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ABSTRACT 
The problem addressed in this paper is that of 
orthogonally packing a given set of rectangular-shaped 
items into a minimum number of three-dimensional 
rectangular bins. We harness the computing power of the 
modern day computers to solve this NP-Hard problem 
that would be otherwise practically extremely difficult. 
The software tool that we develop using both heuristics 
and some knapsack problem approach, presents the 
solutions as a 3D graphical representation of the solution 
space. The visual and interactive ability of the simulation 
model provides a disciplined approach to solving the 3D 
Bin Packing Problem. 
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1. Introduction 
In this paper, we describe a simulation approach to 
characterizing the feasible packaging and construction of 
optimal solutions. The complexity of finding optimal 
solutions for the Three Dimensional Bin Packing Problem 
is compounded by the difficulty of giving a useful 
problem formulation.  
 
To formulate the problem we will consider  each item i in 
the finite set S to have three dimensions wi, hi and di. Each 
identical bin b has dimensions W, H and D.  The items 
and bins are rectangular boxes and the three dimensions 
correspond to the width, height and depth values.  To the 
make the solution more distinct from previous work the 
items are allowed to rotate orthogonally.  Rotating an item 
simply means swapping its width (wi), height (hi) and 
depth (di) values around in a defined ordered manner 
(Table 1). 
 
Each item-box has 6 rectangular facets, but there are only 
3 distinct facets because “opposite” facets are identical. 
Each of the three facets can be rotated orthogonally to 
obtain a new configuration of the box. Thus each item can 
have 6 different rotation configurations. 
 

Linear programming approaches have been used for 
single dimensional problems. 
In some approaches Evolutionary algorithms have also 
been used instead of heuristics algorithms [1,3]. Due to 
their ability to search large spaces, evolutionary 
algorithms could have been a suitable method to finding a 
solution (in this case, the solution space of the Bin 
packing problem), but evolutionary algorithms have a few 
shortcomings: 
There is little continuity between solution and problem 
i.e. if you change the problem parameters a little, then the 
solution changes considerably. 
Heuristics are more comprehensive and some offer worst 
case performances. 
 
2. Problem formulation 
To find the solution for a bin b we assume without loss of 
generality that ∑

∈

≤
bi

i Ww ,  and ∑
∈

≤
bi

i Hh

∑
∈

≤
bi

i Dd .  As such it is correct to conclude that 

∑
∈
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iii DHWdhw . So for each bin b we 

intend to minimize the wasted volume given by 

∑
∈

••−••
bi

iii dhwDHW  

 
Bin packing being an NP-Hard problem, suggests that an 
exhaustive search for the optimal solution is in general 
computationally intractable, and also that there is thus no 
known real computationally feasible optimal solution 
method for the problem. So other means to obtain a 
solution have to be found. Most popular are heuristic 
solution methods: 
 
Items are packed one at a time with no backtracking (once 
an item is packed it is not repacked). The choice of an 
item to be packed can be done by using formal logic 
derived from one of the following packing algorithms. 
 

First Fit [2,4] 
Packs unassigned item into first bin that has enough 
space. If there is no such bin, assign item into new a bin. 

507-034 1

nicholas


nicholas




 
First Fit Decreasing 
Almost the same as First Fit except that the items are first 
sorted in decreasing order before being packed. 
 
Last Fit 
Packs unassigned item into last bin with enough space. 
Searching is similar to First Fit but in the reverse order of 
bins. If there is no such bin, assign item into new bin. 
 
Best Fit 
The Best Fit algorithm packs an item in a bin, which is 
the fullest among those bins in which the item fits. 
 More specifically: 
Items are packed one at a time in given order. 
To determine the bin for an item, first determine set B of 
containers into which the item fits. 
If B is empty, then start a new bin and put the item into 
this new bin. 
Otherwise, pack the item into the bin of B that has least 
available capacity. 
 
3. Solution Specification 
The developed system uses a heuristic approach to 
perform the core of the bin packing.  
 
The use of these heuristic approximate algorithms in the 
system to solve the bin packing problem: 

i. guarantees a solution to the problem,  
ii. obtains a solution in a reasonable time (i.e. solution 

is computationally feasible to obtain),  
iii. allows general data input, 
iv. provides continuity between the solution and the 

problem. 
 
The above points provide solid reasoning as to why a 
heuristic approach was chosen because any approach 
which fails to satisfy any of the above conditions  would 
not completely meet user requirements and would hence 
not be of any use.  
 
It is obvious that failure to satisfy (i) and (ii) would be 
unsatisfactory. If the system does not satisfy (iii) then it 
would lose its generality and flexibility. Condition (iii) is 
also of importance because bins (or containers) need to be 
packed with items (or cargo) of different dimensions.  
Also failure to satisfy (iv) would make it difficult for 
users to retrieve data and test alternative solutions during 
the process of problem solving. Thus, failure to satisfy 
(iv) would mean that the system does not readily support 
this feature.  
 
The two primary heuristic bin packing algorithms that 
were used in the system were the First Fit Decreasing and 
the Best Fit. They were chosen over other heuristic 
algorithms because they have a faster running time, as 
well as produce solutions that are much closer to the 
optimal solution than most other heuristic algorithms. 
 

  
 3.1 Analysis of the algorithms  
Let M  be the optimal number of bins required to pack a 
set of n items.   

Let be the number bins required when First Fit 
Decreasing is used to pack the items. 

fm

Let be the number bins required when Best Fit is 
used to pack the items. 

bm

Then it can be shown [2] that 
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Hence it appears that Best Fit is more likely to produce a 
solution closer to the optimal solution than is First Fit 
Decreasing, but seeing as these values on the upper bound 
for the number of bins needed are relatively close to each 
other, it is worth using both algorithms.  
 
We also observe that:     
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 where C  is the capacity of a bin in single units,  
area or volume depending on the current bin packing case  
under consideration. 
 
The running time for Best Fit is O (n log n) and for First 
Fit Decreasing it is O (n log n) excluding the running 
time for sorting. 
 
4. Software Specification 
We have three directions in which to pack the items, 
width direction, height direction and depth direction. 
 
As previously explained each Item has six rotation types .  
Consider an item: 
The six rotation types can be obtained by rotating about 
the x , y and/or z axis as shown in Table 1: 
The bins are packed one at a time and the algorithms use a 
series of pivot points at which to pack the item.  
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Table 1: Box rotation options 
 

Rotation 
Type  

First axis 
to rotate 
about 

Second axis 
to rotate 
about 

0 - - 
1 Z - 
2 Y - 
3 X Y 
4 X - 
5 X Z 

 
4.1 3D Best Fit Algorithm 
Decide on a packing direction. Each bin has three 
directions in which to pack, a width (or x)  direction, a 
height (or y) direction, a depth (or z) direction. Pack one 
bin at a time. 
 
We first choose a pivot point. The pivot is an (x, y, z) 
coordinate which represents a point in a particular 3D bin 
at which an attempt to pack an item will be made. The 
back lower left corner of the item will be placed at the 
pivot. If the item cannot be packed at the pivot position 
then it is rotated until it can be packed at the pivot point 
or until we have tried all 6 possible rotation types. If after 
rotating it, the item still cannot be packed at the pivot 
point, then we move on to packing another item and add 
the unpacked item to a list of items that will be packed 
after an attempt to pack the remaining items is made. The 
first pivot in an empty bin is always (0,0,0). 
 
4.1.1 The 3D Best Fit, with pivoting, algorithm is as 

follows 
 if (binWidth is smaller than binHeight 

and binDepth) then  
{ 

packByWidth=true 
packByHeight=false; 

} 
else if (binDepth is smaller than 
binHeight and binWidth) then  

{ 
packByWidth=false 
packByHeight=false //both false 
implies pack by depth 

} 
else if (binHeight is smaller than 
binWidth and binDepth) then  

Y 

{ 
packByWidth=false X
packByHeight=true  

} 
 

 notPacked=Items 
 
ado 

Z 

Fig 1. 3D coordinates 
{ 
  toPack=notPacked 
  notPacked={} //clear notPacked 
 

Create a new bin called currentBin 
and check whether the item toPack[0] 
is able to fit in this bin at 
sition (x,y,z)=(0,0,0). po

if toPack[0] does not fit then 
rotate it (over the six rotation 
types) until it fits and pack it 
into this bin at postion (0,0,0).  
bfor i=1 to (size of toPack-1) do 
{ 
 currentItem=toPack[i] 
 fitted=false 

    
   cfor p=0 to 2 do  
   { 
    k=0 
   d while (k < number of items in 
currentBin) and (not fitted) 
    { 
     binItem=kth item in currentBin 
 if (packByWidth) then 
   pivot=p 
 else if (packByHeight) then 
   switch (p) 
   { 

compute pivot p for height 
  }  
else  //pack by depth 

   switch (p) 
   { 

compute pivot p for depth 
  }  

 
 switch (pivot) 
  { 
    case 0 : Choose (pivotX, pivovY, 
pivotZ ) as the back lower 
             right r i
            break    

corne  of b nItem 

    case 1 : Choose (pivotX, pivovY, 
pivotZ ) as the front lower 
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             left corner of binItem 
              break  
    case 2 : Choose (pivotX, pivovY, 
pivotZ ) as the back Upper 
             left corner of binItem 
       break  
  } 
 

if (currentItem can be packed 
in currentBin at  
    position(pivotX, pivotY 
,pivotZ ) ) then 
{ 
 Pack currentItem into 
currentBin at position 

      (pivotX, pivotY ,pivotZ). 
 fitted=true 
} 
 else  

    { // try rotating item  
do 
 Rotate currenItem  
while (currentItem cannot be 
packed in currentBin at  
          
position(pivotX,pivotY) )  
        and (not all 
rotations for currentItem 
checked) 
 
if (currentItem can be packed 
in currentBin at  
    position(pivotX, pivotY , 
pivotZ) ) then 
{ 
  Pack currentItem into 
currentBin at position 

       (pivotX, pivotY ,pivotZ). 
  fitted=true 

 
}else  
    Restore currentItem to 
its original rotation type 

   } 
    

 if (not fitted) then  
   Add currentItem to the list 
notPacked 

 
    }    
   }  

 

}  
 
} while notPacked has at least one 
Item in it (*i.e. notPacked is        
   non-empty *) 

 

4.1.2 Worst Case Running Time 
In the worst case we see that the do-while loop referenced 
by a above will run at most (n) times . 
Loop b will run at most (n-2) times. 
c will run 3 times. 
d will run at most (n-1) times because the number of 
items in a bin could be (n-1). 
The rotations carried out throughout the algorithm can be 
at most 6, so this does not significantly influence our 
running time. 
So we have :  O ( Best Fit )= n* (n-2) * 3 * (n-1)  
 = O(n3)
Thus in the worst case the algorithm produces a solution 
in polynomial time. 
 

4.1.3 Best Case Running Time 
The Best case excluding the trivial cases is when 
All the items fit into one Bin : 

a will run 1 time. 
b will run (n-2) times. 
c will run 3 times. 
d will run (n-1) times. 
So we have :  O (Best Fit ) =1* (n-2) *3 * (n-1) 

 = O(n2) 
 

Or when each item is packed into its own bin 
a will run n times. 
b will run (n-2) times. 
c will run 3 times. 
d will run 1 time. 
So we have :  O (Best Fit )=n* (n-2) *3 *1          
= O(n2) 
 

Thus in the best case, the performance is O(n2).
 

4.2  3D First Fit Decreasing  Algorithm 
To pack an item one has to first decide on a packing 
direction. The longest side of the bin corresponds to the 
packing direction. Then rotate each item such that the 
longest side of this item is the side which is the packing 
direction, i.e. if we are packing by width then we want the 
longest side of the item to be the item’s width, so for 
example if the packing direction is by width and the 
current height of the item is longer than its width, then 
rotate the item. If after performing the rotation(s), the 
item cannot fit into the bin (i.e. one or more of the 
dimensions of the items exceeds the bin’s corresponding 
dimension) then we rotate the item until the second 
longest side of this item is the side which corresponds to 
the packing direction. If after performing the rotation(s), 
the item cannot fit into the bin then we rotate the item 
until the third longest side of this item is the side which 
corresponds to the packing direction. Next sort the items 
in decreasing order of width, height or depth depending 
on packing direction. 
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5. Simulation Model and Graphical display 
The simulation model was implemented in C++ using an 
object oriented approach. The items and bins are 
represented by objects and a single object was used to 
represent the bin-packer itself. The application was 
developed on a Pentium II PC environment and gives 
acceptable response times. For portability sake, the user  

interface (Fig 2) is designed such that the textual solution 
to the problem is completely separated from the graphical 
solution (Fig 3) to the problem. The textual solution 
contains all the bins needed, the items contained in each 
bin and the positions of the items in each bin. 
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The Graphical solution display (Fig 3) was implemented 
using OpenGL under a windows operating system 
environment. The graphical display provides users 
amongst other utilities the Custom View button that 
enables the user to obtain their own view point. This view 
point is defined by changing the X , Y and Z eye position 
and/or changing the X , Y and Z ‘look-at’ position. The  

 
eye and look-at positions also provide information to the 
user about the predefined views. 
 
The statistical solution summary data (Fig 2) provides 
information about both the problem and the solution 
undertaken. The most important piece of information of 
the solution here is the total number of bins used. The 
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wasted space and used space do not reflect on the 
optimality of the solution but merely inform the user that 
there is more space available to pack other items, if 
desired. This is best illustrated by the following example. 
Suppose all the items except one item could be packed 
into just one bin and the remaining item, suppose which is 
relatively small in volume to the bin is packed into a 
second bin. This item will then be the only item packed 
into the second bin and thus there will be a lot of wasted 
space left over in the second bin.  
 
6. Conclusion 
Bin packing is a very appealing mathematical model 
problem, yet work on this problem is surprisingly recent. 
In this paper, we considered the implementation of the 
optimization of packing 3-D boxes into a finite set of bins 
and demonstrated that the program will find a solution 
within reasonable time. The major set backs of most other 
implementations is that of failing to converge to a 
solution and thus execute “indefinitely”. Our careful 
design also brings in the visualisation of the solution, that 
is, the exact location and orientation of an item in a bin is 
known. 
 
Our future work will be to use the application to 
determine the set of possible sizes of boxes that can be 
used by shipping companies so as to make better use of 
existing loading techniques. 
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