FFAG ACCELERATORS

M.K.Craddock

Department of Physics and Astronomy, University of British Columbia & TRIUMF

With grateful acknowledgements to the colleagues who have kindly provided images and other material

Workshop on Hadron Beam Therapy for Cancer, Erice, 24-30 April, 2009

OUTLINE

- 1. What are Fixed-Field Alternating-Gradient Accelerators (FFAGs)? How do they differ from cyclotrons and synchrotrons?
- 2. What distinguishes scaling from non-scaling FFAGs?
- 3. Brief overview of proposed FFAG designs for cancer therapy.
- 4. Advantages and disadvantages of FFAGs.

THE CYCLOTRON AND SYNCHROTRON FAMILIES

- FFC = fixed frequency cyclotron
- SC = synchrocyclotron
- SFC = sector-focused/isochronous cyclotron
- FFAG = fixed field alternating gradient

FFAGs - Fixed Field Alternating Gradient accelerators

Fixed Magnetic Field - members of the CYCLOTRON family¹

Magnetic field	Fixed Frequency	Frequency-modulated
variation B(θ)	(CW beam)	(Pulsed beam)
Uniform	Classical	Synchro-
Alternating	Isochronous	FFAG

1. E.M. McMillan, Particle Accelerators, in Experimental Nuclear Physics, III, 639-786 (1959)

BRIEF HISTORY

FFAGs were proposed by Ohkawa, Kolomensky, Symon and Kerst, (1953-5)

- and studied intensively at MURA in the 1950s and 1960s
- several electron models were built and operated successfully
- but no proton FFAG until Mori's at KEK (1 MeV 2000, 150 MeV 2003)

Now there's an explosion of interest!

- 6 more are now operating (for p, e, α) and 3 more (e) are being built
- ~20 designs under study:
 - for protons, heavy ions, electrons and muons
 - many of novel "non-scaling" design
- with diverse applications:
 - cancer therapy
 - industrial irradiation
 - driving subcritical reactors
 - boosting high-energy proton intensity
 - producing neutrinos.

FFAG Workshops since 1999:- Japan (x8), CERN, USA(x3), Canada, France, UK

BASIC CHARACTERISTICS OF FFAGs

are determined by their FIXED MAGNETIC FIELD

- Spiral orbits
 - needing wider magnets, rf cavities and vacuum chambers (compared to AG synchrotrons)
- Faster rep rates (up to kHz?) limited only by rf capabilities - not by magnet power supplies
- Large acceptances
- High beam current

The last 3 factors have fuelled interest in FFAGs over 50 years!

Good reading:

- K.R. Symon, D.W. Kerst, et al., Phys. Rev. 103, 1837 (1956)
- C.H Prior (ed.) *ICFA Beam Dynamics Newsletter* **43**, 19-133 (2007);
- FFAG Workshops Web links at <u>FFAG04</u> and <u>FFAG 2007</u>.

K.R. Symon, Proc PAC03, 452 (2003)

Courtesy of MURA

TRANSVERSE FOCUSING

In accelerators and beam transport systems, "focusing":

- does not generally refer to creation of a point focus;
- it means keeping a beam of neighbouring particles together by an E and/or M field distribution that provides restoring forces, leading to stable orbits.

Similarly, "defocusing" refers to situations with unstable orbits.

Fig. 2-1. Bowling alley analogy of systems of forces which produce neutral, unstable, or stable orbits.

BETATRON OSCILLATIONS, TUNES & EMITTANCE

With uniform focusing, charged particles will follow sinusoidal paths with amplitude A_u and phase ϕ : Here u stands for transverse x or y and the '<u>tune</u>' v (or Q in Europe) = number of oscillations per turn.

An aperture of half-height A can therefore accommodate a beam of particles with any phase ϕ and all amplitudes $A_u \leq A$, oscillating within a uniform envelope. [N.B. only max^m amplitude orbits are shown in the sketch.]

A useful measure of beam size is '<u>emittance</u>' ∝ diameter × divergence. The complementary quantity for an aperture/channel is its '<u>acceptance</u>' = the largest emittance that can pass through. BETATRON OSCILLATIONS with ALTERNATING FOCUSING

With alternating F and D lenses, the envelope is no longer uniform.

SCALING DESIGNS - HORIZONTAL TUNE V_r

Resonances were a worry in the 1950s, because of slow acceleration: if, at some energy, the betatron oscillation wavelength matches that of a harmonic component of the magnetic field, the ions may be driven into resonance, leading to loss of beam quality or intensity. The general condition is $\ell v_x \pm m v_y = n$ where ℓ , *m*, *n* are integers.

So "Scaling" designs were used, with:

- the same orbit shape at all energies
- the same optics """"
- the <u>same tunes</u> """ " " " \Rightarrow no crossing of resonances!

To 1st order, the (radial tune)² $v_r^2 \approx 1 + k$ (even with sector magnets) where the average field index $k(r) \equiv \frac{r}{B_{av}} \frac{dB_{av}}{dr}$ and $B_{av} = \langle B(\Theta) \rangle$ So large constant v_r requires $k = \text{constant} \ge 0$ $\Rightarrow B_{av} = B_0 (r/r_0)^k$ and $p = p_0 (r/r_0)^{(k+1)}$

SCALING FFAGs - VERTICAL TUNE v_z

In the vertical plane, with sector magnets and to 1st order,

 $v_z^2 \approx -k + F^2(1 + 2\tan^2 \varepsilon)$

where the 2nd term describes the Thomas and spiral edge focusing effects.

Note $k > 0 \Rightarrow$ vertical defocusing

: large constant, real v_z requires large, constant $F^2(1 + 2\tan^2 \varepsilon)$

MURA kept (1) magnetic flutter
$$F^2 \equiv \left\langle \left(\frac{B(\theta) - B_{av}}{B_{av}} \right)^2 \right\rangle = \text{constant}$$

(most simply achieved by using constant profile $B(\Theta)/B_{av}$)

(2a) for spiral sectors,

spiral angle ε = constant (sector axis follows R = R₀e^{Θ cot ε})

(2b) for radial sectors,

 $B_D = -B_F$ to boost F^2 .

Note - reverse fields increase average radius: ⇒>4.5x larger (Kerst & Symon'56 - no straights)

[Not so bad with straights: KEK 150-MeV FFAG has "circumference factor" 1.8]

In summary, scaling requires:-

- constant field index
- constant and high flutter, with opposing F and D fields (if radial)
- constant **spiral** angle (if spiral)
- meaning complex wide-aperture sector magnets

FIG. 3. Spiral-sector configuration.

KEK Proof-of-Principle 1 MeV proton FFAG

KEK 150-MeV 12-Sector Proton FFAG

INNOVATIONS AT KEK

Mori's 1 MeV (2000) and 150 MeV proton FFAGs introduced two important innovations:

- 1. FINEMET metallic alloy tuners allowing:
 - rf modulation at 250 Hz or more → high beam-pulse rep rates (remember the unreliable rotary capacitors on synchrocyclotrons, which operate in the same mode as FFAGs)
 - high permeability \rightarrow short cavities with high effective fields
 - low Q (\cong 1) \rightarrow broadband operation at a few MHz
- 2. DFD triplet sector magnets:
 - powered as a single unit
 - D acts as the return yoke, automatically providing reverse field
 - modern techniques enable accurate computation of the pole shape for constant field index k

"Return-yoke-less" DFD Triplet for 150-MeV FFAG

RF system

Large Magnetic Alloy (FINEMET) Cavity					
Number of core	4 pieces				
Outer (Inner) size	1700x950mm(980x230mm)				
Core thickness	25mm				
RF frequency	1.5 – 4.6 MHz				
RF voltage	9kV				
RF output	55kW				
Power density	1W/cm3				
Cooling water	70 L/min				

FFAG Complex at Kyoto University Research Reactor Inst.

• to test Accelerator-Driven Sub-critical Reactor (ADSR) operation

KURRI ERIT STORAGE RING FOR BNCT

(ERIT = Energy/Emittance Recovery Internal Target)

70-mA of circulating 11-MeV protons produce an intense neutron beam (>10⁹/cm²/s at the patient) via the Be(p,n) reaction. V_{rf} = 250 kV plus large FFAG acceptances (>3000 mm-mrad, ±5% $\delta p/p$) allow ionization cooling to maintain stable beam over 1000 turns.

SCALING FFAGs

- IN OPERATION OR UNDER CONSTRUCTION -

	Energy (MeV/u)	Ion	Cells	Spiral angle	Radius (m)	1 ^{s†} beam
KEK - POP	1	р	8	0°	0.8-1.1	2000
KEK	150	р	12	0°	4.5-5.2	2003
KURRI - ADSR	150	р	12	0°	4.5-5.1	2006
(Accelerator-Driven	20	р	8	0°	1.3-1.9	2006
Subcritical Reactor) 2.5	p	8	40°	0.6-1.0	2008
KURRI-ERIT (BNCT	⁻) 11	р	8	0°	2.35	2008
PRISM study	0.8	α	6	0°	3.3	2008
PRISM*	20	μ	10	0°	6.5	
NHV	0.5	e	6	30°	0.19-0.44	2008
RadiaBeam Radiatro	n 5	e	12	0°	0.3-0.7	(2009)

* storage ring for μ bunch rotation in phase space

SCALING FFAGs - DESIGN STUDIES

	Energy (MeV/u)	Ion	Cells	s Spira angle	l Radius (m)	Rep rate (Hz)	Comments
MElCo - Laptop	1	e	5	35°	.023028	1,000	Hybrid - <u>Magnet built</u>
eFFAG	10	e	8	47°	0.26 - 1.0	5,000	20-100 mA
LPSC RACCAM	180	р	10	54°	3.2 - 3.9	>20	Magnet sector 2008
Ibaraki Med.Acc.	230	р	8	50°	2.2 - 4.1	20	0.1 µA
MEICo - p Therapy	y 230	р	3	0°-60	° 0 - 0.7	2,000	<u>SC,</u> Quasi-isochronous
MEICo - Ion There (Mitsubishi Electr	apy[400 ric)[7	C ⁶⁺ C ⁴⁺	16 8	64° 0°	7.0 - 7.5 1.35 - 1.8	0.5 0.5	Hybrid (FFAG/synch ⁿ)
NIRS Chiba - Hadron Therapy	{400 { 100 ↓ 7	C ⁶⁺ " C ⁴⁺	12 12 10	0° 0° 0°	10.1 - 10.8 5.9 - 6.7 2.1 - 2.9	200 "	Compact radial sectors
Mu Cooling Ring	160	μ	12	0°	0.95 ± 0.08	3	Gas-filled
J-PARC Neutrino	∫20,000 J 10,000	н "	120 64	0° 0°	200 90		<u>⊿r = 0.5 m</u> , ~10 turns.
Factory Accelerators) 3,000 1,000	n N	32 16	0° 0°	30 10		<i>Q</i> ≈1 rf cavities allow broadband operation

IBARAKI MEDICAL FACILITY

C6+400MeV/n Hybrid Accelerator 5 for the Better

Particle	C6+		
Energy	4~400	[MeV/n]	
Radii	7.00~	•7.48[m]	
Cell	16		
K value	12		
Spiral angle	65 deg	gree	
Packing F	0.45		
Maximum Magnetic Strength	1.9T		
Repetition	0.5Hz		
			16m

NIRS Chiba - Compact Hadron Therapy FFAG

Final parameters of the RACCAM 10 cell ring and magnet :

2.76 / 1.55~1.60

3.46 m / 2.78 m / 0.67 m

1.42 m / 1.15 m

3.03 -> 7.54 MHz

1.86 -> 5.07 MHz

Extracion energy, variable Injection energy Nomentum ratio Number of cells Packing factor Field index, k Spiral angle Qh / Qv Radius on extraction/injection orbit : dR Drift length, extraction/injection orbit Frev, 15->180 MeV Frev, 5.5->70 MeV

Principle of Energy Variability for RACCAM System

LINEAR NON-SCALING (LNS) FFAGs

FFAGs look attractive for accelerating muons in μ Colliders or ν Factories

- Large acceptance (in r & p) eliminates cooling & phase rotation stages
- Rapid acceleration (<20 turns) makes resonance crossing ignorable (Mills '97)
- Less expensive than recirculating linacs.

NON-SCALING approach first tried by Carol Johnstone (arc 1997, ring 1999)

- strong positive-bending Ds + negative Fs i.e. negative field gradients!
- "LINEAR" constant-gradient magnets.

This leads to:

- Greater momentum compaction (& hence narrower radial apertures);
- No multipole field components to drive betatron resonances >1st order;
- Simpler construction (B \propto r rather than r^k).

SCALING v. LINEAR NON-SCALING FFAGs

Note that for LNS-FFAGs, orbit circumference C varies quadratically with energy rather than rising monotonically:

$$C(p) = C(p_m) + \frac{12\pi^2}{e^2 q^2 N L_{FD}} (p - p_m)^2$$

So less variation in C and orbit period, enabling fixed rf frequency operation when $v \approx c$.

• The muons oscillate in phase across the rf voltage peak (3 crossings)

- just as in a real, imperfectly isochronous, cyclotron!

The International Design Study for a Neutrino Factory chose LNS-FFAGs of 12.6-25 GeV and 25-50 GeV for the final stages of muon acceleration - with designs developed by a consortium led by Johnstone (FNAL), Berg (BNL), and Koscielniak (TRIUMF).

Non-linear NS-FFAGs are also being explored.

SERPENTINE ACCELERATION IN LNS-FFAGs

TUNES IN LNS-FFAGs

If the orbits cross the magnet ends perpendicularly:

- the tunes fall sharply with energy, crossing betatron resonances
- possibly leading to loss of beam quality/quantity
- danger lessened by rapid energy gain, but very expensive
- for muons (τ = 2 μ s): expensive but essential anyhow
- for ions: just expensive

ELECTRON MODEL LNS-FFAG "EMMA"

A Proof of Principle machine for linear non-scaling FFAGs to demonstrate their two novel features:

- safe passage through many low-order structural resonances
- acceleration outside buckets.

EMMA has relativistic parameters similar to those of a 10-20 GeV muon FFAG, with a doublet lattice based on offset quadrupoles:

Energy	10-20 MeV
Circumference	16.57 m
Cells	42
N.T. Acceptance	3 mm
F quad length	5.88 cm
D quad length	7.57 cm
RF frequency	1.3 GHz
Cavities	19 x 120 kV
Injector	ALICE (7-35 MeV)

UK funding (\$16M) started April 2007. Construction under way at Daresbury Lab.

NON-SCALING LATTICES FOR HADRONS

To accelerate hadrons, where v << c, the wider range of speeds and orbit times τ requires either:

- frequency modulation, or broadband operation,
 - both requiring pulsed beam operation, or
- harmonic number jumping (HNJ) as in microtrons
 - where the energy gain is adjusted to give $\Delta \tau$ = -integer × τ_{rf}
 - allowing cw fixed-frequency operation and higher beam intensity
 - but requiring precise variation of rf cavity voltage with radius.

With the small radial orbit spread, variable-energy extraction can be realized by timing the kicker pulse, even with fixed kicker and septum.

Three groups are actively designing NS-FFAGs for cancer treatment:

- 1. Keil (CERN), Trbojevic (BNL) and Sessler (LBNL)
- 2. Johnstone (FNAL) and Koscielniak (TRIUMF)
- 3. Yokoi, Peach et al. (Adams Inst.) and Machida (RAL).

Keil-Sessler-Trbojevic LNS-FFAG Therapy Complex

The first LNS-FFAG proposal for ion beam cancer therapy: - three concentric rings, each of 48 doublet cells.

The tunes fall with energy, crossing several n & n/2 imperfection resonances but no intrinsic resonances below 3rd order - so good beam quality is maintained.

RF is frequency-modulated (in the range 9-25 MHz).

Note the small magnets (cf. NIRS 3-ring S-FFAG).

NIRS Chiba - Compact Hadron Therapy FFAG

Keil-Sessler-Trbojevic Lightweight FFAG Gantry

This group has also proposed a lightweight LNS-FFAG gantry, composed of superconducting magnets (either high-temperature or cryogenic) in a close-packed triplet lattice.

The acceptance is large enough to transmit C^{6+} ions of 150-400 MeV/u at one excitation, and protons of 90-250 MeV at another.

Dejan Trbojevic's 28-250 MeV proton LNS-FFAG

Johnstone-Koscielniak Tune Stabilized NLNS-FFAGs (1)

Two designs are being considered for 30-250 MeV protons - roughly to scale

9-cell FOD0 Orbit radii 1.98-2.49 m

8-cell FDF Orbit radii 2.75-3.39 m

Tune Stabilized NLNS-FFAGs (2)

Tune drop-off with energy is avoided by:

- employing the "edge focusing" that occurs for non-perpendicular magnet entry/exit
- allowing a non-linear B(r) field variation

Nearly flat tunes are obtained, with large dynamic apertures.

Tune Stabilized NLNS-FFAGs (3)

4-T superconducting magnet designs have been prepared

For more details, see Carol Johnstone's poster.

PAMELA (Adams Inst. - Yokoi, Machida, Peach, et al.)

- 31 250 MeV protons
- 12-cell FDF
- Radius ≈ 6.25 m
- 4-T magnets

Machida semi-scaling lattice

- High field index k (i.e. B ~ r^k)
 for small orbit excursions
- approximate r^k locally by $\Sigma b_n x^n$ with n = 0, 1, 2, 3 only
- flat tunes, good dynamic aperture

400-MeV/u C^+ version is being prepared

CURRENT FFAG CANCER THERAPY STUDIES

	Energy	Ion	Cells	Spiral	Radius	Pulse rep.
<u>SCALING</u>	(MeV/u)			angle	(m)	rate (Hz)
KURRI: ERIT	11	р	8	0°	2.35	200
LPSC: RACCAM	17-180	р	10	54°	3.2-3.9	130
NON-SCALING						
	8-31	р	48	0°	5.49-5.52	≤1000
Keil, Sessler & Trbojevic	31-250 8-69	р С ⁶⁺	48	0°	6.86-6.95	≤1000
	69-400	<i>C</i> ⁶⁺	48	0°	8.23-8.32	≤1000
Trbojevic	28-250	р	24	0°	4.18-4.42	cw (HNJ)
Johnstone FODO	30-250	р	9	0°	1.98-2.49	
et al. FDF			8	0°	2.75-3.39	
PAMELA	30-250	р	12	0°	≈6.25	≤1000 or
(Machida lattice)	7-450	C^+				cw (HNJ)

FFAGs versus SYNCHROTRONS

<u>Advantages</u>

Disadvantages

Larger magnets, requiring high-quality field over a wider radial range.

FFAGs versus CYCLOTRONS

<u>Advantages</u>

- Variable-energy beams
- Flexible choice of ion (proton or heavier)
- Multiple extracted beams
- Less stringent magnetic field tolerances (10⁻³ cf. 10⁻⁵)

Disadvantages

- Larger footprint & cost (y' gets what y' pays for!)
- Limited momentum range requires an injector accelerator (some early proposals involved 3 FFAG rings)

(Non-scaling FFAGs only) High rf power

SUMMARY

- Last 10 years have seen rebirth of interest in FFAGs world-wide, prompted by the FFAG's unique characteristics:
 - high rep rate
 - high acceptance
- 8 built, 3 under way, ~20 designs proposed
- A whole new class of "non-scaling" FFAGs has been discovered
 - offering high momentum compaction
 - several varieties are being studied
- FFAGs offer advantages for cancer therapy:
 - high beam intensity
 - excellent compatibility with spot scanning
 - variable-energy beams
 - choice of ion
 - multiple extracted beams

SERPENTINE ACCELERATION IN CYCLOTRONS

- Real cyclotrons are only imperfectly isochronous
- Acceleration occurs along a serpentine path