half length, (1) can be expanded in a binomial series:

0,, + io,, = 6,.°[1 + (a/&)* + 3(a/§)* + -] 2

The perturbing stress is equal to the total stress minus the ap-
plied stress, where the applied stress is the first term in brack-
ets in (2). Retaining terms of order (a/£)? the perturbing stress
is given by

G,, +i6,, = La,,%(a/r)* exp (—2i6) " (3)

These perturbing stresses are less than the prescribed fraction
of the applied stress, that is, 6, < €o,*, outside a critical radius
r.. Noting that the f-dependent term does not exceed unity,

we find
r.=a(e)"'? 4)

Choosing € = 0.1, we find r, = 2.25a. Beyond this radius the
perturbing stress is less than 10% of the applied stress.

We would expect significant interaction between faults if
they are separated by less than twice the depth of faulting. For
strike slip faults in California, seismicity is observed to depths
of 10-15 km. Taking this to represent the depth of slip a, in-

{b)

Fig. 3. Geometry for determination of interaction length scale: (@) antiplane (mode III crack) case; (b) plane strain
(mode II crack) case; a is the crack half length; r, defines a circular cylindrical region within which elastic interaction is

significant.
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teraction will be important if the faults are separated by less
than 20-30 km. If the fault length is much less than the depth,
an appropriate model is the plane strain (mode II) crack (Fig-
ure 3b). The stress distribution about a plane strain crack can
also be expanded in even powers of (a/§). The critical radius
for this case (with € = 0.1) is between 2a and 3a. For strike slip
faults in California, segments are typically separated by one
tenth of their lengths. Therefore the interaction between seg-
ments and between adjacent faults is significant in many lo-
calities and should be included in analyses of the deformation
and stress near faults.

Analysis of Interacting Cracks

Figure 4 illustrates the class of problems treated here. An
infinite, homogeneous, isotropic, elastic material with shear
modulus p and Poisson’s ratio » is subject to uniform stresses
at infinity. The far-field principal stresses ¢, and 0> are ori-
ented at an angle 8 with respect to a global coordinate system
(X, Y). Any finite number of nonintersecting planar cracks
may be introduced; each crack is defined by the coordinates of
its center (X,, Y)), its half-length a,, and the angle «; that the
crack plane makes with the X axis. A local coordinate (x,, y))
associated with each crack is oriented with x, parallel to the
crack plane. The problem considered here is two dimensional
(plane stress or plane strain); that is, variations in stresses and
fault geometry in the Z direction are negligible.

Solutions to multiple-crack problems have been found for
several special geometries, such as infinite, periodic arrays of
cracks [Koiter, 1961; Delameter et al., 1975]. The general prob-
lem of arbitrarily located and oriented opening mode cracks
was investigated by Pucik [1972] and Ishida [1973]. Yokobori
et al. [1971] consider the problem of two echelon cracks in
tension. The technique employed in this report is known as
the Schwarz-Neumann alternating technique or the method
of successive approximations [Muskhelishvili, 1954; Sokolni-
koff, 1956]. Because the stresses everywhere are uniquely de-
fined by the boundary tractions, we need only to guarantee
that the boundary conditions are met on all internal surfaces
(cracks) to find the complete stress and displacement distribu-
tions. The Schwarz-Neumann method involves first approxi-
mating the desired boundary conditions on a single crack,
thus altering the stresses everywhere in the material, specifi-
cally on all other cracks. Next, the stresses on a second crack
are adjusted to meet the desired boundary conditions, thus
further altering the stresses on all other cracks. The boundary
conditions are successively corrected, on each crack in turn,
until they are satisfied within a given tolerance on all cracks.

It is worth emphasizing the differences between solutions
which include the elastic interaction and those which simply
superimpose the elastic fields of noninteracting cracks [Kranz,
1979] or dislocations [Rodgers, 1980]. In these solutions, all
segments act independently; that is, during slip on one seg-
ment, all other segments are viewed as bonded together. The
deformations from each segment acting alone are added to-
gether, a technique equivalent to the zeroth-order interaction
in the Schwarz-Neumann method. The method presented
here considers the complete interaction for slip on all seg-
ments affected by every other segment. The interaction is im-
portant to consider, especially when slip on adjacent seg-
ments, or faults, is known to occur simultaneously as creep
events or earthquakes.

To approximate an arbitrary, nonuniform stress distribu-
tion on a single crack, we employ the fundamental solution,

FUNDAMENTAL SOLUTION

Y
N
T

X
—-

[04]
O3

X

Fig. 4. Class of multiple-crack problems analyzed. An infinite
elastic material containing any number of nonintersecting cracks is
loaded by far-field principal stresses 0, and 0, oriented at an angle
B with respect to a global coordinate (X, Y). Each crack is defined by
coordinates of center point (X;, Y)), half-length a;, and angle o, that
the crack makes with the X axis. Inset: fundamental solution used in
the Schwarz-Neumann technique. Uniform normal (N) and shear (T)
tractions are applied to crack between x; and x,; remainder of crack is
traction free.

found by Pollard and Holzhausen [1979), for an isolated crack
having uniform tractions applied to part of the crack surface
(Figure 4). Each crack surface is divided into a number of
patches n(). Uniform normal (N) and shear (7) tractions act
on opposing surfaces of the patch from x(i), to x(7),, where x
is position along the crack; the remainder of the crack is trac-
tion free, and all components of stress go to zero infinitely far
from the crack. Adding the solutions for each patch together,
we may approximate any arbitrary boundary condition on the
crack surface. As the patch size decreases, a better approxima-
tion to a smoothly varying function is achieved. In order to
economize on computation time and still maintain accuracy,
we relate the patch size to stress gradients on the crack; that is,
the patches are short where the resolved stress gradients are
large and long where the stresses are nearly uniform.

An advantage of the Schwarz-Neumann technique is its
flexibility: the number and orientation of the different cracks
are unrestricted, providing the cracks do not intersect one an-
other. Additionally, the boundary conditions on the crack sur-
faces are very general. For open (stress free) cracks the appro-
priate boundary conditions are N = T = 0, and for pressurized
fluid-filled cracks, N = —p and T = 0, where p is the internal
pressure. The tractions need not be uniform but can be speci-
fied to satisfy the friction law |7] < —f - N, where [ is the coef-
ficient of friction.

To illustrate the accuracy of the Schwarz-Neumann

- method, we compare our results with the exact solution for
two collinear cracks subject to uniform tension [Erdogan,

1962]. Both cracks are of length 24, and their centers are sepa-
rated by a distance 25. In Figure 5 we plot the opening mode
stress intensity K, at the inner crack tips, normalized by the
value for a single crack X°, versus the ratio a/b. As the cracks

approach one another, K; increases owing to the elastic inter-

action between cracks. Results computed for two different
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Fig. 5. Test of the Schwarz-Neumann technique, showing nor-
malized mode I stress intensity K,/K,° at inner tips of two collinear
cracks loaded in tension. Both cracks have half-length @ and half-sep-
aration b. K,° is the stress intensity at infinite separation. Computed
results for two patch densities are compared with analytical solution
derived by Erdogan [1962].

patch densities (n = 21 and 41) are plotted for comparison
with the exact solution. The Schwarz-Neumann method is
found to be accurate, even for a/b approaching 1.0. At a/b =
0.98 the calculated stress intensity is within 10% of the exact
solution for n = 21 and within 5% for n = 41. An error of 10%
is acceptable for the problems explored here. Other satisfac-
tory comparisons were made with known solutions for single
and multiple cracks.

STRESSES NEAR ECHELON FAULTS

In this section we investigate stress distributions near eche-
lon cracks to provide some understanding of fault interaction
for this important geometry. Although faults often consist of
many individual segments arranged en echelon, we only con-
sider the discontinuity between two segments, because the
stresses in this region are dominated by the two closest seg-
ments. The stresses resulting from more distant segments are
small in comparison. The geometry, applied stress, and fric-
tional properties used in these examples (Figure 6) are meant
not to apply to a particular field example, but to illustrate the
character of the solution for geologically reasonable choices of
parameters.

The step 2d, or distance between cracks in the Y direction,
is arbitrarily set at d = +0.1a for left-stepping cracks and at
d = —0.1a for right-stepping cracks. The separation 2s, or
distance between crack tips in the X direction, is positive
when the crack tips are apart, zero when they are both at X = 0,
and negative when the tips overlap each other. In these exam-
ples the far-field stresses are both compressive with ¢, =
50,>, and the minimum compression ¢, is 60° from the X
direction. The boundary conditions on the crack surfaces are
specified to follow a linear friction law, in which the coefficient
of friction f = 0.6. The normal component of traction N is
continuous across the crack, and the shear component T sat-
isfies the inequality [T| < —f - N. In general, an additional
condition on the crack displacements must be specified to in-
sure opposite crack faces do not interpenetrate [Dundurs and

Comninou, 1979]; in this analysis we specify that cracks re-
main closed.

SEGALL AND POLLARD:

DISCONTINUOUS FAULTS 4341

Stress Distribution on Faults

For cracks parallel to the X axis the stress components that
enter the boundary conditions are o,, and ¢,,. We can antici-
pate the nature of crack interaction from the o,, and o,, fields
near a single crack subjected to unit pure shear in the far field
(Figure 7). In regions where o,, > 1, the shear stress increase
because of the crack, and in regions where 6., < 1 the shear
stress decreases because of the presence of the crack (Figure
7a). Far from the crack, o,, = 1. An important feature of the
o,, field (Figure 7b) is that the area around a single crack is di-
vided into regions where o,, > 0 (tension) and regions where
0,, < 0 (compression). Because the applied stress is pure shear,
6,, approaches zero away from the crack.

Imagine inserting a second crack into the stress field of the
single crack shown in Figure 7. If the step or separation is
small in relation to the length of the two cracks, the inter-
action will be significant. If the inserted crack steps to the left,
we see that for positive separation the inserted crack will un-
dergo a small tension, o,,, normal to the crack faces and an in-
crease in the shear stress o,,. If the separation is negative
(crack tips overlap), the inserted crack will encounter a large
compression across its tip that will tend to increase the fric-
tional resistance to slip. In contrast, if the inserted crack steps
to the right, the effects are reversed because of antisymmetry
in the ¢,, distribution (Figure 7). For a right step the inserted
crack will undergo a small compression for positive separa-
tions but encounter a large tension at its tip for negative sepa-
rations. This tension will reduce friction and facilitate slip
near the end of the inserted crack.

Numerical solutions verify the conclusions drawn from ex-
amination of single-crack stress fields. For example, Figures
8a and 8b illustrate the distribution of normal and shear trac-
tions on the right-hand crack of a right-stepping echelon pair
with d = —0.09¢ and s = —0.09a. The far-field stresses and
boundary conditions are those specified at the beginning of
this section. Interaction has reduced the compression ~N and
the shear T by ~25% near the overlapped crack end. Plotting
the frictional resistance —/ - N and the shear T over the length
of the crack in Figure 8c, it is evident that —f - N = T, and so
slip occurs everywhere on the crack. By contrast, for a pair of
lefi-stepping cracks (d = +0.09a) the compression increases by
~25%, the shear stress decreases, and slip cannot occur near
the overlapped crack tip. This result is quite general for right
lateral shear and for separations smaller than the step. The in-
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Fig. 6. Definitions of echelon crack geometry. Two cracks of half-
length a are parallel to X direction; 24 is step between cracks, and 2s is
separation between crack tips. Far-field stresses used in computations
are also shown; 0;™ = 50,°.
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Fig. 7. Stress distribution around a single crack of unit half length, subjected to unit pure shear at infinity. (a) Shear
stress o, distribution. Because o, is symmetrical about crack center (x = 0), the range of x is restricted to 0 < x =< 2.
Shading denotes region where o, increases significantly, owing to presence of crack. (b) Normal stress a,, distribution; o,
is antisymmetric about x = 0. Shading denotes regions where o, is compressive.

teraction inhibits frictional sliding for left-stepping cracks and
facilitates sliding for right-stepping cracks; this effect is re-
versed for left lateral shear.

Stress Distribution Between Fault Segments

The distribution of stress is markedly different in the region
between two right-stepping and two left-stepping echelon
cracks. To illustrate this contrast, we examine the stress distri-
bution at small separation (s/a = 0.06) for both left- and
right-stepping cracks. For left-stepping cracks this is the mini-
mum separation that allows sliding to occur over the entire
crack; smaller separation leads to sticking near the crack ends.
Figure 9g illustrates the distribution of mean stress 4(o, + 03)
for left-stepping cracks. We note that the mean stress is every-
where compressive and that the compression increases to ~1.4
times the background value in the region between the cracks.
In the region adjacent to, but outside, the cracks the mean
stress is less than that in the far field. By contrast, the mean
stress between two right-stepping cracks decreases to ~0.6
times the far-field value for the same applied stress (Figure
9b). A significant discontinuity exists in mean stress across the
cracks in both cases. Figure 9c illustrates the distribution of
maximum shear stress 1(o, — 0,) for left-stepping cracks. The
increase in maximum shear is confined to the region between
the cracks where it increases to ~1.4 times the background
value. The region outside the cracks is subject to a decrease in
maximum shear. By contrast, for right-stepping cracks the
largest values of maximum shear occur in the regions outside
the cracks (Figure 9d). Figures 9¢ and 94 also illustrate the
orientation of a,, the minimum compression in the field. Far
from the cracks, o, is 60° from the X direction; any departures
from this orientation are due to the presence of the cracks. For
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Fig. 8. Tractions acting on rightmost crack of a right-stepping
echelon pair of cracks having d/a = s/a = —0.09. Applied stresses are
same as in Figure 6. Inset: scale illustration of crack geometry, show-
ing overlap and applied stress state. (a) Distribution of normal trac-
tions N on right crack from —a to a; negative values indicate compres-
sion. (b) Distribution of shear tractions T on right crack from —a to 4.
(¢) Replot of shear traction and frictional resistance (—f - N) illustrat-
ing slip occurring over entire segment. Small discrepancy between the
two curves is due to numerical error.
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lefi-stepping cracks, o, is rotated counterclockwise by ~10°
between the cracks, while for right-stepping cracks, g, is ro-
tated ~15° clockwise between the cracks. The principal stress
directions are discontinuous across the crack planes. Discon-
tinuities in stress orientation and magnitude at the crack are
due to the discontinuity in o,, across the cracks.

Fault Discontinuity and Stress Drop

Following earthquakes that break the earth’s surface, the
relative displacement across the fault can be used in con-
junction with the fault half length to infer the change in stress,
or stress drop, during the event. For an isolated shear crack of
half-length a undergoing a uniform stress change Ar in a ma-
terial of shear modulus g,

A_T o~ Ymax ®)

13 a
where u,,,, is the maximum displacement on one side of the
crack. Aki [1978] has pointed out that if fault segments behave
as mechanically independent slipping surfaces, the observed
displacement should be divided by the appropriate segment
half length, not by the total fault half length. This approxima-
tion ignores elastic interaction of the segments that tends to
increase the displacements for fixed segment lengths. Note
that interaction leads to nonuniform stress changes on a given
segment, as illustrated above (Figure 8).

To explore this result further, we calculate the maximum
displacements for different numbers of segments » on a fault
whose total length is fixed. The stresses and material proper-
ties are held constant, and so the variations in displacement
depend solely on n. In this example, s/a = 0 and a/d = 15. In
Figure 10 the ratio of maximum displacement to a character-
istic length L is plotted against the number of segments n. In
one set of calculations, L is taken to be the segment half-
length g; in the second set, L is the total fault half-length na.
The true stress change on the fault surfaces is the same for
both calculations and for all values of ». Ignoring the inter-
action of different segments by choosing the segment half-
length a as the appropriate length scale results in an over-
estimation of the stress change that increases as n increases.
Conversely, treating the fault as a single crack by choosing the
total fault half-length na as the appropriate length results in a
significant underestimation of the stress change. For many
elastically interacting segments, #,,,,/na is a poor estimate of
the stress change on the fault surface. These results are only
strictly appropriate when the deformation is entirely elastic.
Significant fracturing between segments would tend to link
adjacent segments, changing the effective lengths of the seg-
ments.

Secondary Fracturing

The large stresses predicted to exist in regions near closely
spaced cracks may, under appropriate conditions, lead to sec-
ondary fracturing. Because the stress states for left- and right-
stepping echelon cracks differ markedly, we expect that the
style and extent of such fracturing might also differ. In experi-
ments, two distinct styles of brittle failure have been recog-
nized in rock [Jaeger and Cook, 1969, p. 86]: (1) extension fail-
ure—when the confining pressure is low, fractures cut the
specimen and open perpendicular to the minimum compres-
sion (or maximum tension) o,; (2) shear failure—at larger con-
fining pressures the two ends of the specimen slide along a

SEGALL AND POLLARD: DISCONTINUOUS FAULTS

20

o

Fig. 10. Effect of number of fault segments on estimated stress
change on the crack surface. Calculated maximum displacement u
divided by segment half-length a (upper sequence of points) and total
fault half-length na (lower sequence of points) is plotted versus the
number of individual segments »n.

plane or zone oriented at <45° to the maximum compression
o;. We consider both styles of failure separately as mecha-
nisms of secondary fracturing.

Extension failure is predicted when the local magnitude of
maximum principal stress ¢, equals the tensile strength. Be-
cause tensile strengths of rocks are small in magnitude, we ap-
proximate the boundary of the failure zone by the contour
o, = 0 (Figure 11). For left-stepping echelon cracks the area
under tension is small and lies outside the cracks (Figure 11a).
The stress orientation is such that extension fractures forming
near the crack tips would propagate away from each other.
For right-stepping cracks, under the same applied stresses, a
much larger area of tension bridges the cracks (Figure 115).
Extension fractures forming near the crack tips would propa-
gate into the region between the cracks.

The conditions for shear failure depend on both principal
stresses o, and o; (or, equivalently, on the differential stress
and confining pressure). A linear (Coulomb) relation between
principal stresses at failure takes the form {Jaeger and Cook,
1969]

6, = ¢, + 0, tan? (45° + ¢/2) ©)

where ¢, is the cohesion and ¢ is the internal friction angle.
Rewriting (6) to conform with the tension-positive sign con-
vention and defining T = 4(0, — 03) and & = 1(o, + 03), we find
that a failure condition can be written as

F=ar+bo )

where

a= cl [1+ tan? (45° + ¢/2)]

b= cl [tan? (45° + ¢/2) — 1]

Representative values of ¢, and ¢ for granitic rocks are ¢, =
2.3 kbar and ¢ = 33° [Jaeger and Cook, 1969}, so that a = 1.91
and b = —1.04 (kbar). The material is predicted to fail on
planes oriented by 45° — ¢/2 (~30°) to the direction of maxi-
mum compression when F = 1 and not to fail when F < 1.

max >
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Fig. 11. Secondary fracturing near echelon discontinuities. Contour of the magnitude of maximum tension ¢, = 0 for
(a) left and (b) right step. Heavy contours enclose region of positive (tensile) stress and zone of potential tensile fracturing,
Representative tensile fractures are drawn perpendicular to the local o,. Contour of shear failure condition F for (c) left

and (d) right step. Illustrated contours are F = 1.0 and F = 2.0. Potential shear fractures are oriented at 30° to local maxi-
mum compression direction.
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The contours F = 1, 2 are illustrated for both left- and
right-stepping cracks in Figures 11c and 114, respectively. For
left-stepping cracks the shear-failure zone is restricted to the
neighborhood of the crack tips. The zone of potential shear
failure for right-stepping echelon cracks extends over a much
wider area (Figure 11d).

We can draw several conclusions about secondary fractur-
ing near echelon faults subject to right lateral shear. For left-
stepping segments the following can be concluded: (1) short
tensile cracks may form toward the outside of the step (Figure
11a), relieving the stress in this region and focusing any sec-
ondary shear fracturing ahead of, and between, the segments;
(2) the line linking the segment ends is nearly perpendicular
to the local maximum compression and is an unfavorable ori-
entation for secondary fracture. Incipient shear fractures
might form ahead of and parallel to the segments. The process
would be stable, however, because the frictional resistance to
slip would be great across the ends of the lengthened seg-
ments, as discussed above. The net effect may be that dis-
placements decrease gradually toward the segment ends in
such a way that the stress singularity is smoothed out and the
echelon array is stabilized. If the driving stress is increased
further, left lateral secondary shear fractures may form within
the step oriented at about 60° to the lengthened segments (Fig-
ure ll¢). For right-stepping segments the following can be
concluded: (1) tensile fracturing may occur within the step
(Figure 115), possibly linking the segments and allowing slip
to be transmitted through the step; the linked segments then
act as a single segment of twice the original length, and so
shear displacements may nearly double; (2) shear fracturing
may occur within the step along planes as indicated in Figure
11d. Secondary normal faults forming in a right step between
two vertical strike slip faults would strike in the same direc-
tion as the tensile cracks in Figure 115.

Steeply dipping mining-induced normal faults in South Af-
rica provide examples of secondary deformation associated
with left steps. Secondary fractures were observed between
left-stepping echelon fault segments [Gay and Ortlepp, 1979,
Figure 6; McGarr et al., 1979a, Figure 4]. The orientation and
extent of fracturing is consistent with predictions based on the
elastic model. Small tensile cracks formed toward the outside
of the discontinuity (Figure 1la), and antithetic shear frac-
tures formed between the segments (Figure 11c). More de-
tailed modeling of this particular fault by McGarr et al.
[1979b] yielded results similar to those presented here.

Small left lateral faults in the Sierra Nevada clearly illus-
trate the contrast in secondary fracturing associated with left
and right steps [Moore, 1963). Figure 124 illustrates a tensile
fracture that bridged a left step, but not a smaller right step
(compare with Figures 11a and 115, recalling that left steps
and left lateral shear are analogous to right steps when the
shear is right lateral). In addition, small rhomb-shaped
quartz-filled cavities commonly form between left steps
[Moore, 1963]. If a tensile crack links two segments, further
slip will be accommodated by opening of a rhombic cavity
with opening equal to the slip transmitted through the step
(Figure 125).

CONSTRAINTS ON APPLICATION OF THE MODEL

The results presented above were obtained for a two-di-
mensional (plane strain or plane stress) solution to an elastic
problem in which crack geometry, boundary conditions, and
deformation vary only in the XY plane. Consider the follow-
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(a) g

in granitic rocks of the Sierra Nevada. (a) Tensile fracture formed be-
tween left-stepping segments. A local foliation is developed between
the right-stepping segments. (b) Small quartz-filled rhombic cavity in
left step.

ing potential deviations from this simple description: (1) the
presence of a nearby free surface, (2) finite deformations asso-
ciated with many episodes of fault slip, (3) inelastic deforma-
tion between closely spaced segment ends, (4) variations in the
state of stress with depth, and (5) changes in the geometric ar-
rangement or number of segments with depth.

The plane strain analysis applies to a fault with dimension
in Z that is large in relation to the half-length a measured in
the XY plane. This analysis is also applicable to a buried fault
if the depth 4 to the fault is large in relation to a. We estimate
a limit for A/a from the critical radius r./a defined earlier.
Creating a free surface beyond the critical radius by removing
the small stresses acting on the surface has little effect on the
fault. Thus a buried fault is not significantly affected by the
earth’s surface if h/a > 3.

Near the earth’s surface the stress state is approximated by
plane stress conditions, and our analysis is applicable if the
XY plane is horizontal and the fault intersects the surface. Be-
cause strain in Z is proportional to the mean stress in the XY
plane for plane stress [Timoshenko and Goodier, 1951, p. 142],
we expect the distribution of vertical displacements in the hor-
izontal plane to correlate with the mean stress distribution.
This is corroborated by inspection of vertical displacements
and mean stress at the surface of a semiinfinite body contain-
ing a crack in shear [Chinnery, 1961, 1963]. For right lateral
shear and a left step the mean stress increases between eche-
lon faults (Figure 9a), corresponding to surface uplift. The
mean stress decreases between faults at a right step (Figure
9b), corresponding to surface downwarp. This conclusion is
similar to that of Rodgers [1980] and compares qualitatively
well with deformation at the Ocotillo Badlands (Figure 1) and
Mesquite Lake (Figure 2). At these localities, trends of fold
axes and normal faults, which are taken to represent principal
directions, are consistent with the elastic analysis. Of course,
the deformation at these localities has accumulated over many
individual slip events, and the total strains are clearly finite
and largely inelastic. In addition, processes of erosion and
deposition have modified the surfaces. The correlation be-
tween observations and theory implies that each increment of




deformation and uplift has been dominated by slip on fault
segments with the present geometry.

If inelastic deformation allows significant slip to be trans-
mitted through an echelon step, then a single crack, equal in
length to the two segments, better approximates the elastic
fields away from the step. If the rock within a step is largely
intact, failure at the low confining pressures of the upper crust
is by brittle fracture as considered above. If fractured rock or
gouge predominates, deformation may occur as distributed
plastic flow. We estimate the importance of plastic yielding
between segment ends, by comparing the size of the plastic
zone for a single segment with typical spacings between seg-
ments. Yielding of a perfectly plastic material at the tip of a
mode III crack occurs in a circular zone of radius R. The
stress field in the elastic region is determined by the purely
elastic solution for a crack of half-length a + R, that is, one in
which the actual crack tip is moved ahead to the center of the
plastic zone {Rice, 1968]. The size of the plastic zone is esti-
mated by R/a = {(¢°/7,)’, where ¢° is the applied shear stress
and 7, is the plastic yield strength. This approximation is valid
for 6°/7, < 0.5. In order for plastic yield to spread between
adjacent segments, R/a = d/a, where d is the half step be-
tween fault segments. Measuring d/a for the Coyote Creek,
San Andreas (near Parkfield), and Imperial-Brawley fault steps
(Figures 1, 14, and 2), we find d/a = 1/20-1/10. For plastic
yield to extend between the segments, o°/7, = (2d/a)'’* = 0.3-
0.4. Applied shear stress in the upper crust is of the order of
100 bars [McGarr and Gay, 1978), while yield strengths range
from 1 kbar for some natural fault gouges [Logan et al., 1979]
to as low as 100-200 bars for pure water-saturated clay [Wang
and Mao, 1979]. Comparison with fault zones exposed in
mines suggests that clayey gouge comprises a small fraction of
the fault zone [Wallace and Morris, 1979]. Thus it appears that
a“/1, < 0.1, although it could be greater in some instances.
Hence for faulting in the upper crust it appears that inelastic
deformation between segment ends is more likely to occur as
brittle fracturing than as plastic deformation.

The effect of increasing confining pressure with depth can
be approximated using the two-dimensional solution by
choosing applied stresses appropriate for different depths.
Large confining pressures stabilize rock to both extension and
shear failure. Thus changing the ratio of mean stress to maxi-
mum shear stress will alter the size and shape of the failure
zones in Figure 11.

To assess the value of a two-dimensional solution in study-
ing faults, the changes in fault geometry with depth must be
known; however, little, if anything, is known about the three-
dimensional form of faults. Because adjacent ends of echelon
fault segments often dip toward one another, several workers
[Clayton, 1966, Figure 4; Sharp and Clark, 1972, Figure 94]
suggest that segments coalesce into a single fault at depth, as
illustrated in Figure 13. If this geometry is appropriate, then
the ratio I/c (where [ is the depth at which the faults coalesce
and c is the total fault depth in the Z direction) determines the
character of deformation in the XY plane. As I/c approaches
I, the deformation is adequately approximated by a two-di-
mensional solution for n nonintersecting segments of half-
length a. As I/c approaches zero, surface deformation would
be better described by a single fault of length na. The charac-
ter of surface deformation also depends on the distance x
from the fault. For small x/a the deformation is greatly influ-
enced by fault segments extending from the surface to Z = /.
For large x/a, however, the deformation is approximated by a

SEGALL AND POLLARD: DISCONTINUOUS FAULTS

4347

2

Fig. 13. Schematic illustration of possible fault geometry in three
dimensions. Fault segments of half-length a intersect the XY plane
and coalesce into a single fault at depth /; fault plane extends to total
depth c.

single fault of length na and depth c. The proper geometry is
thus chosen by considering the individual fault segments for
large I/c and/or small x/a and by ignoring discontinuities and
treating the fault as a single surface for small //c and/or large
x/a. For intermediate values of [/c and x/a the problem is in-
herently three dimensional. The appropriate choice of model
geometry depends strongly on the depth of convergence (I/¢),
which at present must be evaluated for each individual fault.

SEISMICITY ASSOCIATED WITH FAULT DISCONTINUITIES

Studies of earthquake source mechanics require that the
faulting process be heterogeneous at length scales small in
comparison with the rupture length [Hanks, 1979; Nur, 1978;
Andrews, 1980]. As discussed by Nur [1978], heterogeneities on
many length scales are necessary to explain important features
of the faulting process. In this light, it is interesting to note
that irregularities in fault geometry occur at many length
scales, give rise to significant local stresses (Figures 7, 8, and
9), and may therefore be important in creating and maintain-
ing heterogeneous stresses on faults.

Recent studies of detailed seismicity have demonstrated
that earthquakes tend to cluster near steps and other irregu-
larities along some faults [Bakun et al., 1980]. A particularly
well studied event in which fault geometry evidently influ-
enced seismicity was the 1966 Parkfield-Cholame, California,
earthquake (Figure 14). Two separate aspects of the local fault
geometry are important. Lindh and Boore [1974] reported that
the epicenter of the magnitude 5.5 main event was located
near a 5° bend in the fault trace; a magnitude 5.1 foreshock
was located ~1 km to the northwest. Bakun and McEvilly
[1979] inferred that rupture of the foreshock propagated to the
northwest, but rupture of the main shock propagated to the
southeast. While we have not explicitly considered the effect
of small changes in fault strike, we can draw some conclusions
about the interaction in this case. Slip northwest of the epicen-
ter, in the form of both foreshocks and aseismic creep, in-
creased the shear stress acting on the central fault segment.
Because of the slight change in strike, a change in normal
stress would also occur. We can judge the sign of the normal
stress change by treating the northern segment as a single
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Fig. 14. - San Andreas fault near Parkfield, California. Solid lines
indicate observed ground breakage during the 1966 event; dashed
lines indicate the inferred trace of the fault [Brown, 1970). The largest
(M = 5.1) foreshock and the M = 5.5 main shock are also shown [after
McEvilly et al., 1967).

shear crack. We make use of the near-tip approximation for
the stresses, expressed in an (r, 6) coordinate system centered
on the crack tip [Rice, 1968]. Here it is considered positive for
angles measured counterclockwise from a line coincident with
the extension of the crack. For a given applied stress and dis-
tance from the crack tip, the normal stress o, is

g9 o< —3 cos? (8/2) sin (6/2) ®)

or, for small 8, g, o< —36/2. For slip north of the bend, ¢ =
—5° (Figure 14). Thus slip north of the epicenter adds a small
tension across the central segment and reduces the frictional
resistance to slip. The large foreshock to the north of the epi-
center destabilized the fault to the south and may have trig-
gered the main shock. Interestingly, for coseismic slip on the
central segment, § = +5° and the induced normal stress north
of the bend is compressive. The increased compression, which
inhibits slip, may help to explain the paucity of aftershocks
north of the bend. '
The second point of interest is the pronounced 1-km right
step in the fault, which can be seen both in the surface trace
[Brown, 1970] and in the aftershock distribution [Eaton et al.,
1970). For right lateral shear, right-stepping offsets are sites of
reduced frictional resistance to slip and of increased potential
for secondary fracturing. Thus we might expect right steps to
be areas of concentrated aftershock activity. This was indeed
true for the Parkfield aftershock sequence [Eaton et al., 1970].
The cumulative aftershock slip near the step was more than
twice that anywhere else in the aftershock zone [Lindh and
Boore, 1980]; precisely -at this step the surface slip was zero.
These observations suggest that aftershocks occurred on many
distributed fractures concentrated near the step, or possibly as
adjustment of the adjacent segment ends where the inter-
action is strongest (recall Figure 8). '
Additional examples of increased seismicity near right steps
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in right lateral faults have been described previously [Hill,

1977; Weaver and Hill, 1978/1979). The right step between

the Brawley and Imperial faults, described above, is of this

type. Earthquake swarms in the Imperial Valley occurred along

the Imperial and Brawley faults with epicenters clustering

either on the two main faults near the step or in the region be-

tween the offset faults [Johnson and Hadley, 1976; Johnson,

1979). Individual swarms were localized on trends transverse to

the main faults. Swarms initiated on the main faults but in

time developed progressively away from them. Johnson [1979]

has interpreted this behavior as the growth of secondary
faults. Fault plane solutions associated with the main faults

were dominantly strike slip, whereas those associated with se-

condary faults were both strike slip and dip slip. Aftershocks
of the 1979 El Centro earthquake are strongly clustered near
the right step with the Brawley fault [Johnson and Hutton,

1980]. The character of seismicity in the Imperial Valley is
compatible with our general conclusions concerning slip and
secondary fracturing associated with right steps. According to
this interpretation, secondary fracturing is due to the stress
state produced by slip on the main faults. The reduced mean
stress associated with right steps (Figure 95) would also favor
dike intrusion in these regions, and indeed the high heat flows
and geothermal phenomena in at least a few right steps sug-
gest igneous activity [Weaver and Hill, 1978/1979]. '

SUMMARY

Fault traces exhibit complex geometries which may be ap-
proximated as arrays of echelon segments. For a given sense
of shear, left- and right-stepping pairs of fault segments have
pronounced differences in mechanical behavior exemplified
by the static stress and deformation fields near echelon cracks
in an elastic material. Small changes in either the segment
length or the step greatly alter the response of the segments to
loading. Through elastic interaction, simultaneous slip on ad-
jacent segments may locally enhance or impede further slip.
This important result is not found in solutions where the stress
fields surrounding adjacent cracks are simply superimposed.
Confidence in application of the crack model to faults is
gained through comparison with the following: (1) predicted
distribution and orientation of secondary fractures near eche-
lon steps correlate well with those observed in the Sierra Ne-
vada and in South African mines; (2) deformation and verti-
cal displacements are consistent with observations at steps in
major strike slip faults in California.

We conclude that accurate maps of fault geometry are an
important requirement in understanding faulting. Further-
more, one must know how to extrapolate surface geometry to
seismogenic depths. Examples such as the 1966 Parkfield af-
tershock sequence indicate that ~1-km steps extend to depths
of 10 km. However, we do not know if such extrapolations are
warranted in general. Measurements of surface deformation
and seismicity near steps should clarify this point and provide
valuable information about the transfer of ‘slip between seg-
ments. If surface offsets extend to seismogenic depth along
right lateral faults, right steps may be sites of swarm seismicity
and aftershocks, while left steps may store strain and may be
sites of larger earthquakes. - S '
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left-stepping cracks, o, is rotated counterclockwise by ~10°
between the cracks, while for right-stepping cracks, o, is ro-
tated ~15° clockwise between the cracks. The principal stress
directions are discontinuous across the crack planes. Discon-
tinuities in stress orientation and magnitude at the crack are
due to the discontinuity in ¢, across the cracks.

Fault Discontinuity and Stress Drop

Following earthquakes that break the earth’s surface, the
relative displacement across the fault can be used in con-
Jjunction with the fault half length to infer the change in stress,
or stress drop, during the event. For an isolated shear crack of
half-length @ undergoing a uniform stress change At in a ma-
terial of shear modulus g,

AT Umax
n a

where u,,, is the maximum displacement on one side of the
crack. Aki[1978] has pointed out that if fault segments behave
as mechanically independent slipping surfaces, the observed
displacement should be divided by the appropriate segment
half length, not by the total fault half length. This approxima-
tion ignores elastic interaction of the segments that tends to
increase the displacements for fixed segment lengths. Note
that interaction leads to nonuniform stress changes on a given
segment, as illustrated above (Figure 8).

To explore this result further, we calculate the maximum
displacements for different numbers of segments » on a fault
whose total length is fixed. The stresses and material proper-
ties are held constant, and so the variations in displacement
depend solely on . In this example, s/a = 0 and a/d = 15. In
Figure 10 the ratio of maximum displacement to a character-
istic length L is plotted against the number of segments n. In
one set of calculations, L is taken to be the segment half-
length 4; in the second set, L is the total fault half-length na.
The true stress change on the fault surfaces is the same for
both calculations and for all values of . Ignoring the inter-
action of different segments by choosing the segment half-
length @ as the appropriate length scale results in an over-
estimation of the stress change that increases as # increases,
Conversely, treating the fault as a single crack by choosing the
total fault half-length na as the appropriate length results in a
significant underestimation of the stress change. For many
elastically interacting segments, Umax/Na is a poor estimate of
the stress change on the fault surface. These results are only
strictly appropriate when the deformation is entirely elastic.
Significant fracturing befween segments would tend to link
adjacent segments, changing the effective lengths of the seg-
ments.

(&)

Secondary Fracturing

The large stresses predicted to exist in regions near closely
spaced cracks may, under appropriate conditions, lead to sec-
ondary fracturing. Because the stress states for left- and right-
stepping echelon cracks differ markedly, we expect that the
style and extent of such fracturing might also differ. In experi-
ments, two distinct styles of brittle failure have been recog-
nized in rock [Jaeger and Cook, 1969, p. 86]: (1) extension fail-
ure—when the confining pressure is low, fractures cut the
specimen and open perpendicular to the minimum compres-
sion (or maximum tension) ay; (2) shear failure—at larger con-
fining pressures the two ends of the specimen slide along a
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Fig. 10. Effect of number of fault ségments on estimated stress
change on the crack surface. Calculated maximum displacement Urnax
divided by segment half-length a (upper sequence of points) and total
fault half-length na (lower sequence of points) is plotted versus the
number of individual segments ». ‘

plane or zone oriented at <45° to the maximum compression
05. We consider both styles of failure separately as mecha-
nisms of secondary fracturing.

Extension failure is predicted when the local magnitude of
maximum principal stress o, equals the tensile strength. Be-
cause tensile strengths of rocks are small in magnitude, we ap-
proximate the boundary of the failure zone by the contour
o, = 0 (Figure 11). For left-stepping echelon cracks the area
under tension is small and lies outside the cracks (Figure lla).
The stress orientation is such that extension fractures forming
near the crack tips would propagate away from each other.
For right-stepping cracks, under the same applied stresses, a
much larger area of tension bridges the cracks (Figure 115).
Extension fractures forming near the crack tips would propa-
gate into the region between the cracks,

The conditions for shear fajlure depend on both principal '

stresses o, and o5 (or, equivalently, on the differential stress
and confining pressure). A linear (Coulomb) relation between
principal stresses at failure takes the form [Jaeger and Cook,
1969)

0, =¢, + 05 tan® (45° + ¢/2) 6)

where ¢, is the cohesion and ¢ is the internal friction angle.
Rewriting (6) to conform with the tension-positive sign con-
vention and defining 7 = (g, — 03) and & = {(0, + 0;), we find
that a failure condition can be written as

F=ar+ b 0)

where

a= cl [1 + tan® (45° + ¢/2)]

b= Cl[tan2 @5° + ¢/2) — 1]

Representative values of ¢, and ¢ for granitic rocks are ¢, =
2.3 kbar and ¢ = 33° [Jaeger and Cook, 1969], so that a = 1.91
and b = —1.04 (kbar). The material is predicted to fail on
planes oriented by 45° — $/2 (~30°) to the direction of maxi-
mum compression when F = 1 and not to fail when F < 1.






