
G22.3210-001/G63.2170 Introduction to Cryptography September 30, 2008

Lecture 5

Lecturer: Yevgeniy Dodis Fall 2008

In this lecture we formalize our understanding of next-bit security and its relationship to
pseudorandomness. Namely, we prove that next-bit security implies a PRG. On our way to
this proof we introduce the important cryptographic idea of computational indistinguisha-
bility and the related technique of the hybrid argument. Having proved that functions G(x)
and G′(x) (which we introduced in the last lecture and which are defined here in Equa-
tions (1) and (2)) are next-bit secure and therefor PRG’s, we show that Equation (1) can
be used to construct a PRG without our having to decide a length in advance. We look at
two specific examples of such PRG’s: the Blum-Micali generator and the Blum-Blum-Shub
generator. Next we examine the relationship between PRG’s and OWF’s and come to the
startling conclusion that asserting the existence of one of these primitives is equivalent to
asserting the existence of the other. Finally we introduce the important idea of forward
security for a PRG and discuss the role of PRG’s in real life.

1 Next-Bit Unpredictability and PRG’s

Last lecture we used the concept of hardcore bits to construct public- and secret-key cryp-
tosystems whose security was plausible but unclear. Both of our constructions used a OWP

(possibly trapdoor) f and its hardcore bit h and considered iterating f(x) (for a random
x ∈ {0, 1}k) n times, and output the hardcore bits of f i(x) in reverse order. It particular,
we considered two functions G′ : {0, 1}k → {0, 1}n and G : {0, 1}k → {0, 1}k+n defined as

G′(x) = h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (1)

G(x) = fn(x) ◦G′(x) = fn(x) ◦ h(fn−1(x)) ◦ h(fn−2(x)) ◦ . . . ◦ h(x) (2)

Intuitively and by the analogy with the S/Key system, these functions seem to satisfy the
following notion of security which we now define formally.

Definition 1 [Next-bit Unpredictability] A deterministic polynomial-time computable func-
tion G : {0, 1}k → {0, 1}p(k) (defined for all k > 0) satisfies the next-bit unpredictability
property if for every index 0 ≤ i ≤ p(k) and every PPT next-bit predictor P

Pr
(

b = gi

∣

∣

∣
x←r {0, 1}k, g = g1 . . . gp(k) = G(x), b← P (g1 . . . gi−1)

)

<
1

2
+ negl(k)

Namely, no predictor P can succeed in guessing gi from Gi−1 = g1 . . . gi−1 significantly
better than by flipping a coin. ♦

We now formally show that G(x) (and hence G′(x) as well) satisfies this property.

Lemma 1 If f is a OWP, h is a hardcore bit of f and G is defined by Equation (2), then
G is next-bit unpredictable.

Lecture 5, page-1

Proof: The proof is almost identical to the one we used for the S/Key system. So assume
for some i and some PPT P our function G is not next-bit unpredictable. We notice that
we must have i > k, since otherwise gi is part of a truly random fn(x) (remember, x is
random), and is independent of Gi = g1 . . . gi−1. Thus, assume i = k+j where j > 0. Thus,

Pr
(

P (fn(x), h(fn−1(x)), . . . , h(fn−j+1(x))) = h(fn−j(x)
)

>
1

2
+ ǫ

We now construct a predictor A which will compute the hardcore bit h(x̃) from ỹ = f(x̃).
As with S/key, A simply outputs

P (f j−1(ỹ), h(f j−2(ỹ)), . . . , h(ỹ))

with the hope that P computes h(f−1(ỹ)) = h(x̃). The analysis that the advantage of A is
ǫ is the same as with the S/key example, and uses the fact that f is a permutation.

Having formally verified this, we ask the same question as before. Do G(x) and G′(x)
in Equation (1) and Equation (2) really satisfy their purpose of being “computational one-
time pads”? Last lecture we also intuitively argued that this means that G(x) (resp. G′(x))
should really look indistingushable from a truly random string of length n + k (resp. n).
We then formalized this property by defining the notion of a pseudo-random generator.

Definition 2 [Pseudorandom Generator] A deterministic polynomial-time computable func-
tion G : {0, 1}k → {0, 1}p(k) (defined for all k > 0) is called a pseudorandom number
generator (PRG) if

1. p(k) > k (it should be stretching).

2. There exists no PPT distinguishing algorithm D which can tell G(x) apart from a truly
random string R ∈ {0, 1}p(k). To define this formally, let 1 encode “pseudorandom”
and 0 encode “random”. Now we say that for any PPT D

|Pr(D(G(x)) = 1 | x←r {0, 1}k)− Pr(D(R) = 1 | R←r {0, 1}p(k))| < negl(k)

♦

Thus, a pseudorandom number generator (PRG) stretches a short random seed x ∈
{0, 1}k into a longer output G(x) of length p(k) > k which nevertheless “looks” like a
random p(k)-bit strings to any computationally bounded adversary. For clear reasons, we
call the adversary D a distinguisher.

Now, rather than verifying directly if our G and G′ are PRG’s, we will prove a much
more suprising result. Namely, we show that any G which satisfies next-bit unpredictability
is a PRG.

Theorem 1 If an arbitrary G : {0, 1}k → {0, 1}p(k) is next-bit unpredictable, then G is a
PRG. More quantitively, if some PPT distinguisher for G has advantage ǫ is telling G(x)
apart from a random R, then for some index 1 ≤ i ≤ p(k) there is a PPT predictor for G
which has advantage at least ǫ/p(k).

Lecture 5, page-2

We notice that the converse (PRG implies next-bit unpredictability) is obvious. Indeed,
if some P break next-bit unpredcitability of some G at some index i, here is a distinguisher
D(y1 . . . yp(k)):

Let g = P (y1 . . . yi−1).
If g = yi output 1 (“pseudorandom”), esle output 0 (“random”)

Indeed, by assumption, if y = G(x), then Pr(D(y) = 1) ≥ 1
2 +ǫ. On a random string y = R,

clearly Pr(D(y) = 1) = 1
2 , since there is no way P (R1 . . . Ri−1) can predict a totally fresh

and independent Ri.

We give the proof of Theorem 1 in Section 3. The proof uses an extremely important
technique called a hybrid argument. However, it is a somewhat technical to understand
right away. Therefore, we step aside and introduce several very important concepts that
will (1) make the proof of Theorem 1 less mysterious; (2) explain better the definition of a
PRG by introducing the general paradigm of computational indistiguishability; (3) make new
definitions similar to that of a PRG very easy to express and unserstand; and (4) introduce
the hybrid argument in its generality. We will return to our mainstream very shortly.

2 Computational Indistinguishability + Hybrid Argument

The definition of OWF’s/OWP’s/TDP’s had the flavor that

“something is hard to compute precisely”

We saw that this alone is not sufficient for cryptographic applications. The definition of a
hardcore bit and subsequently of the next-bit unpredictability were the first ones that said
that

“something is hard to predict better than guessing”

Finally, the definition of a PRG took a next crycial step by saying that

“something is computationally indistinguishable from being random”

Not surprisingly, we will see many more cryptographic concepts of a similar flavor where
more generally

“something is computationally indistinguishable from something else”

Intuitively, “something” will often be the cryptographic primitive we are considering, while
“something else” is the ideal (and impossible to achieve/very expensive to compute) ob-
ject we are trying to efficiently approximate. In order to save time in the future and to
understand this concept better, we treat this paradigm in more detail.

Definition 3 Let k be the security parameter and X = {Xk}, Y = {Y k} be two ensembles
of probability distributions where the descrytpion of Xk and Y k are of polynomial length
in k. We say that X and Y are computationally indistinguishable, denoted X ≈ Y , if for
any PPT algorithm D (called the distinguisher) we have that

|Pr(D(Xk) = 1)− Pr(D(Y k) = 1)| < negl(k)

Lecture 5, page-3

where the probability is taken over the coin tosses of D and the random choices of Xk and
Y k. The absolute value above is called the advantage of D in distinguishing X from Y ,
denoted AdvD(X, Y). ♦

Notice that in this terminology the definition of a PRG G : {0, 1}k → {0, 1}p(k) reduces
simply to saying that for a random x ∈ {0, 1}k and R ∈ {0, 1}p(k), we have

G(x) ≈ R

We give very simple properties of computational indistinguishability.

Lemma 2 If X ≈ Y and g is polynomial time computable, then g(X) ≈ g(Y).

Proof: Assuming a PPT distibguisher D for g(X) and g(Y), a PPT distinguisher D′(z) for
X and Y simply runs D(g(z)), which it can do since g is poly-time. Clearly, AdvD′(X, Y) =
AdvD(g(X), g(Y)).

The next result, despite its simplicity is a foundation of a very powerful technique.

Lemma 3 If X ≈ Y and Y ≈ Z, then X ≈ Z. More generally, if n is polynomial
in k and X0 ≈ X1, X1 ≈ X2, . . ., Xn−1 ≈ Xn, then X0 ≈ Xn. More quantitively, if
some distinguisher D has AdvD(X0, Xn) = ǫ, then for some 1 ≤ i < n we have that
AdvD(Xi, Xi+1) ≥ ǫ/n.

Proof: The proof is simple but is worth giving. We give it for the last quantitive version.
Indeed, this implies the fact that X0 ≈ Xn, since if D has non-negligible advantage ǫ(k) on
X0 and Xn, then D has (still non-negligible as n is polynomial in k) advantage ǫ(k)/n on
Xi and Xi+1, which is a contradiction.

To prove the result, let pi = Pr(D(Xi) = 1). Thus, we assumed that AdvD(X0, Xn) =
|pn − p0| ≥ ǫ. But now we can use the following very simply algebra:

ǫ ≤ |pn − p0|

= |(pn − pn−1) + (pn−1 − pn−2) + . . . + (p2 − p1) + (p1 − p0)|

≤ |pn − pn−1| + |pn−1 − pn−2| + . . . + |p2 − p1| + |p1 − p0|

=
n−1
∑

i=0

|pi+1 − pi|

Notice, we simply used algebraic manipulation and nothing else. However, now we see that
for some index i, we have

|pi+1 − pi| ≥
ǫ

n

Despite its triviality, this lemma is very powerful in the following regard. Assume we
wish to prove that X ≈ X ′, but X and X ′ look somewhat different on the first glance.
Assume we can define (notice, its completely our choice!) X0 . . . Xn, where n is constant or
even polynomial in k, s.t.

Lecture 5, page-4

1. X0 = X, Xn = X ′.

2. For every 1 ≤ i < n, Xi ≈ Xi+1.

Then we conclude that X ≈ X ′. This simple technique is called the hybrid argument.
The reason some people have difficulty in mastering this simple technique is the following.
Usually X and X ′ are some natural distributions (say G(x) and R, as in PRG example).
However, the “intermediate” distributions are “unnatural”, in a sense that they never come
up in definitions and applications. In some sense, one wonders why a distinguisher D
between natural X and X ′ should even work on these “meaningless” distributions Xi?

The answer is that D is simply an algorithm, so it expects some input. We are free to
generate this input using any crazy experiment that we like. Of course, the behavior of D
maybe crazy as well in this case. However, technically it has to produce some binary answer
no matter how we generated the input. Of course a really malicious D may try to really
do some crazy things if it can tell that we did something he does not expect (i.e., feed it
Xi instead of X or X ′ as we were supposed to). But the point is that if for all i we have
Xi ≈ Xi+1, D really cannot tell that we generated the input according to some meaningless
distributions.

As a simple example, we prove the following very useful theorem about PRG’s which we
call the composition theorem. Now you will see how simple the proof becomes: compare it
with a direct proof!

Theorem 2 (Composition of PRG’s) If G1 : {0, 1}k → {0, 1}p(k) and G2 : {0, 1}p(k) →
{0, 1}q(k) are two PRG’s, then their composition G : {0, 1}k → {0, 1}q(k), defined as G(x) =
G2(G1(x)), is also a PRG.

Proof: We know that G1(x) ≈ r and G2(r) ≈ R, where x ∈ {0, 1}k, r ∈ {0, 1}p(k) and R ∈
{0, 1}q(k) are all random in their domains. We have to show that G(x) = G2(G1(x)) ≈ R.
We use a hybrid argument and define an intermediate distribution G2(r). First, since G2 is
polynomial time and G1(x) ≈ r (as G1 is a PRG), then by Lemma 2 we have G2(G1(x)) ≈
G2(r). Combining with G2(r) ≈ R (as G2 is a PRG), we use Lemma 3 (i.e., the hybrid
argument) to conclude that G2(G1(x)) ≈ R, i.e. that G a PRG.

Finally, so far we said that X0 ≈ X1 if no distingusiher D can “behave noticeably
differently” when given a sample of X0 as opposed to a sample of X1. Here is anollowing
equivalent view of this fact, stating that D can behave differently on X0 and X1 only if it
effectively can tell whether or not it is given a sample of X0 as opposed to sample of X1

with probability noticeably different from 1/2.

Lemma 4 X0 ≈ X1 if and only if, for any efficient distingusisher D,
∣

∣

∣

∣

Pr(D(Z) = b | b
r
← {0, 1}, Z

r
← Xb)−

1

2

∣

∣

∣

∣

≤ negl(k)

Proof: We have
∣

∣

∣

∣

Pr(D(Z) = b | b
r
← {0, 1}, Z

r
← Xb)−

1

2

∣

∣

∣

∣

=
1

2
· |Pr(D(X1) = 1) + Pr(D(X0) = 0)− 1|

=
1

2
· |Pr(D(X1) = 1)− Pr(D(X0) = 1)|

Lecture 5, page-5

In the sequel we will interchangeably use both of these equivalent formulations of indis-
tinguishability.

3 Next-Bit ⇒ PRG (Proof of Theorem 1)

Before proving this result, let us introduce some useful notation. Assume the input x is
chosen at random from {0, 1}k. Let n = p(k), G(x) = g1 . . . gn be the output of G, and
Gi = g1 . . . gi be the first i bits of G(x). We also denote by Rs a truly random string of
length s. We will also often omit the concatenation sign (i.e., write GiRn−i in place of
Gi ◦Rn−i).

We will split the proof into two steps. The first step uses the hybrid argument to reduce
our problem to showing indistinguishability of n pairs of distributions, each related to some
specific output bit 1 ≤ i ≤ n of G. Later we will show that each of these pairs is indeed
indistinguishable by using the unpredictability of the corresponding bit i of G.

3.1 Stage 1: Hybrid Argument

Let us see what we have to show. We have to show that G(x) ≈ R, which in our notation
means Gn ≈ Rn. We use the hybrid argument with the following intermediate distributions:

X0 = Rn, X1 = G1Rn−1 , . . . , Xi = GiRn−i , . . . , Xn−1 = Gn−1R1 , Xn = Gn

More graphically,

Rn = r1 r2 . . . ri−1 ri ri+1 . . . rn−1 rn

G1Rn−1 = g1 r2 . . . ri−1 ri ri+1 . . . rn−1 rn

...
...

...
Gi−1Rn−i+1 = g1 g2 . . . gi−1 ri ri+1 . . . rn−1 rn

GiRn−i = g1 g2 . . . gi−1 gi ri+1 . . . rn−1 rn

...
...

...
Gn−1R1 = g1 g2 . . . gi−1 gi gi+1 . . . gn−1 rn

Gn = g1 g2 . . . gi−1 gi gi+1 . . . gn−1 gn

Since n = p(k) is polynomial in k and X0 = Rn, Xn = Gn, by the hybrid argument we only
have to show that for every 1 ≤ i ≤ n, we have Gi−1Rn−i+1 ≈ GiRn−i. We will do it in
the next step, but notice (see the table above) how similar these two distributions are: they
are only different in the i-st bit. In other words, both of them are of the form Gi−1bRn−i,
where b is either the “next bit” gi or a truly random bit ri. Not surprisingly, the fact that
they are indistinguishable comes from the unpredictability of gi given Gi−1. Looking ahead,
Gi−1 is the legal input to our next bit predictor P , while Rn−i can be easily sampled by
the predictor P itself!

Lecture 5, page-6

3.2 Stage 1.5: defining the predictor

To complete the proof, we have to show that Gi−1Rn−i+1 ≈ GiRn−i. For this it suffices to
show that if there exists a PPT distinguisher A for the above two distributions (that has non-
negligible advantage δ), then there exists a PPT next-bit predictor P for gi given Gi−1, which
would contradict the next-bit unpredictability for G. So assume such A exists. Assume
without loss of generality that Pr[A(GiRn−i) = 0] = q, and that Pr[A(Gi+1Rn−i−1) = 0] =
q + δ (that is, we are assuming w.l.o.g. that A outputs 0 more often when the i-th bit is
from G rather than random; if not, simply rename q to 1−q and swap 0 and 1 in the output
of A). Now, some shortcuts in notation.

Whenever we will run A, the first (i− 1) bits come from the generator, last (n− i) bits
are totally random, i.e. only the i-th bit is different. So we denote by A(b), b ∈ {0, 1},
running A(Gi−1bRn−i). Note, that when running A(b) several times, we always leave the
same prefix Gi−1 that was given to us at the beginning, but always put brand new random
bits in the last (n − i) positions. Now we denote by r ∈ {0, 1} a random bit (to represent
ri) and by g = gi — the i-th bit of G, where the seed is chosen at random. Hence, we know
that

Pr(A(g) = 0)− Pr(A(r) = 0) ≥ δ

Now, let us recap where we stand. We are trying to build P that will guess g. P can run
A(0) or A(1). P knows that A(g) is more likely to be 0 than A(r) (for a random bit r). So
how can P predict g? It turns out that there are several ways that work. Here is one of
them.

P picks a random r and runs A(r). If the answer is 0, it seems likely that g = r, since
A(g) is more likely to be 0 than A(r). So in this case P guesses that g = r (i.e. outputs
the value of r). If, on the other hand, A(r) returns 1, it seems like it is more likely that g
is the compliment of r, so we guess g = 1 − r. This is our entire predictor, and let us call
its output bit B. We wish to show that Pr[B = g] ≥ 1

2 + δ.

To put our intuition differently, A(r) a-priori outputs 0 less often than A(g). Thus, if
A(r) returned 0, this gives us some a-posteriori indication that r = g.

3.3 Stage 2: proving our predictor is good

Let us now show that P works. The proof is quite technical. Keep in mind though, that
what we are doing is simply an exercise in probability, our intuition is already in place!

Let z = Pr[g = 0] (where the probability is over random seed x). We introduce the
following “irreducible” probabilities:

βjk := Pr[A(j) = 0 | g = k], j, k ∈ {0, 1} (3)

The reason that this probabilities are important is that we will have to analyze the
expression Pr[P (Gi−1) = g], and therefore, will have to immediately condition on the value
of g, i.e. g = 0 or g = 1. And since P runs A, the needed probability will indeed be
some function of z and βjk’s. We note that all 4 probabilities in (3) are generally different.
Indeed, conditioning on a particular setting of g skews the distribution of the first (i − 1)

Lecture 5, page-7

bits Gi−1. We start by expressing our given probabilities in terms of “irreducible” ones (in
both formulas in the last step we condition over g = 0 or g = 1):

q = Pr[A(r) = 0]

=
1

2
(Pr[A(0) = 0] + Pr[A(1) = 0])

(3)
=

1

2
(zβ00 + (1− z)β01 + zβ10 + (1− z)β11)

q + δ = Pr[A(g) = 0]

(3)
= zβ00 + (1− z)β11

Subtracting the first equation from the second, we get the main equality that we will use:

δ =
z(β00 − β10) + (1− z)(β11 − β01)

2
(4)

Now, let us return to the analysis of P (recall, it chooses a random r, runs A(r) and
then decides if it output B = r or B = 1− r depending on whether or not the answer is 0).
The probabilities of P ’s success for a fixed r = 0 or r = 1 are:

Pr[B = g | r = 0] = z Pr[A(0) = 0 | g = 0] + (1− z) Pr[A(0) = 1 | g = 1]

(3)
= zβ00 + (1− z)(1− β01)

= (1− z) + zβ00 − (1− z)β01.

Pr[B = g | r = 1] = z Pr[A(1) = 1 | g = 0] + (1− z) Pr[A(1) = 0 | g = 1]

(3)
= z(1− β10) + (1− z)β11

= z − zβ10 + (1− z)β11.

Hence, conditioning on random bit r, the overall probability of P ’s success is

Pr[B = g] =
1

2
Pr[B = g | r = 0] +

1

2
Pr[B = g | r = 1]

=
1

2
(z + (1− z) + zβ00 − (1− z)β01 − zβ10 + (1− z)β11)

=
1

2
+

z(β00 − β10) + (1− z)(β11 − β01)

2
(4)
=

1

2
+ δ

This completes the proof. One remark is in place, though. Despite its technicality, the
proof is quite intuitive. Unfortunately, it seems like the “right” expressions are magically
appearing at the “right” places. This is just an illusion. There are several other intuitive
predictors, and all come up to the same expressions. Unfortunately, having four probabilities
βjk indeed seems to be necessary.

4 Consequences

Having proven that next-bit unpredictability ⇒ PRG, and using Lemma 1, we get

Lecture 5, page-8

Corollary 5 G′ and G defined by Equation (1) and Equation (2) are PRG’s.

Notice, however, that G′ and G are very inconvenient to evaluate. Specifically, we (1)
have to know n in advance, and (2) have to output the bits in reverse order, so that we
have to wait for n steps before outputting the first bit. It would be much nicer if we could
output the hardcore bits in the natural “forward order”. But now, using Corollary 5, we
can! Indeed, redefine

G′(x) = h(x) ◦ h(f(x)) ◦ . . . ◦ h(fn−1(x)) (5)

G(x) = G′(x) ◦ fn(x) = h(x) ◦ h(f(x)) ◦ . . . ◦ h(fn−1(x)) ◦ fn(x) (6)

From the definition of a PRG, it is clear that the order of the output bits does not matter
— a PRG remains pseudorandom no matter which order we output its bits. For the sake of
exercise, let us show this formally for G′ (similar argument obviously holds for G). Clearly,
it suffices to show that

Lemma 6 If F (x) = g1 . . . gn is a PRG, then so is H(x) = gn . . . g1.

Proof: Let rev(g1 . . . gn) = gn . . . g1. Since rev is poly-time computable, by Lemma 2 we
have H(x) ≡ rev(G(x)) ≈ rev(R) ≡ R, showing that H is a PRG.

Theorem 3 G′ and G defined by Equation (5) and Equation (6) are PRG’s, provided f is
a OWP and h is its hardcore bit.

Notice, we can now evaluate G′ and G much more efficiently. Simply keep state s = f i(x)
after outputting i bits, then output bit h(s) as the next bit, and update the state to s = f(s).
Moreover, to evaluate G′ we do not even need to know n in advance! We can get as many
bits out as we wish! On the other hand, the moment we are sure we do not need many
more bits from G′, we can simply output our current state s = fn(x) (for some n), and get
the output of G instead. This will save us k evaluations of our OWP. However, it seems
like using G′ is still much better that using G since we can keep going forever (with G, we
cannot go on with the current seed x the moment we reveal fn(x)). The pseudo-code is
summarized below.

Pick a random seed x1 ←
r {0, 1}k;

repeat until no more bits are needed
output next bit pseudorandom bit bi = h(xi);
update the seed xi+1 := f(xi);
i := i + 1;

end repeat
If want the last chunk of k bits, output the current seed xi;

5 Examples

We discuss two specific examples of pseudorandom generators induced from familiar OWP’s.

Lecture 5, page-9

5.1 Blum/Micali Pseudo-Random Generator

The Blum/Micali generator uses the candidate OWP EXPp,g(x) to generate a pseudo-
random string. Namely, we recognize that if xi+1 = gxi mod p, the MSB(x) is always
hardcore.

5.2 Blum/Blum/Shub Pseudo-Random Generator

Next, we look at the Blum/Blum/Shub Generator, which uses the proposed OWF SQn(x) =
x2 mod n where n is a Blum integer (ie the product of two primes p and q such that
p ≡ q ≡ 3 mod 4. The restriction on n to be a Blum integer comes from the fact that
(x2 mod n) becomes a permutation when restricted to the subgroup of quadratic residues
QRn of Z

∗

n. We mentioned that under the assumption that SQn : QRn → QRn is a OWP,
the LSB(x) is a hardcore bit for SQn, and this defined the Blum-Blum-Shub generator.
Notice, xi+1 = x2i

mod n. As you show in the homework, xi+1 is very easy to compute
directly when given the factorization of n (i.e. without iterating SQn for i times). Also,
each next bit requires only one modular multiplication. Finally, one can show that it is
safe to use simultaneously even up to log k least significant bits of each xi, making the BBS
generator even more efficient.

By comparison we look at a linear congruential generator of the form based on (fn(x) =
(ax + b) mod n), where a, b are chosen at random, which seems very similar but which in
fact proves insecure. The contrast shows us the importance of building a general theory.
We see that BBS is secure since LSB(x) is a hardcore bit for SQn, while one of the reasons
the once-popular linear congruential generator is insecure, is the fact that LSB(x) is not its
hardcore bit. Without this understanding, we would have hard time a-priori to say which
generator is better.

6 PRG’s and OWF’s

First, we notice that

Lemma 7 The existence of a PRG which stretches {0, 1}k → {0, 1}k+1 implies the existence
of a PRG which stretches {0, 1}k → {0, 1}p(k)

For example, this follows from the repeated iteration of the composition theorem Theorem 2:
simply call G repeatedly on its own output for p(k) times (notice, the adversary’s advantage
increases by a polynomial factor p(k), and hence remains negligible). Thus we see that the
assumption that PRG exists is universal and the actual expansion is unimportant.

But now we can ask the question of finding the necessary and sufficient conditions for
the existence of PRG’s. We proved that OWP ⇒ PRG. In your homework you show that
PRG ⇒ OWF. There is a very celebrated result (omitted due to its extremely complicated
proof) which shows that in fact OWF ⇒ PRG. This gives us the dramatic conclusion that

Theorem 4 OWF ⇐⇒ PRG

This is extremely interesting because we see that two of the main primitives that we have
introduced (namely OWF and PRG) are in fact equivalent despite their disparate appear-
ances.

Lecture 5, page-10

7 Forward Security

Next we introduce the important notion of forward security. First, recall the iterative
construction of G′(x) in Equation (5). Every time we output the next bit bi = h(xi), we
also update our state to xi+1 = f(xi). We also noticed that at every moment of time n,
we can simply output xn+1 = fn(x) and still get a secure PRG G(x). To put it in different
context, our current state xn+1 looks completely uncorrelated with the previously output
bits G′(x). Namely, even if we manage to loose or expose our current state, all the previously
output bits remain pseudorandom!

This is exactly the idea of forward-secure PRG’s formally defined below.

Definition 4 [Forward Secure PRG] A forward-secure PRG with block length t(k) is a poly-
time computable function F : {0, 1}k → {0, 1}k×{0, 1}t(k), which on input si — the current
state at period i ≥ 1 — outputs a pair (si+1, bi), where si+1 is the next state, and bi are
the next t(k) pseudorandom bits. We denote by N(s) the next-state function, by B(s) the
next t(k) pseudorandom bits output, by Fi(s1) = B(s1)B(s2) . . . B(si) the pseudorandom
bits output so far, and by Ri — a random string of length {0, 1}i·t(k). We require for any
i < poly(k) that when the initial state s1 is chosen at random from {0, 1}k, we have

(Fi(s1), si+1) ≈ (Ri, si+1)

♦

For example, when used for symmetric key encryption, a forward-secure generator im-
plies that loosing the current key leaves all the previous “one-time pad” encryptions secure.

We notice that our generic PRG G′ from Equation (5) and its efficient implementation
naturally leads to a forward-secure generator with block length 1: F (s) = (f(s), h(s)), i.e.
the next state is f(s) and the next bit is h(s). The proof of forward security immediately
follows from the fact that G from Equation (6) is a PRG (check this formally as an exercise).

Finally, we notice that one can also build a forward-secure PRG with any polynomial
block length t(k) from any regular PRG G : {0, 1}k → {0, 1}t(k)+k. If we let G(s) =
G1(s) ◦ G2(s), where |G1(s)| = |s| = k, then G by itself is a forward-secure generator
G(s) = (G1(s), G2(s)). Namely, we use G1(s) as the next state, and G2(s) as the t(k) bits
we output.

Theorem 5 Forward-secure PRG’s with any polynomial block length 1 ≤ t(k) < poly(k)
exist ⇐⇒ regular PRG’s exist (⇐⇒ OWF’s exist).

We leave the proof of this fact as an exercise.

8 PRG’s in Our Lives

As a final note we would like to emphasize how common (and important!) PRG’s are in
real life. In computing, most requests for “random” sequence in fact access a pseudorandom
sequence. Indeed, to uise randomness in most computer languages we first make a call to
the function randomize, which initializes some PRG using only a small (and hopefully) truly
random seed. All the subsequent random calls are in fact deterministic uses of a PRG, which

Lecture 5, page-11

outputs the next “random-looking sequence” (and possibly updates its state). Hence, since
what we usually take for random is in fact some deterministic sequence generated by a
PRG, we see that it is very important to understand what constitutes a good PRG. Which
is exactly what we have spent the past two weeks investigating.

Finally, we recap our discussion of PRG’s by reminding that they can be used without
much harm in any realistic (i.e., efficient) application which expects truly random bits.

Lecture 5, page-12

