

OPTIMIZING THREE-DIMENSIONAL BIN PACKING THROUGH
SIMULATION

Erick Dube

School of Computer Science
University of KwaZulu-Natal
P. Bag X54001, Durban 4000

South Africa
dubee2@ukzn.ac.za

Leon R. Kanavathy
54 Cherrywood Avenue

Woodview, Phoenix
Durban, 4068
South Africa

Leon K@i nf owave.co.za

ABSTRACT
The problem addressed in this paper is that of
orthogonally packing a given set of rectangular-shaped
items into a minimum number of three-dimensional
rectangular bins. We harness the computing power of the
modern day computers to solve this NP-Hard problem
that would be otherwise practically extremely difficult.
The software tool that we develop using both heuristics
and some knapsack problem approach, presents the
solutions as a 3D graphical representation of the solution
space. The visual and interactive ability of the simulation
model provides a disciplined approach to solving the 3D
Bin Packing Problem.

KEY WORDS
Simulation, Optimization, Bin packing, Best fit, First fit,
Rotation.

1. Introduction
In this paper, we describe a simulation approach to
characterizing the feasible packaging and construction of
optimal solutions. The complexity of finding optimal
solutions for the Three Dimensional Bin Packing Problem
is compounded by the difficulty of giving a useful
problem formulation.

To formulate the problem we will consider each item i in
the finite set S to have three dimensions wi, hi and di. Each
identical bin b has dimensions W, H and D. The items
and bins are rectangular boxes and the three dimensions
correspond to the width, height and depth values. To the
make the solution more distinct from previous work the
items are allowed to rotate orthogonally. Rotating an item
simply means swapping its width (wi), height (hi) and
depth (di) values around in a defined ordered manner
(Table 1).

Each item-box has 6 rectangular facets, but there are only
3 distinct facets because “opposite” facets are identical.
Each of the three facets can be rotated orthogonally to
obtain a new configuration of the box. Thus each item can
have 6 different rotation configurations.

Linear programming approaches have been used for
single dimensional problems.
In some approaches Evolutionary algorithms have also
been used instead of heuristics algorithms [1,3]. Due to
their ability to search large spaces, evolutionary
algorithms could have been a suitable method to finding a
solution (in this case, the solution space of the Bin
packing problem), but evolutionary algorithms have a few
shortcomings:
There is little continuity between solution and problem
i.e. if you change the problem parameters a little, then the
solution changes considerably.
Heuristics are more comprehensive and some offer worst
case performances.

2. Problem formulation
To find the solution for a bin b we assume without loss of
generality that ∑

∈

≤
bi

i Ww , and ∑
∈

≤
bi

i Hh

∑
∈

≤
bi

i Dd . As such it is correct to conclude that

∑
∈

••≤••
bi

iii DHWdhw . So for each bin b we

intend to minimize the wasted volume given by

∑
∈

••−••
bi

iii dhwDHW

Bin packing being an NP-Hard problem, suggests that an
exhaustive search for the optimal solution is in general
computationally intractable, and also that there is thus no
known real computationally feasible optimal solution
method for the problem. So other means to obtain a
solution have to be found. Most popular are heuristic
solution methods:

Items are packed one at a time with no backtracking (once
an item is packed it is not repacked). The choice of an
item to be packed can be done by using formal logic
derived from one of the following packing algorithms.

First Fit [2,4]
Packs unassigned item into first bin that has enough
space. If there is no such bin, assign item into new a bin.

507-034 1

nicholas

nicholas

First Fit Decreasing
Almost the same as First Fit except that the items are first
sorted in decreasing order before being packed.

Last Fit
Packs unassigned item into last bin with enough space.
Searching is similar to First Fit but in the reverse order of
bins. If there is no such bin, assign item into new bin.

Best Fit
The Best Fit algorithm packs an item in a bin, which is
the fullest among those bins in which the item fits.
 More specifically:
Items are packed one at a time in given order.
To determine the bin for an item, first determine set B of
containers into which the item fits.
If B is empty, then start a new bin and put the item into
this new bin.
Otherwise, pack the item into the bin of B that has least
available capacity.

3. Solution Specification
The developed system uses a heuristic approach to
perform the core of the bin packing.

The use of these heuristic approximate algorithms in the
system to solve the bin packing problem:

i. guarantees a solution to the problem,
ii. obtains a solution in a reasonable time (i.e. solution

is computationally feasible to obtain),
iii. allows general data input,
iv. provides continuity between the solution and the

problem.

The above points provide solid reasoning as to why a
heuristic approach was chosen because any approach
which fails to satisfy any of the above conditions would
not completely meet user requirements and would hence
not be of any use.

It is obvious that failure to satisfy (i) and (ii) would be
unsatisfactory. If the system does not satisfy (iii) then it
would lose its generality and flexibility. Condition (iii) is
also of importance because bins (or containers) need to be
packed with items (or cargo) of different dimensions.
Also failure to satisfy (iv) would make it difficult for
users to retrieve data and test alternative solutions during
the process of problem solving. Thus, failure to satisfy
(iv) would mean that the system does not readily support
this feature.

The two primary heuristic bin packing algorithms that
were used in the system were the First Fit Decreasing and
the Best Fit. They were chosen over other heuristic
algorithms because they have a faster running time, as
well as produce solutions that are much closer to the
optimal solution than most other heuristic algorithms.

 3.1 Analysis of the algorithms
Let M be the optimal number of bins required to pack a
set of n items.

Let be the number bins required when First Fit
Decreasing is used to pack the items.

fm

Let be the number bins required when Best Fit is
used to pack the items.

bm

Then it can be shown [2] that

()
⎥⎥
⎤

⎢⎢
⎡ −

+≤
3

1MMmf

and also that
⎥⎥
⎤

⎢⎢
⎡≤

10
17Mmb

 .

Now:

3
4

3
)1(MMM ≈

−
+

 for M sufficiently large,

and thus
MM

10
71

10
17

=
 > 3

4
3
11 MM =

 for large
M.

Hence it appears that Best Fit is more likely to produce a
solution closer to the optimal solution than is First Fit
Decreasing, but seeing as these values on the upper bound
for the number of bins needed are relatively close to each
other, it is worth using both algorithms.

We also observe that:

 ≤≤⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ∑
∈

MCs
Si

i /
()

⎥⎥
⎤

⎢⎢
⎡ −

+≤
3

1MMmf

and ≤≤⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ∑
∈

MCs
Si

i / ⎥⎥
⎤

⎢⎢
⎡≤

10
17Mmb

 where C is the capacity of a bin in single units,
area or volume depending on the current bin packing case
under consideration.

The running time for Best Fit is O (n log n) and for First
Fit Decreasing it is O (n log n) excluding the running
time for sorting.

4. Software Specification
We have three directions in which to pack the items,
width direction, height direction and depth direction.

As previously explained each Item has six rotation types .
Consider an item:
The six rotation types can be obtained by rotating about
the x , y and/or z axis as shown in Table 1:
The bins are packed one at a time and the algorithms use a
series of pivot points at which to pack the item.

2

Table 1: Box rotation options

Rotation
Type

First axis
to rotate
about

Second axis
to rotate
about

0 - -
1 Z -
2 Y -
3 X Y
4 X -
5 X Z

4.1 3D Best Fit Algorithm
Decide on a packing direction. Each bin has three
directions in which to pack, a width (or x) direction, a
height (or y) direction, a depth (or z) direction. Pack one
bin at a time.

We first choose a pivot point. The pivot is an (x, y, z)
coordinate which represents a point in a particular 3D bin
at which an attempt to pack an item will be made. The
back lower left corner of the item will be placed at the
pivot. If the item cannot be packed at the pivot position
then it is rotated until it can be packed at the pivot point
or until we have tried all 6 possible rotation types. If after
rotating it, the item still cannot be packed at the pivot
point, then we move on to packing another item and add
the unpacked item to a list of items that will be packed
after an attempt to pack the remaining items is made. The
first pivot in an empty bin is always (0,0,0).

4.1.1 The 3D Best Fit, with pivoting, algorithm is as

follows
 if (binWidth is smaller than binHeight

and binDepth) then
{

packByWidth=true
packByHeight=false;

}
else if (binDepth is smaller than
binHeight and binWidth) then

{
packByWidth=false
packByHeight=false //both false
implies pack by depth

}
else if (binHeight is smaller than
binWidth and binDepth) then

Y

{
packByWidth=false X
packByHeight=true

}

 notPacked=Items

ado

Z

Fig 1. 3D coordinates
{
 toPack=notPacked
 notPacked={} //clear notPacked

Create a new bin called currentBin
and check whether the item toPack[0]
is able to fit in this bin at
sition (x,y,z)=(0,0,0). po

if toPack[0] does not fit then
rotate it (over the six rotation
types) until it fits and pack it
into this bin at postion (0,0,0).
bfor i=1 to (size of toPack-1) do
{
 currentItem=toPack[i]
 fitted=false

 cfor p=0 to 2 do
 {
 k=0
 d while (k < number of items in
currentBin) and (not fitted)
 {
 binItem=kth item in currentBin
 if (packByWidth) then
 pivot=p
 else if (packByHeight) then
 switch (p)
 {

compute pivot p for height
 }
else //pack by depth

 switch (p)
 {

compute pivot p for depth
 }

 switch (pivot)
 {
 case 0 : Choose (pivotX, pivovY,
pivotZ) as the back lower
 right r i
 break

corne of b nItem

 case 1 : Choose (pivotX, pivovY,
pivotZ) as the front lower

3

 left corner of binItem
 break
 case 2 : Choose (pivotX, pivovY,
pivotZ) as the back Upper
 left corner of binItem
 break
 }

if (currentItem can be packed
in currentBin at
 position(pivotX, pivotY
,pivotZ)) then
{
 Pack currentItem into
currentBin at position

 (pivotX, pivotY ,pivotZ).
 fitted=true
}
 else

 { // try rotating item
do
 Rotate currenItem
while (currentItem cannot be
packed in currentBin at

position(pivotX,pivotY))
 and (not all
rotations for currentItem
checked)

if (currentItem can be packed
in currentBin at
 position(pivotX, pivotY ,
pivotZ)) then
{
 Pack currentItem into
currentBin at position

 (pivotX, pivotY ,pivotZ).
 fitted=true

}else
 Restore currentItem to
its original rotation type

 }

 if (not fitted) then
 Add currentItem to the list
notPacked

 }
 }

}

} while notPacked has at least one
Item in it (*i.e. notPacked is
 non-empty *)

4.1.2 Worst Case Running Time
In the worst case we see that the do-while loop referenced
by a above will run at most (n) times .
Loop b will run at most (n-2) times.
c will run 3 times.
d will run at most (n-1) times because the number of
items in a bin could be (n-1).
The rotations carried out throughout the algorithm can be
at most 6, so this does not significantly influence our
running time.
So we have : O (Best Fit)= n* (n-2) * 3 * (n-1)
 = O(n3)
Thus in the worst case the algorithm produces a solution
in polynomial time.

4.1.3 Best Case Running Time
The Best case excluding the trivial cases is when
All the items fit into one Bin :

a will run 1 time.
b will run (n-2) times.
c will run 3 times.
d will run (n-1) times.
So we have : O (Best Fit) =1* (n-2) *3 * (n-1)

 = O(n2)

Or when each item is packed into its own bin
a will run n times.
b will run (n-2) times.
c will run 3 times.
d will run 1 time.
So we have : O (Best Fit)=n* (n-2) *3 *1
= O(n2)

Thus in the best case, the performance is O(n2).

4.2 3D First Fit Decreasing Algorithm
To pack an item one has to first decide on a packing
direction. The longest side of the bin corresponds to the
packing direction. Then rotate each item such that the
longest side of this item is the side which is the packing
direction, i.e. if we are packing by width then we want the
longest side of the item to be the item’s width, so for
example if the packing direction is by width and the
current height of the item is longer than its width, then
rotate the item. If after performing the rotation(s), the
item cannot fit into the bin (i.e. one or more of the
dimensions of the items exceeds the bin’s corresponding
dimension) then we rotate the item until the second
longest side of this item is the side which corresponds to
the packing direction. If after performing the rotation(s),
the item cannot fit into the bin then we rotate the item
until the third longest side of this item is the side which
corresponds to the packing direction. Next sort the items
in decreasing order of width, height or depth depending
on packing direction.

4

5. Simulation Model and Graphical display
The simulation model was implemented in C++ using an
object oriented approach. The items and bins are
represented by objects and a single object was used to
represent the bin-packer itself. The application was
developed on a Pentium II PC environment and gives
acceptable response times. For portability sake, the user

interface (Fig 2) is designed such that the textual solution
to the problem is completely separated from the graphical
solution (Fig 3) to the problem. The textual solution
contains all the bins needed, the items contained in each
bin and the positions of the items in each bin.

5

The Graphical solution display (Fig 3) was implemented
using OpenGL under a windows operating system
environment. The graphical display provides users
amongst other utilities the Custom View button that
enables the user to obtain their own view point. This view
point is defined by changing the X , Y and Z eye position
and/or changing the X , Y and Z ‘look-at’ position. The

eye and look-at positions also provide information to the
user about the predefined views.

The statistical solution summary data (Fig 2) provides
information about both the problem and the solution
undertaken. The most important piece of information of
the solution here is the total number of bins used. The

6

wasted space and used space do not reflect on the
optimality of the solution but merely inform the user that
there is more space available to pack other items, if
desired. This is best illustrated by the following example.
Suppose all the items except one item could be packed
into just one bin and the remaining item, suppose which is
relatively small in volume to the bin is packed into a
second bin. This item will then be the only item packed
into the second bin and thus there will be a lot of wasted
space left over in the second bin.

6. Conclusion
Bin packing is a very appealing mathematical model
problem, yet work on this problem is surprisingly recent.
In this paper, we considered the implementation of the
optimization of packing 3-D boxes into a finite set of bins
and demonstrated that the program will find a solution
within reasonable time. The major set backs of most other
implementations is that of failing to converge to a
solution and thus execute “indefinitely”. Our careful
design also brings in the visualisation of the solution, that
is, the exact location and orientation of an item in a bin is
known.

Our future work will be to use the application to
determine the set of possible sizes of boxes that can be
used by shipping companies so as to make better use of
existing loading techniques.

References

[1]Frederick Ducatelle, John Levine. Ant Colony
Optimisation for Bin Packing and Cutting Stock
Problems, Proceedings of the UK Workshop on
Computational Intelligence, 2001, Edinburgh.

[2]Emanuel Falkenauer, A hybrid grouping genetic
algorithm for bin packing, Journal of Heuristics, 1996.

[3]Fekete, S. P., J. Schepers, A new exact algorithm for
general orthogonal 3d-dimensional knapsack problems,
Lecture Notes in Computer Science, 1997.

[4]Leon Kos, Joze Duhovnik, Rod Cutting Optimization
with Store Utilization, International design conference –
DESIGN, Dubrovnik, 2000.

[5]Silvano Martello, David Pisinger and Daniel Vigo, The
three dimensional bin packing problem, Institute for
Operations Research and the Management Sciences
(INFORMS), Linthicum, Maryland, USA, 2000.

[6]Peter Ross, Sonia Schulenburg, Hyper-heuristics:
learning to combine simple heuristics in bin-packing
problem, Discrete Applied mathematics ACM, 2000.

7

