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Abstract

I introduce the notion of a vertex operator algebra, along with some
background information on Lie algebras, and give a specific, well known,
example of a vertex operator algebra.

(This is just some background information and me practicing LaTeX,
not anything serious, but does provide some information for those un-
aquainted with the material.)

1 The (untwisted) Affine Lie Algebra

Let g denote be a Lie algebra (for our purposes, over C), and let 〈·, ·〉 be a
symmetric invariant bilinear form on g.

Definition 1.1. The (untwisted) affine Lie algebra is given by:

ĝ = g⊗ C[t, t−1]⊕ Cc (1.1)

where for a, b ∈ g, m,n ∈ Z, we define the bracket relations to be:

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n + m〈a, b〉δm+n,0c (1.2)

and also require that c is central:

[ĝ, c] = 0. (1.3)

We equip ĝ with the following Z-grading:

ĝ =
∐
n∈Z

ĝ(n) (1.4)

where

ĝ(0) = g⊕ Cc and ĝ(n) = g⊗ tn for n 6= 0. (1.5)

The following are also subalgebras of ĝ:

ĝ(±) =
∐
n>0

ĝ(±n) =
∐
n>0

g⊗ t±n (1.6)

and
ĝ(≥0) =

∐
n≥0

ĝ(n) = ĝ(+) ⊕ g⊕ Cc. (1.7)
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2 The Universal Enveloping Algebra of a Lie Al-
gebra

We now want to discuss an associative algebra that can be constructed from a
given Lie algebra.

The modules of this associative algebra are in bijective correspondence with
the modules of the Lie algebra upon which it is built, but this new algebra is
necessarily infinite dimensional. It is called the universal enveloping algebra.

Let L be a Lie algebra

Definition 2.1. We define a Tensor Algebra as follows: Let:

T 0 = C

T 1 = L

Tn = L⊗ ...⊗ L (n times).

T (L) =
⊕
n≥0

Tn

We call T (L) the tensor algebra of L.

Now, we take the subspace of T (L) generated by the elements

x⊗ y − y ⊗ x− [x, y] (2.1)

and call it Q(L).

Definition 2.2. We define the Universal Enveloping Algebra of L, denoted
U(L), as follows:

U(L) = T (L)/Q(L). (2.2)

That is, we quotient the tensor algebra of L by Q(L).

3 Vertex Operator Algebras

Let δ(x) =
∑

n∈Z xn.

Recall the definition of a vertex operator algebra:

Definition 3.1. Let V be a vector space over C. We call V a Vertex Operator
Algebra iff it satisfies the following:

V =
∐
n∈Z

V(n)

such that
dimV(n) < ∞

and
V(n) = 0 for n sufficiently small.

There is a linear map
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Y (·, x) : V → (EndV )[[x, x−1]]

v 7→ Y (v, x) =
∑
n∈Z

vnx−n−1, (3.1)

and vectors 1 ∈ V(0)(the vacuum vector) and ω ∈ V(2) (the conformal vector)
s.t. for u, v ∈ V :

unv = 0 for n sufficiently large,

Y (1, x)v = v,

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v−11 = v, (3.2)

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2) (3.3)

(the Jacobi identity).
Also,

Y (ω, x) =
∑
n∈Z

ωnx−n−1 =
∑
n∈Z

L(n)x−n−2, (3.4)

[L(m), L(n)] = (m− n)L(m + n) +
m3 −m

12
δm+n,0 cV , (3.5)

where cV ∈ C is called the central charge (or rank) of V and

Y (L(−1)v, x) =
d

dx
Y (v, x) for v ∈ V, (3.6)

V(n) = {v ∈ V |L(0)v = nv} for n ∈ Z. (3.7)

This may seem daunting, but it’s really not so bad...

4 A Construction

Now, we construct an example of a vertex operator algebra (but do not prove
the above properties here).

Assume that g is finite dimensional of dimension d, and that our symmetric
invariant bilinear form on g is nondegenerate. Let {u(i)|1 ≤ i ≤ d} be an
orthonormal basis for g, and let {u(i)|1 ≤ i ≤ d} be dual to it.

We start by contructing a module for the Lie algebra ĝ. Let l be a complex
number. Let ĝ(+) and g act trivially on C. Let c act as the scalar l. Now, we
have that C is a ĝ(≥0)-module.

We want a ĝ module, so we create the induced module:

Vĝ(l, 0) = U(ĝ)⊗U(ĝ(≥0)) Cl (4.1)

By the PBW Theorem, this module is (linearly) isomorphic to U(ĝ(−)).
We now let a(n) denote the action of a ⊗ tn on Vĝ(l, 0), and put a vertex

operator algebra structure on Vĝ(l, 0).
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First, we choose our vaccum vector 1 to be 1 ∈ Vĝ(l, 0).
Now, we pick a grading for Vĝ(l, 0):

Vĝ(l, 0) =
∐
n≥0

Vĝ(l, 0)(n), (4.2)

where Vĝ(l, 0)(n) is spanned by the vectors

a(1)(−m(1))...a(j)(−m(j))1 (4.3)

where  ≥ 0, a(i) ∈ g, m(i) ≥ 1, and n = m(1) + ... + m(j).
Clearly, 1 ∈ Vĝ(l, 0)(0)

We now define ω ∈ Vĝ(l, 0)(2) to be

ω =
1

2(l + h)

d∑
i=0

u(i)(−1)u(i)(−1)1, (4.4)

where h is the dual-Coxeter number (Take note now that we must exclude the
case of Vĝ(l, 0) where l = −h for this construction).

We now define a vertex operator Y , and state that this gives Vĝ(l, 0) the
structure of a vertex operator algebra:

Y (1, x) = IdVĝ(l,0), (4.5)

the identity map,
Y (a(−1)1, x) =

∑
n∈Z

a(n)x−n−1 (4.6)

Y (a(−m)1, x) =
dm−1

dxm−1

∑
n∈Z

a(n)x−n−1 (4.7)

Y (a(−m)u, x2) = Resx1(x1 − x2)−mY (a(−1)1, x1)Y (u, x2)−

Resx1(−x2 + x1)−mY (u, x2)Y (a(−1), x1) (4.8)

This gives us a vertex operator algebra structure on Vĝ(l, 0).

For more information on vertex operator algebras, and to see this construc-
tion in more detail, but from a slightly different angle, please see [LL], specifically
section (6.2). It is essentially the same as this one and uses the general theory
to prove that Vĝ(l, 0) is indeed a vertex operator algebra.
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