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A collaborative effort of Hitachi and
STMicroelectronics, the SH-5 is the latest
member of the SuperH microprocessor series.
Its CPU core is the first implementation of a
new instruction set architecture consisting of
32-bit instructions, 64-bit registers, SIMD
(single-instruction, multiple-data) instruc-
tions for multimedia applications, and a com-
patibility mode supporting the 16-bit SuperH
instruction set.

Embodying an emerging philosophy of
embedded-core design, the SH-5 provides a
platform for a wide range of applications: set-
top cable boxes, digital TV, voice over IP (Inter-
net telephony), network processing, PDAs
(personal digital assistants), Internet appliances,
in-car information systems, game machines,
and so on. A single cost-effective, optimum
design that will cater to the requirements of such
a wide range of applications is not feasible. So
the SH-5 core supports a carefully selected set
of functions critical to meeting the performance,
power, and code-size requirements of these
applications. At the same time, it provides fea-
tures that ease integration into a system on chip
(SOC) that uses application-specific hardware
modules to cater to specific requirements.

Overview
The 32-bit SuperH architecture has evolved

over the past several years and is implement-
ed in dozens of embedded microprocessor and

microcontroller units representing the SH-1,
SH-2, SH-3, SH-DSP, and SH-4 genera-
tions.1,2 The 16-bit instruction set architec-
ture’s limited operation code space did not
allow extension to meet the performance
requirements of some multimedia applica-
tions. Similarly, the ISA could not support
floating-point and DSP instructions in the
same implementation because they share the
same operation code space.

Code generated for the SuperH 16-bit
instruction set has usually been significantly
more compact than code for other RISC archi-
tectures with 32-bit instruction sets. Typical-
ly, RISC architectures with a 32-bit instruction
length provide a shorter dynamic-path length,
and consequently fewer instructions are nec-
essary to implement an algorithm.3 Code com-
pactness and lower instruction-cache
bandwidth requirements are important in
many embedded applications, but in some of
these applications, performance is the key and
cannot be sacrificed for good code density.

Often, a small fraction of the code domi-
nates an application’s performance. A useful
rule of thumb is a 90:10 ratio: 90% of the
code runs only 10% of the time. If we com-
pile the portion that runs only 10% of the
time for high density, we get excellent densi-
ty for 90% of the code. We can compile the
remaining 10% with an instruction set that
emphasizes performance, thus yielding excel-
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lent performance 90% of the time.
To achieve this optimization, as well as

backward compatibility with the existing
SuperH implementations, we designed the
SH-5 with two operating modes: SHmedia
and SHcompact.

SHmedia is a new mode we defined espe-
cially for the SH-5. Using a clean-slate defin-
ition allowed us to develop the architecture
for the future without carrying baggage from
the past. SHmedia’s complete instruction set
delivers high performance for integer opera-
tions, multimedia and DSP arithmetic oper-
ations, and floating-point operations. (See the
sidebar for SHmedia’s key features.)

SHcompact supports the user-mode
instruction set of earlier SuperH RISC devices.
It provides user-mode instruction compatibil-
ity with software written for previous SuperH
generations. Programmers can also use
SHcompact for new software to reduce the
storage requirements of code that is not espe-
cially time critical but forms the bulk of an
application.

A simple branch operation provides very fast
switching between the two modes, allowing the
compiler to provide the optimal balance
between application performance and small
overall code size. We defined the ABI (applica-
tion binary interface) and register mapping
between the two modes to eliminate the need
for register copying from one mode to the other.

SH-5 architecture
In today’s applications, efficient support of

64-bit operations is becoming increasingly
important. Standard C provides a 64-bit data
type, called “long long,” and Java mandates a
64-bit, “long” type. For accumulations or
high-precision arithmetic, the extra headroom
and precision of 64-bit arithmetic are very
important. The use of 64-bit registers and
arithmetic/logic operations over 64-bit data
is important in high-performance network
router applications, particularly for header
processing of data packets and encryption/
decryption operations.

Moreover, the amount of addressable
memory is a key parameter of any architec-
ture, and the historical trend is for increasing
amounts of addressable memory. Within the
next 10 years, some consumer applications
will likely require more than 32 bits of

addressing. In network applications, address-
es of more than 32 bits are becoming com-
mon. In the future, networks will have to
handle 64-bit-long addresses to meet the
upcoming Internet Protocol standard, IPv6.

The SH-5 has a 64-bit architecture with
sixty-four 64-bit registers. It provides stan-
dard integer operations at a 64-bit width and
calculates addresses with 64-bit precision.
The SH-5 also supports all operations neces-
sary for efficient execution of existing 32-bit
applications.

Figure 1 (next page) shows the SH-5’s reg-
ister organization and the register mapping
between the two operating modes. The archi-
tecture includes 64-bit general-purpose inte-
ger and multimedia (SIMD) registers (R0 to
R63), 32-bit floating-point registers (FR0 to
FR63), target registers for branch target
addresses (TR0 to TR7), and control registers
(CR0 to CR63). It also includes a program
counter (PC) and a floating-point status-and-
control register (FPSCR).

The SHmedia architecture supports 6-bit
register operands. A 6-bit field can encode 64
distinct values corresponding to register iden-
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• A 64-bit architecture with a large register file that can handle the performance require-
ments of media-rich applications and network processing. It also provides access to a
much larger address space, which will be needed during the lifetime of this architecture.

• Simple 32-bit instruction encoding for fast decoding in high-speed implementations
optimized to the demands of modern optimizing compilers and languages.

• A carefully chosen set of SIMD multimedia instructions. Because they operate on the
standard register set, these instructions simplify associated software, allow mixing of
standard instructions and SIMD instructions, and minimize implementation hardware.

• A removable IEEE-754 floating-point unit that supports high-performance 3D-geome-
try operations for graphics applications.

• Coexistence of powerful 3D-geometry-oriented floating-point instructions and SIMD
multimedia instructions, facilitating simultaneous processing of streams of natural
data (for decompression) and synthetic data (for 3D graphics) in future set-top boxes.

• A high-performance branch architecture optimized for both longer scalar pipelines and
wide-issue superscalar implementations.

• Software cache management and data prefetching to maximize system bandwidth
utilization.

• Future scalability for architecture features such as VLIW, simultaneous multithread-
ing, and application-specific operations.

• Data parallelism available through the 3D-geometry floating-point instructions (paral-
lel floating-point multiply-accumulate operations), supporting efficient DSP solutions
for applications such as voice over IP.

Key SHmedia features



tifiers. The general-purpose and floating-point
registers are separated into two independent
register sets, each containing 64 registers.

As Figure 1 shows, the SHcompact mode
uses a set of 32-bit registers, as in earlier SH
architectures. The SH-5 uses only a subset of
registers to map the 32-bit registers. It uses
the lower halves of R19, CR0, and PC to map
the T bit (the condition code bit), status reg-
ister (SR), and program counter of SHcom-
pact mode respectively.

Large register sets
With its large amount of architecturally vis-

ible register state, SHmedia is an excellent exe-
cution mode for computation-intensive

algorithms. Many standard compiler tech-
niques benefit from large register files. Com-
pilers can apply optimizations such as
common subexpression elimination, code
migration, loop unrolling, function inlining,
and instruction scheduling much more
aggressively when large numbers of registers
are available.4-6

Many algorithms using multimedia and
floating-point instructions are effectively data
pumps, crunching large amounts of data
streamed from memory. Large register sets
hold many more values at one time, so larger
matrices or sets of coefficients can be held in
registers without requiring memory accesses.

A large register set typically increases the
context-switching overhead
because more registers must
be saved and restored. In the
SH-5, we significantly re-
duced this overhead by pro-
viding a usage bit associated
with each eight-register set.
Whenever a register in the set
is updated, the usage bit is set.
The context-switching mech-
anism considers only register
sets for which the usage bit
has been set.

Figure 2 shows that SHme-
dia has only four instruction
formats. The key difference
among them is the presence
and size of an immediate
operand. We arranged the
instruction fields for maxi-
mum regularity to simplify
instruction decoding. This
simplification reduces imple-
mentation complexity, im-
proves clock speed, and
reduces silicon area and power.
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Opcode Rm Ext Rn Rd Reserved

6 bits 6 bits 4 bits 6 bits 6 bits 4 bits

Opcode Rm Ext Immediate Rd Reserved

Opcode Rm 10 bits immediate Rd Reserved

Opcode 16 bits immediate Rd Reserved

Figure 2. SHmedia instruction formats.
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In superscalar implementations, encoding reg-
ularity significantly reduces the dependency-
checking logic.

SHmedia instruction encoding uses 6 bits
of opcode field with a 4-bit extension opcode
available in some formats. The SH-5 contains
209 SHmedia instructions and uses less than
one third of the available instruction space.
Four of the 64 opcode values distinguished by
the 6-bit opcode are fully reserved and have
no associated instruction formatting. There
are also 4 encoding bits reserved for every
SHmedia instruction format and every
instruction. Future architects can use these to
add significant new architecture mechanisms
such as predication, speculation,6 or instruc-
tion-bundling information for VLIW (very
long instruction word) instructions.5

Dynamic mode switching
At any moment, the SH-5’s CPU decodes

instructions in SHcompact or SHmedia. Exe-
cuting certain branch instructions changes the
mode from one instruction set to the other.7

Programmers can switch modes dynamically
and construct programs from either or both
instruction sets. Dynamic mode switching
allows application optimization for perfor-
mance and code density.

The two-mode architecture is a fully opti-
mized solution: SHcompact is optimized for
code density, and SHmedia for high perfor-
mance (including multimedia and 64-bit
operation). The separation of code density
and high performance ensures that neither is
compromised.

Users can effectively and efficiently map
software to the dual-mode architecture.
Because mode switching takes place at branch
points, the mode can be varied at the basic-
block level. Typically, mode switching at the
procedure level is a convenient programming
and compilation model. A mixture of user and
automatic control can achieve the split
between SHcompact and SHmedia compila-
tion. Optimizing compilers can use heuristics
to estimate code performance requirements.
The feedback of profile information from
actual execution of the application controls
mode switching.

By defining a new instruction set, we
designed the SH-5 to support digital con-
sumer and net-centered applications demand-

ing much higher performance than typical
embedded processors provide. The decision
to move up to a 64-bit architecture was criti-
cal. It was prompted by the requirement for
high performance through parallel manipu-
lation of packed data, as well as the perfor-
mance required in network applications. The
SH-5 uses only a small portion of the avail-
able instruction-encoding space of the SHme-
dia instruction set architecture. The 64-bit
infrastructure allows extensions for high-per-
formance network applications requiring effi-
cient processing of addresses and data
exceeding 32 bits in width.

Split-branch architecture
In most high-performance CPU imple-

mentations, deep pipelines are necessary to
achieve high clock rates. A typical problem
with these pipelines is that they require flush-
ing at branch points. Usually, a pipeline
detects a branch and evaluates the condition
well into the pipeline. If a branch occurs, the
processor must cancel any incorrect instruc-
tions that had entered the pipeline and restart
the pipeline at the branch target address. With
pipelines lengthening to achieve high clock
rates, and the large number of branches occur-
ring in common control-intensive code,
branch penalties are potentially a very serious
performance hazard.8

The SHmedia architecture has a unique
branch mechanism that uses a cost-effective
implementation to achieve a zero branch penal-
ty most of the time. This implementation splits
a branch operation into two parts (two sepa-
rate instructions): prepare-to-branch (prepare
target address) and branch (branch to target).
Prepare-to-branch loads the target address into
one of the eight branch target registers.

The compiler annotates prepare-target (PT)
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and branch instructions with static prediction
information. A Boolean variable, called the
likely bit, is encoded within these instructions
and serves the following purposes:

• The likely bit in a PT instruction is set if
control is likely to flow to the target
address. The bit controls whether the SH-
5 implementation should attempt to
prefetch instructions from that target
address out of the instruction cache and
into buffers close to the pipeline. Since
there could be multiple PT instructions
as well as the straight-line path, the SH-
5 uses this information to arbitrate the
fetch bandwidth between these paths.

• The likely bit in a conditional branch
instruction should be set if that branch will
likely be taken. This bit controls whether
the SH-5 implementation should attempt
to execute instructions down the taken or
not-taken path. If this static prediction is
correct, the branch has zero overhead. If it
is a misprediction, there is a penalty while
the pipeline is redirected to the other path.
On the SH-5, two instructions will have
entered the pipeline before misprediction
is detected. Using the PT instruction to
cause prefetching of branch targets results

in only a two-cycle mis-
prediction penalty.

The branch architecture’s
key property is that it allows
low-overhead branching with
a modest hardware invest-
ment. The SH-5 implementa-
tion provides two instruction
buffers for each of the eight tar-
get registers. Additionally, it
provides four instruction-fetch
buffers for straight-line fetch-
ing. In the branch example
shown in Figure 3, the prepare-
target-address instruction
(PTA) executes only once prior
to entering the loop.

The compiler should
attempt to schedule prepare-
to-branch instructions as early
as possible. This allows the
processor to prefetch instruc-
tions at the branch target so

that they are ready to execute when and if
needed by the branch instruction. The overall
effect is that instructions are prefetched into
fetch buffers or target buffers close to the
pipeline. Prefetching instructions avoids
instruction cache latency, significantly reduc-
ing branch penalty costs.

The SH-5 has no hardware-based branch
prediction mechanism and relies on software
prediction with considerable success. We per-
formed a number of microarchitecture-related
performance analyses to determine a pipeline
length that minimizes branch penalties. In con-
trast, desktop or workstation processors often
have much longer pipelines and thus higher
branch penalties. These processors often have
large amounts of silicon dedicated to branch-
processing mechanisms such as branch target
buffers, hardware branch prediction, addition-
al information in the instruction cache, return
address stacks, and speculative instruction exe-
cution.8 They can also achieve low-overhead
branching, but the silicon cost is currently inap-
propriate for the digital consumer market.

The SH-5 instruction set also provides a
different set of branch instructions, which fold
powerful compare operations into the branch
instruction, obviating the need for separate
compare instructions.
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Figure 3. SHmedia’s split-branch architecture.



SIMD instructions
A significant amount of data parallelism

exists in most multimedia and DSP applica-
tions. SIMD instructions provide the paral-
lelism required for efficient execution of these
applications. (Several microprocessors have
recently added SIMD extensions to their exist-
ing instruction sets.9-11) The SH-5’s SIMD
instructions operate in parallel on multiple
pieces of data packed into a single register. For
example, as Figure 4 shows, the SIMD instruc-
tion MADD.W splits each of its two 64-bit
source registers into four 16-
bit elements. Then it adds the
corresponding elements, pro-
ducing four 16-bit results,
which are packed into the 64-
bit result register.

The SIMD instructions can
perform parallel operations on
eight pieces of 8-bit data, four
pieces of 16-bit data, or two
pieces of 32-bit data. The
instructions support standard
arithmetic as well as multime-
dia- and DSP-specific opera-
tions. For example, the
multimedia unit can sustain a
full cross product of two 16-
bit vectors with four elements
each in every cycle. In other
words, it can perform four 16-bit multiplies,
three 32-bit adds, and a 64-bit accumulate
every cycle. This results in eight arithmetic
operations per clock cycle. Thus, at a 400-MHz
clock speed, it can achieve 3.2 billion opera-
tions per second (3.2 GOPS). The SH-5’s
SIMD instructions indirectly produce high lev-
els of instruction-level parallelism without the
complexity of superscalar implementations.

For video-encoding applications, the SH-
5 architecture supports a sum-of-absolute-dif-
ferences operation that forms the core of
MPEG encoding algorithms. The following
equation represents the operation:

This instruction, when used with 8-bit data
elements, effectively performs 24 operations
each cycle, delivering 9.6 GOPS at 400 MHz.

Table 1 summarizes the SIMD instructions

in the SH-5 instruction set. The instructions
include elaborate sets of data-type conversion
and data manipulation operations including
shuffle, permute, extract, and concatenate.
Also included are the SIMD forms of most
fundamental arithmetic and logical operations
and shifts. The instructions provide multiply-
add/subtract and multiply-accumulate
(MAC) with 16-bit and 32-bit data types in
integer and fractional forms. Saturation oper-
ation is available for arithmetic, conversion,
and shift operations. Two rounding modes
(round toward minus and round toward near-
est positive) are available for operations involv-
ing fractional data.

Unified register set
The SH-5 uses a single unified register set for

both integer and multimedia data types. This
approach significantly benefits the software and
the implementation. Multimedia codes often
reduce packed values to a scalar value—for
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Figure 4. Multimedia addition: the SIMD instruction
MADD.W.

Table 1. Summary of SH-5 SIMD multimedia instructions.

Instruction type Description

Conversions 8-bit, 16-bit, 32-bit → 8-bit, 16-bit, 32-bit
Addition/subtraction 8-bit, 16-bit, 32-bit with/without saturation
Absolute 16-bit, 32-bit
Sum of absolute difference 8-bit
Shifts 16-bit, 32-bit left/right, arithmetic/logical
Comparisons 8-bit, 16-bit, 32-bit equal to/greater than
Full-width multiplies 2 × (2 × 16 bits) → (2 × 32 bits),

2 × (1 × 32 bits) → (1 × 64 bits)
Multiplies 2 × (4 × 16 bits) → (4 × 16 bits),

2 × (4 × 16 bits) → (1 × 64 bits)
Rounding, multiply and add/subtract, MAC (integer, fractional)

Data manipulations Shuffle, permute, concatenate, extract, bitwise conditional 
move



example, when performing accumulations
across vectors. The unified register set ensures
that mixed scalar and multimedia programming
incurs no overhead. It also ensures that there is
no arbitrary division of register state between
integer and multimedia types.

High-level languages typically don’t provide
specialized multimedia data types. Multime-
dia types are usually mapped onto preexisting
integer types of the same size. For example, a
64-bit integer type would represent a 64-bit
multimedia type. For parameter-passing con-
ventions, the most natural and efficient
method of passing multimedia parameters is
the same as that of their analogous integer
type. Thus, using a unified general-purpose
register set is very effective.

Examples of SIMD codes
C and C++ provide access to the SIMD

operations through a simple functional library
interface. Each instruction has an equivalent
built-in C function (also called an intrinsic)
that the programmer can use whenever the
SIMD operation is needed. The compiler can
convert this function directly to the equiva-
lent SH-5 instruction and also apply its stan-
dard set of optimizations. As the integer and
SIMD operations operate on a common reg-
ister file, SIMD values can be simply declared
as a 64-bit integer (commonly known as the
long long type).

Tables 2 through 4 show codes for some

common multimedia func-
tions using SIMD instruc-
tions. In each table, section a
shows the sequential code,
and section b shows the use
of the SIMD built-in func-
tion. Table 2 shows the basic
inner product of two data
streams. Section b shows the
use of SIMD built-in func-
tion _vec_16x4mulsum( ).
The C programmer uses the
SIMD instruction mmul-
sum.wq, and the compiler
generates code that runs
about four times faster after
compiler optimizations such
as loop unrolling and instruc-
tion scheduling.

Table 3 shows the code for
finding the maximum value and its location in
a data stream. Section b shows SIMD built-in
function _vec_16x4cmpgt( ). Using the built-
ins, the program generates SIMD instruction
mcmpgt.w. After the main loop finishes, some
selection operations (a few cycles) are required.
The code using the SIMD instructions is
about four times faster than the original
sequential code.

Table 4 shows the code for a filter for fixed-
point fractional data streams. Section b shows
the use of SIMD built-in function
_vec_16x4mulfxrp( ) and corresponding com-
piler-generated code using the SIMD instruc-
tion mmulfxrp.w. The SIMD code is more
than four times faster than the original code.

Performance for DSP applications
Figure 5 (on page 36) shows SH-5 perfor-

mance for four DSP applications (fixed-point
data types). The graph shows the normalized
speedup of SH-5 relative to a conventional
single-MAC DSP in executing a main loop
iteration. Both the SH-5 and the DSP codes
are hand optimized. The SH-5 code uses
SIMD instructions. Assuming a single-issue
SH-5 operating at 400 MHz and a typical
high-performance DSP operating at 200
MHz, the graph shows that the SH-5 is about
2.5 to 4.5 times faster.

SH-5 implementation
The first implementation of the SH-5
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Table 2. Finding the inner product of two data streams: sequential code (a); code

exploiting SIMD built-in functions (b). SIMD functions are shown in boldface.

(a) Original sequential code Assembly code Comment

short *A, *B; ldx.w   rA, ri, ra 16-bit × 1 load
int c; ldx.w   rB, ri, rb 16-bit × 1 load
for ( i = 0; i < 128; I++ ) { mac    ra,rb,rc 16-bit × 1 MAC
c += A[ i ] * B[ i ];
}

(b) Code using SIMD functions

long long *A,*B;
long long a, b, c;
for ( i = 0; i < 32 ); i++) { ldx.q  rA, ri, ra 16-bit × 4 load
a=*(A + i); ldx.q  rB, ri, rb 16-bit × 4 load
b=*(B + i); mmulsum.wq ra, rb, rc 16-bit × 4 MAC
c= _vec_16x4mulsum(a, b, c);

}
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Table 3. Finding the maximum value and its location in a data stream: sequential

code (a); code exploiting SIMD built-in functions (b). SIMD functions are shown

in boldface.

(a) Original sequential code Assembly code Comment

short *A, max, loc;
max = A[ 0 ];  loc=0;

ldx.w  rA, ri, ra 16-bit load
for ( i = 1; i < 128; I++ ) { cmpgt ra, rb, rc compare
if ( A[ i ] > max ) { cmvne rc, ra, rb conditional move
max = A[ i ]; loc = i; cmvne rc, ri, rd conditional move

}
}

(b) Code using SIMD functions

long long *A, max, loc, a, b, flag;
max = *A;
b = loc = 0x0003000200010000;
inc =       0x0004000400040004;

for ( i = 1; i < 32; i++ ) {
a = *( A + i ); ldx.q     rA, ri, ra 16-bit × 4 load
flag  = _vec_16x4cmpgt(a, max); mcmpgt.w ra, rm, rf 16-bit × 4 compare
b      = _vec_16x4add(b, inc); madd.w   rc, rb, rb 16-bit × 4 add
max  = _vec_condmove (a, flag,max); mcmv  ra, rf, rm bitwise conditional
loc = _vec_condmove(b, flag,loc); mcmv  rb, rf, rc bitwise conditional

}
.../* reduction code */

Table 4. A filter for fixed-point fractional data streams: sequential code (a); code

exploiting SIMD built-in functions (b). SIMD functions are shown in boldface.

(a) Original sequential code Assembly code Comment

short *A, *C, t; ldx.w  rA, ri, ra
for ( i = 0; i < 128; i++ ) {    ldx.w  rC, ri, rc

C[ i ] += ( t * A[ i ] + ROUND ) >> 15; mul.l   ra, rt, ra
} add     ra, r1, ra 16-bit × 1 fractional

shlri    ra, 15, ra rounding
add     ra, rc, rc
stx.w  rC, ri, rc

(b) Code using SIMD functions

long long *A, *C, a, b, c, t;

for ( i = 0; i < 32; i++ ) { ldx.q  rA, ri, ra
a =  *( A + i ); ldx.q  rC, ri, rc
c =  *( C + i ); mmulfxrp.w  ra, rt, rb 16-bit × 4 fractional
b = _vec_16x4mulfxrp(a,t); madd.w  rb, rc, rc mul with rounding
c = _vec_16x4add(b, c); stx.q  rC, ri, rc
*( C + i ) = c;

}



architecture’s RISC core is a 400- to 600-
MHz scalar, single-issue design that interfaces
to a 200-MHz, split-transaction, pipelined,
on-chip SuperHyway bus.7 The core also
includes a powerful debug module. Figure 6
shows a block diagram of the SH-5’s first
implementation, which includes the core,
memory and peripheral interfaces, and a min-
imal set of peripheral modules.

The core’s salient features are

• a seven-stage pipeline,
• a 64-bit integer/multimedia processing

unit,
• a 64-bit floating-point unit (optional),
• 32-Kbyte, four-way set-associative virtu-

al instruction and data caches (64-bit
access size and 32-byte line size),

• two separate 64-entry, fully associative
TLBs (translation look-aside buffers) for
instructions and data (activated only on
cache misses), and

• independent bus access for the instruc-
tion fetch unit and load store unit, and
up to three outstanding transaction
requests for the SuperHyway bus.

When a particular algorithm for an appli-
cation is mature and stable, a hardware (IP)
implementation is more cost-effective and
efficient in performance and power than a
programmable software implementation. Fol-
lowing this principle, SH-5 implementations
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will be SOCs consisting of the core and a
number of IPs with appropriate hardware/
software trade-offs. Integrating these applica-
tion-specific IPs requires highly efficient and
flexible interconnections.

To facilitate efficient SOC integration, the
bus interface unit in the SH-5 core connects
to the 64-bit, very high bandwidth Super-
Hyway bus. The bus is compatible with the
Virtual Socket Interface (VSI) protocols
(http://www.vsi.org). It seamlessly connects
to VSI virtual-component libraries. It sup-
ports split transactions, and transactions may
contain up to 32 bytes of data. In the first
SH-5 implementation, the SuperHyway con-
sists of two 64-bit read/write buses. At the
200-MHz peak frequency, the peak band-
width would be (2 × 64 bits × 200 MHz) or
3.2 Gbytes per second.

Effective support of high-speed, multi-
initiator, multitarget data transfer is impor-
tant for cost-effective SOC implementations.
Such data transfer mechanisms also must be
flexible to support different configurations.

The SuperHyway can perform two routing
jobs at any instant. It can receive data trans-
action requests from IP-module initiator ports
and route one of the requests to the target port
of an IP module ready to receive a transaction
request. At the same time, it can route a
response from a target port. Such a response
could be “Read data on read transaction
request.” The response is automatically direct-
ed back to the original initiator port. Since
the SuperHyway uses a split-transaction pro-
tocol, a response-time constraint and an in-
order constraint are unnecessary. Target ports
can receive requests and save them in an inter-
nal service queue.

Debug support
For SOCs designed around the SH-5, all

interconnection will take place via the Super-
Hyway, making it necessary to provide the
capability of accessing the bus for analysis.
Traditional external logic analyzers and debug
tools cannot be used.

The SH-5 provides an advanced, nonin-
trusive debugging module, SHdebug, which
is transparent to the target application soft-
ware. SHdebug provides various trigger mech-
anisms that can invoke break exceptions on
the CPU core or retrieve trace data packets via

the host debug interface. The CPU includes
a watch point controller with 12 watch point
channels, through which the CPU’s internal
activities can be observed by the external
debug environment. Chain latches support
combinations of watch point conditions for
filtering and conditional tracing. The bus ana-
lyzer logic shown in Figure 6 is a mechanism
for observing SuperHyway transactions.
Watch point logic and bus analyzer logic pro-
vide a complex combination of trigger condi-
tions, including instruction address,
instruction code, operand address, access type,
and access size.

Through an initiator port on the debug
module, the external debug host can access
system resources in on-chip IP modules. The
debugger can read from or write to all
addressable locations. Program or data down-
loading to the target system flash memory
takes place via the debug host interface, the
debug module, the SuperHyway, and the
memory interface.

The first SH-5 product chip will ship this
year. It will include the components

shown in Figure 6. Running at 400 MHz in
a 0.15-micron CMOS device, it will deliver
714 Dhrystone-1.1 MIPS, 9.6 GOPS, and
2.8 Gflops, with a CPU core power con-
sumption of less than 600 mW. Hitachi and
STMicroelectronics will embed the SH-5
CPU core into SOC devices in their SH8000
and ST50 products. MICRO
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