
Complexities of Simulating a Hybrid Agent-Landscape Model
Using Multi-Formalism Composability

Gary R. Mayer Hessam S. Sarjoughian
Gary.Mayer@asu.edu Sarjoughian@asu.edu

Arizona Center for Integrative Modeling & Simulation

Computer Science & Engineering Department
School of Computing and Informatics

Arizona State University, Tempe, Arizona

Keywords: agents, cellular automata, multi-modeling,
multi-formalism, poly-formalism.

Abstract
Hybrid agent-landscape models are used as an

environment in which to study humans, the environment,
and their dynamics. To provide flexibility in model design,
expressiveness, and modification, the environment models
and human agent models should be developed
independently. While retaining each model’s individuality,
the models can be composed to create a model of a
complex, hybrid agent-landscape system. This should allow
for a much more in-depth analysis of each model
independently, as well as a study of their interactions. To
create such a modeling environment requires a look beyond
a simple interface between two models. It may require that
the models’ formalisms be composed, their execution be
synchronized, their architectures be integrated, and a
common visualization be created to provide a whole-system
data view during simulation. This paper discusses the
complexities of such an undertaking.

1 INTRODUCTION
Hybrid agent-landscape models are typically used to

better understand the effects of human beings interacting
with their environment. The term “hybrid” is used to imply
that both the human and environmental sub-system models
are developed to some higher resolution that enables a clear
delineation between the two to be drawn, if not developed to
the point that they might be separated and executed
independently. However, the incorporation of a large
amount of detail in a model often results in large numbers of
interacting pieces – modeled systems whose interacting
pieces bring about different kinds of complexities.
Moreover, a new dimension of complexity is introduced
when the human and environmental sub-systems are

combined. Their interaction is bi-directional as the human
and environment models act as both producer and consumer
in the hybrid model. Yet, by maintaining a clear delineation
of each sub-system, researchers are able to choose a
formalism that best represents the sub-system to be
modeled, complex or not, thus enabling a more intuitive
mapping from domain knowledge to formalism (e.g., using
an agent-based model to represent the humans and a cellular
automaton for the environment). Furthermore, by
maintaining independent models researchers are able to
study the human population and the environment separately,
as well as examine the interactions between the two
methodically.

It is the intent of this paper to discuss an approach that
facilitates these studies and presents some of the challenges
associated with this approach. The underlying concept is to
compose modeling formalisms instead of integrating
models’ inputs and outputs via interoperability concepts.
The Mediterranean Landscape Dynamics (MEDLAND)
project [1] is an on-going international and multi-
disciplinary effort. One of its goals is to develop a
laboratory in which to study humans, the environment, and
their dynamics. In MEDLAND, humans are represented by
agents and the environment is represented by a landscape
model. The two models will be composed using a third
model, the interaction model (see Figure 1). It is from the
MEDLAND domain that examples are provided and
previous research summaries are drawn.

Figure 1 shows a discrete-event, rules-based agent
model composed with a discrete-time, cellular automaton
landscape model. Note that there is no direct communication
between the two composed models. Their communication is
managed by an interaction model which handles the data
transformation and control. This interaction model is
complete with its own formalism and realization separate
from the two composed models.

Figure 1. Proposed Agent-Landscape Model Architecture

2 BACKGROUND

2.1 Composability Problem
Using disparate modeling formalisms to describe

different sub-systems has important benefits ranging from
acquiring requirements to simulation experiments (see [2]
for details). To achieve model composability, the main
challenge centers on having appropriate concepts and
methods to compose different model types such that both
the disparate models and their interactions have well defined
syntax and semantics. The composed models must be
correct and valid – i.e., model specifications must be
consistent as (i) correctness is ensured according to the
domain-neutral modeling formalisms and (ii) validation is
ensured according to the domain-specific model
descriptions [3].

To achieve model correctness and enable model
validation, a variety of issues must be considered. The
authors group these to formalism and realization aspects
(see Figure 2). The formalism focuses on model
specification and execution – i.e., the former is for
mathematical descriptions of the system and the latter is for
the machinery that can execute model descriptions. The
formalism modeling and execution layers are not specific to
any one model instantiation; they’re generalized for a class
of models (e.g., discrete-time).

Important considerations for composability are the
implications of what it means to inject data and control from
an external source that may not have the same approach to
model specification and execution. For instance, one model
may have an innate concept of time, while the other does
not. Consider, also, what it means for a discrete-event model
to inject data into a discrete-time model not at predefined
time steps. As a final example, take one model that uses a
state-based approach. The modeler must ensure that an

external input does not arbitrarily modify the state of that
model. All state changes must be in accordance with the
rules of that model’s formalism else correctness and validity
of that model is suspect.

Figure 2. Model Layer Composition

The realization aspect deals with software architecture,
design, and implementation. The software architecture and
design are conceptual and detailed software specifications
(e.g., described in the Unified Modeling Language (UML))
that can be forward engineered to specific programming
language constructs (e.g., Java, C, Lisp). Examples of
design considerations can be as simple as converting an
integer from one model into a double for another. For
distributed model systems, it includes such things as quality
of service and handling synchronous versus asynchronous
input and output.

The last layer under realization is titled
“Implementation Specific Details”. This refers to those
elements of a model implementation that are not
architecture related; they are more closely tied with the data.
Specifically, how things like the scale and resolution of the
model interact with other models. For example, an
environmental model may employ millions of data
elements; each at a 100 meter scale, while an agent model
uses only a couple of hundred agents working at a 10 meter
resolution. The modeler must consider the significance to an
agent’s movement possibly existing entirely within one cell
of the environment model.

2.2 Multi-Modeling Approaches
In their books, Fishwick [4] and Zeigler and others [5],

describe multi-modeling as the creation of a model
composed of smaller models. Each sub-system model
captures only a part of the whole system. The composition

agent

Discrete-event,
Rule-based Models

landscape

Discrete-time, Cellular
Automata Models

Data Transformation
+ Control Model

interactions

Model A Model B

Implementation
Specific Details

Software
Architecture

Execution

Specification

Implementation
Specific Details

Software
Architecture

Execution

Specification

formalism
realization

order of
composition

of these sub-system models enables the modeler to create a
much more complex representation of the whole system. For
example, the Joint-MEASURE simulation environment
integrates DEVS-C++ and GRASS models to simulate
movement of vehicles on geo-referenced terrain [6, 7].

A taxonomy for multi-modeling using the same or
different types of formalisms has been proposed [3]. This
nomenclature offers four approaches to multi-modeling.

A mono-formalism refers to one in which there is a
hierarchical composition of models into/from parts
described within one syntax and semantics. For instance, a
system model composed of all discrete-time models.

Super-formalism is a single formalism that supports
describing two or more different types of models. It requires
that the models be of the same family (e.g. system
specifications). Note that the super-formalism approach
forces a uniform execution approach and syntax on both
models. For example, the Discrete Event & Differential
Equation System Specification (DEV&DESS) [5, 8] can
describe both a continuous model and a discrete-time model.

A meta-formalism describes mapping two disparate
formalisms to a third, common formalism. It does not have
the same-family model restrictions that are levied upon the
super-formalism. However, expressiveness of the model
formalisms must often be restricted according to the meta-
formalism to ensure proper, multiple mappings. High-Level
Architecture (HLA) [9] and Repast [10, 11] are examples of
this.

Poly-formalism is the approach in which disparate
formalisms interact via a third formalism while retaining
their original formalisms. An example of this approach is
the use of a Knowledge Interchange Broker (KIB) to
compose Discrete Event System Specification (DEVS) and
Linear Programming (LP) models [12].
The choice of which multi-modeling approach to use is
situation dependant. It will likely be the modeler’s opinion,
motivated by the domain and requirements levied upon the
system model (e.g., ability to described the model in one
formalism or withstand the loss of expressiveness and/or
domain specific details during mapping).

3 RELATED WORKS
Building a system model from multiple sub-system

models is not a new concept. As such, there are a number of
existing toolkits that perform some combination of agent-
landscape modeling [13]. These toolkits have been
examined during the course of this research and the most
applicable are discussed here.

3.1 Swarm and Repast
Two well known toolkits are Swarm [14] and the

Recursive Porous Agent Simulation Toolkit (Repast) [10,
11]. Both are discrete-event, multi-agent modeling systems
using object-oriented software programming concepts and

design. While Repast offers more features, including
support for the Geographic Information System (GIS), both
have some visualization capability. Both systems use a
meta-formalism approach that requires the modeler to
convert models into an object-oriented construct that
complies with their simulator’s specifications. As there is no
formalism for either system, proof of correctness of the
entire model is left up to the modeler. Further, neither
system provides a formal method for conversion of any
particular type of modeling formalism into their system. The
use of the toolkit simulator, which uses a simplified
definition of discrete event that allows multiple state
transitions to result from a single event [15], is prohibitive
to implementing a formalism within one of the toolkit
environments. Without the ability to properly implement a
formalism within these environments, correctness is a
concern and composition of formalisms and models
described within them are difficult to validate. Thus, the
poly-formalism composition approach is not suitable in
these environments.

3.2 Ptolemy
Ptolemy II [16] is a computational framework for

embedded systems that focuses on concurrent systems.
Ptolemy composes model domains through interactions and
domain polymorphism. It does this by structuring the model
domains as components and treating each as an actor under
the control of directors using interface automata. It is super-
formalism modeling with a strong software engineering
emphasis [17]. While Ptolemy addresses multi-formalism
modeling, it does so while focusing on interactions between
embedded systems (each a unique domain). In the case of
this project, the focus is on a single domain in which pieces
of the domain are best described using a different modeling
formalism. Furthermore, the discrete time domain within
Ptolemy II is still experimental. The current model has strict
requirements such as static scheduling and the requirement
to know what will execute on the ports before the simulation
begins. A restriction that is impossible to meet if the two
composed models are to truly remain independent.

3.3 KIB
There have also been successful attempts at poly-

formalism composability. In three other research projects,
the third model that facilitates the composition is referred to
as a Knowledge Interchange Broker (KIB) [18]. The KIB
has been used to compose DEVS with Linear Programming
in semiconductor supply/demand networks [12]; to compose
DEVS with the Reactive Action Planner (RAP), an agent-
based planner [19]; and to compose DEVS with Model
Predictive Control (MPC) in semiconductor supply-chain
manufacturing [20]. These three projects demonstrate two
things. First, it is possible to compose models using the
poly-formalism modeling approach. Second, the fact that
three different projects exist and each composes DEVS with

a distinctly different formalism implies that the KIB is not
generic to all formalisms. A KIB is a unique composition
between two distinct formalisms. The research being done
here is unique from the previous works in that it composes a
discrete-event agent model with continuous processes
represented by cellular automata.

3.4 MEDLAND

3.4.1 Agent-Landscape Model: Phase I
The initial agent-landscape model developed for the

MEDLAND project uses a super-formalism approach
created in DEVS. In that version, the agent is a discrete-
event model and the landscape is a Cellular-DEVS, discrete-
time model [5]. This approach was taken to enable a study
of the agent model concept while reducing the complexity
associated with interfacing models in different formalisms.

The model events are cyclic with each cycle
representing a calendar year. The agents in this model
represent households. Each household has a population that
it uses to derive a need for food to survive and a labor force
with which to manage land. The basic management actions
are “cultivate” land, “fallow” land, and “release” land. The
landscape cells each have their own soil value indicative of
soil quality that ranges from 0 to a maximum of 5. When a
landscape cell is cultivated, its soil quality reduces by one
each cycle (to a minimum of 0). Each cycle that a landscape
cell is fallowed, its soil value increases by one, up to the
maximum value for that cell.

Each cycle, the agent assesses its current food
requirement and compares it to an expected yield (derived
from last cycle’s yield and current population) to create a
management plan. Conflict resolution is handled on a first-
come, first-served basis and plans are revised as necessary
until all food requirements are met or no additional land
exists for cultivation. Any excess land held beyond what is
need for cultivation is held in fallow.

The agents are given two goals. The first is simply
survival. With only this goal active, the agents were able to
reach a steady-state population quickly and demonstrated
that cultivated and fallowed lands were swapped each cycle.
The second goal, growth, allowed the agents to use large
excesses of fallowed land and cultivate it. Since population
growth is tied to the difference between yield and food need,
this created large growth spurts in agent population. This
growth continued until the agent population reached
simulation boundaries [21].

While this approach worked, it also became obvious
that the DEVSJAVA environment would be inappropriate
for the landscape as the number of data elements increased.
While efficiencies could be imparted to the Cellular-DEVS
landscape model, it would be unlikely that the model could
be made as robust as a continuous or discrete-time model
devised using the Geographic Resources Analysis Support
System (GRASS) [22, 23]. Cellular-DEVS does not scale as

well as a geographical database management system such as
GRASS. Furthermore, while Cellular-DEVS offers some
visualization tools, the GRASS visualization tools offer a
richer set of predefined features.

3.4.2 GRASS
GRASS is an implementation of GIS [23] that manages

georeferenced information. As a geographical database
management system, it is specifically tailored to efficiently
examine and modify large geographical data sets. GRASS
data (points, lines, polygons, or pixels) is stored in files
referred to as mapsets. Each mapset may be either a vector
or raster data model. Vector data models are entity models
in which the data model represents a specific entity and the
topology (relationship) between the data is either implicit or
explicit depending upon what is represented. For example, a
polygon stored as a vector would have details about each
point in the polygon and the lines connecting those points,
thus providing an explicit relationship between the data. The
raster data model is a square, regular tessellation of
continuous space. The topology in this discretization is
implicit [24].

GIS implementations are capable of logical and
numerical data analysis methods. These methods are not
commutative (sequence matters). Thus, more complex
command sets are stored in structured command files
(scripts) and are referred to as ‘models’. The scripts specify
the order of function execution and to which data the
functions apply [24]. These models have no predetermined
specification for behavior, structure, or execution. These are
left to the modeler’s discretion when devising the scripts.

3.4.3 Agent-Landscape Model: Phase II
The next version of the model progressed towards a

poly-formalism approach. The behaviors from Phase I were
maintained. However, instead of using Cellular-DEVS for
the landscape model, a GRASS landscape model was
created and an interface was implemented within a
component of the agent model. When agents interacted with
the landscape, they sent DEVS message objects to the
interface component. This component converted the
message into GRASS scripts. The scripts were then
executed and the resultant output was captured and returned
to the requesting agent. Further, the DEVS simulator was
used to execute the GRASS landscape model by
implementing landscape updates as internal events within
the interface component. This approach allowed DEVS to
provide a schema to the execution of the landscape models
in GRASS.

It is purposefully stated that this is a progression
towards a poly-formalism approach rather than the approach
itself. The reason for this is that there is a direct interface
between the agent and landscape models. Also, there is
currently no third model supporting this interaction.
Furthermore, the interface is solely at the implementation-

level; the formalism-level is not yet realized. This phase
provided a better understanding of the difficulties of
exchanging data and control between the two systems while
examining approaches for describing GRASS models using
more formal methods (e.g., cellular automata).

Simulation experiments were conducted on the second
agent-landscape model to ensure that all of the functionality
enabled in Phase I still worked through the interface. A
simulation visualization was created using GRASS
visualization tools to show the current status of key data.
The GRASS data visualization had three panels. The first
showed the current land use – cultivated, fallowed, or wild.
The next panel displayed soil quality. Colors changed to
represent soil values, whose dynamics are related to
cultivation. The last panel displayed the agent that is
currently managing each landscape cell. Each agent was
assigned its own color.

4 INTERACTION MODEL

Figure 3. Proposed Hybrid Model Architecture Using a
Poly-Formalism Approach

The on-going effort involves research and development
of a discrete-event interaction model (IM) that composes a
DEVS discrete-event, rule-based agent (DERBA) model
with a GRASS discrete-time cellular automata (DTCA)
landscape model (see Figure 3). This version completely
segregates the agent and landscape models. Figure 3 shows
that the formalisms of the two composed models (DERBA
and DTCA) will be used to derive the formalism of the IM.
Next, the realization of all three models is derived from their
formalisms. It is within the realization of each model that
the interactions between them occur through data mapping,

aggregation/disaggregation, and control passing. Note that
the IM has an additional component, a visualization layer,
attached to its software architecture layer.

Visualization is an important tool for supporting
simulation experimentation. The evaluation of executing
models, particularly for complex large-scale domains, is
invaluable for researching hybrid agent/landscape dynamics.
The visualization layer is attached to the software
architecture because appropriate ways to probe the
composed models, while still maintaining their
independence, must be considered in order to retrieve data
dynamically. Despite the connection to the software
architecture, the visualization layer is unlikely to be derived
from the formalism.

The remainder of this section discusses the individual
layers of the IM (as shown in Figure 3) and the challenges
associated with the design and implementation of that layer.

4.1 Formalism

4.1.1 Specification Interaction
The interaction model must respond to input from both

composed models and, in the case of the discrete-event
agent model, may not know the exact timing of such events.
Therefore, it makes sense to consider a discrete-event
modeling formalism for the IM. However, it should be
noted that the discrete-event specification for the agent is
rich enough to also specify discrete-time agents and the
discrete-time cellular automata may also represent a
discretized continuous model. Thus, when designing the IM,
it should be kept in mind that by using a discrete-event
interaction model to compose any of these, a problem arises.

The poly-formalism modeling approach moves the
details of the domain and formalism of each model and;
therefore, the ability to interact as well, into the interaction
model. This removes any domain-specific knowledge of the
composed models from each other. However, it implies that
the discrete-event interaction model will then inject any data
into either model as an event. Since the agent and landscape
models may have different time deltas, the time at which an
event is injected may not align with a regularly scheduled
discrete-time event. This poses a problem if any of the
functions within a discrete-time model are time-delta
dependant. For example, a landscape soil erosion model
assumes that its values are updated once every 10 cycles.
The value of 10 is explicitly used as a time delta to revise
data values each time the function is run. The agent model
updates every 1 cycle and, somewhere between the soil
erosion model’s update, the agent makes a modification that
impacts that soil erosion model and requires that soil values
be updated immediately. Running the soil erosion model
would erroneously cause the model to update its time by 10
and cause it to be out of synch with the rest of the modeled
system.

DTCA IM DERBA

 Domain Specific
Knowledge

Domain Specific
Knowledge

Domain Specific
Knowledge

Impl. Specific
Details

Software
Architecture

Execution

Specification

Impl. Specific
Details

Visualization

Execution

Specification

Software
Architecture

Impl. Specific
Details

Software
Architecture

Execution

Specification

formalism

realization interaction

derivation

There are three approaches to managing this situation.
The first requires that all composed models meet the
discrete-event specification. However, this creates a
problem for continuous functions within the models. By
representing a continuous function within a discrete-event
model, the modeler must handle discontinuity within the
continuous function. This is a problem whose solution is
still being studied using approximation mappings of
continuous functions to discrete-events (quantizations) [5].
A second alternative is to allow the interaction model to
inject the event during a model’s next, regularly scheduled
event time. The problem with this approach is that one
model may execute much more frequently than the other
and is likely to be dependant upon the data in the other
model being current. This leads to further complications as
the modeler must not only specify how concurrent actions
injected into a model at the same time are managed, but how
actions injected across multiple time frames between the
model’s update are controlled. The third approach levies a
caveat on all discrete-time models that interface with the
interaction model. The caveat states that any model in which
an external model may have an impact must not contain a
function that explicitly anticipates the time delta between
function executions. This last approach allows the most
flexibility throughout the system with the least complexity.

4.1.2 Execution Control
DEVS decouples models from their execution. There is

an explicit model specification and a simulator
specification. This enables a DEVS model to be run on
different DEVS simulators, all of which have an innate
sense of time. A GRASS model, on the other hand, is
closely tied to its execution through the scripts and
functions. Timing is provided by manually injecting the
time as a variable or through external programs. This raises
the question of how a modeler composes a model with a
simulator and a sense of time with one that has no formal
execution schema or timing. A solution under evaluation is
to use a DEVS model to provide the GRASS model with
timing. The time delta for each landscape model can be
provided to the DEVS model upon initialization and the
DEVS model could act simply as a clock that calls an
execution script for each GRASS model.

The execution of the models as a system can be handled
in two ways. The first is using a centralized control scheme.
With this approach, the system has a single control scheme
that exercises all three models. The second approach is a
decentralized control scheme. This means that the
interaction model simulator would send control messages
and data to individual model simulator/executor, which
would then exercise their respective models. Given that the
agent and interaction models are both in DEVS1 and the
landscape model requires a simulator with an innate sense of

1 And, therefore, decoupled from any specific simulator.

time to automate it, the centralized control scheme seems
the logical choice with minimal additional overhead.

4.2 Realization

4.2.1 Software Architecture
The software architecture must account for two main

obstacles – disparate software languages and constructs, and
hardware resource needs. The DEVS models are being
created in DEVSJAVA, a Java language implementation of
DEVS in which all models are object-oriented constructs.
GRASS modules are written in C. Scripts (and functions)
may be written in any scripting language such as Bash or
Python depending on the system functionality that the
modeler requires (e.g., file management, use of regular
expressions, etc.). To run a GRASS script, a DEVSJAVA
component uses the Java Runtime.exec() command to
execute it.

Each GRASS module is independent and, therefore, has
its own interface but the modules do not continuously run.
They accept input, return output, and terminate. The output
from the modules is only provided to the standard output
stream (and, sometimes, standard error stream). Thus, to get
return data, a program must capture and parse the data from
the standard output buffer and then insert that data into a
DEVS message object on the appropriate port. This
approach is complicated by the fact that GRASS, being an
open source project initially developed during the early
1970’s during the time of command-line interfaces, has
output that is typically preformatted for ASCII viewing and
each module outputs a different format. The GRASS
community is working on standardizing such variations.

The second issue that the software architecture must
prepare for is hardware resources. This is because it is
unknown how the two models will run together on a single
machine, even if multi-processor enabled. Further, as the
number of landscape cells grows and the number of agents
grows, run-time memory may become a limitation. So, the
architecture needs to provide an efficient approach to run
both models and prepare for a possible distributed
architecture. In this case, each model, the agent and the
landscape, will reside on a separate computer. It must then
be decided where the interaction model will reside.

4.2.2 Visualization
Visualization also plays a role in the IM software

architecture. The intent is to provide a unified, synchronized
data visualization with key data elements from both models
displayed in a comprehensive manner. It can not be assumed
that the only data that the researchers will wish to see are
those that are being passed between the two composed
models. Therefore, some method by which the interaction
model can dynamically retrieve data during simulations
must be devised. A Model-View-Controller (MVC) design
pattern is being considered as the foundation for the

visualization architecture. This pattern separates the (data)
model from the visualization component and the controller
which manages both. The data model in this case is the data
resulting from formatting, aggregation, and/or mapping of
composed model data. The use of this pattern will allow the
implementation of a controller that compliments the hybrid
model framework while enabling flexibility for visualization
tools that support the data under study.

4.2.3 Implementation Specific Details
The implementation specific layer focuses mainly on

scalability from an execution (performance) perspective. To
reiterate the example given above, an environmental model
may employ millions of data elements; each at a 100 meter
scale, while an agent model uses only a couple of hundred
agents working at a 10 meter resolution. To be resolved is
the relation between the agent and the landscape. Is it a 1-to-
1 relationship where an agent can individually impart a
unique action on each landscape cell or 1-to-many, where an
agent’s actions are applied to a group of landscape cells?
How does the difference in number of elements within each
model effect things like wall clock time to execute the
model through a specific cycle? As posed above, what does
it mean for an agent to move 1/5th of the way through a
landscape cell?

Given that each of the composed models has no domain
knowledge of the other, the resolution for all of these
questions must be handled in the interaction model. The
resolution issue may be handled using a data mapping that is
configurable at initialization. An approach to the scale issue
is to allow the interaction model to maintain its own map
such that it keeps track of agent locations using a finer
granularity than the landscape model. The timing issue is
managed through synchronous/asynchronous event handling
and defining in what order the models are executed. This too
may be a configurable parameter at initialization.

4.2.4 Usability
There is one additional problem that arises as a result of

the research domain and the models’ intended users. The
MEDLAND project is targeting social scientists with little
or no formal programming skills. By using DEVSJAVA, we
are introducing an unfamiliar programming language with
unfamiliar, object-oriented constructs as compared with
scripting languages. Since this system is meant to become
an operational laboratory environment, it is necessary to
minimize the difficulty of revising agents in order to
maintain the flexibility to research more broad topics. The
challenge truly comes in not only providing this flexibility,
but ensuring the model behaviors are not changed to the
point that the model itself is no longer correct.

The agent model is currently under revision to
incorporate more details than were originally provided
under the top-down models created for the first and second
phases. This version is building the agent from the bottom

up based upon ethnographic data. Once examination of the
data is complete, the group will make decisions on where to
abstract the data in the development of the new model. This
redesign provides an opportunity to also revise the agent
model’s structure.

The current agents in the agent model are single
components. Rules, needs, capabilities, etc. are all contained
within a single model. Thus, the only capability that can be
provided to the researchers while being certain that
correctness is not compromised is the ability to modify
parameters. One approach being considered is to reduce the
agent model to component pieces, each with minimal
distinct behaviors. These pieces can then be configured at
simulation initialization. Each piece would then maintain its
specific, correct behavior with modifiable parameters.
DEVS component ports could be keyed such that specific
outputs could only be coupled to specific input ports, etc. to
improve usability. The overall agent behavior would be
modified based upon which components were coupled.

5 CONCLUSIONS
Composing two disparate modeling types is not an easy

task. The modeler must first decide upon a multi-modeling
approach, taking into consideration the system requirements
and domain. Next, the impacts to the specification and
execution of the model formalism should be considered.
Within the realization of the model, the modeler should
consider the software architecture, visualization, and
implementation specific layers that come into play as well.
Each of these has its own constraints.

Many research issues can be studied using each of the
multi-formalism approaches discussed in Section 2.2,
above. It will likely be a mixture of the modeler’s
preference and the requirements levied on the model that
determine which approach to use. However, if it is
important to the modeler that each sub-system retains its
formalism expressiveness to provide the best description of
the sub-system model and be loosely coupled with its
composed model to ensure the flexibility to make changes
with minimal impact to the other model, then the poly-
formalism approach is suitable for achieving correctness of
the modeled system. In essence, the poly-formalism
modeling approach affords the modeler two levels of
generality. First, at the formalism level, creating an IM
allows any system containing the same class of models
(DERBA and DTCA) to be composed. Note that realization
details may dictate some IM changes. Second, at the
realization level, the IM can compose any DEVSJAVA
DERBA model with any GRASS DTCA model. At this
level, only the implementation specific details within the IM
may have to be adjusted.

While there are many issues presented within this
paper, none are insurmountable as described above. The
information provided for possible solutions reflects our

research into this problem as viewed from agent-landscape
modeling and simulation. The reader may find different
solutions based upon their own requirements and domain
specifics.

Acknowledgements
This research is supported by National Science Foundation
Grant #BCS-0140269. We thank the MEDLAND team
members including Eowyn Allen, Ramón Arrowsmith,
Steven Falconer, Patricia Fall, Helena Mitasova and, in
particular, Michael Barton and Isaac Ullah for their support
with GRASS.

References
[1] MEDLAND. 2005. “Landuse and Landscape

Socioecology in the Mediterranean Basin: A Natural
Laboratory for the Study of the Long-Term Interaction
of Human and Natural Systems”.
http://www.asu.edu/clas/shesc/projects/medland/
(accessed December 2006).

[2] Davis, P.K. and R.H. Anderson. 2004. “Improving the
Composability of DoD Models and Simulations”. The
Journal of Defense Modeling and Simulation. 1(5), pp.
5 – 17.

[3] Sarjoughian, H.S. 2006. “Model Composability”. In
Proceedings of the 2006 Winter Simulation Conference,
pp. 149-158, Monterey, CA, USA.

[4] Fishwick, P.A. 1995. Simulation Model Design and
Execution: Building Digital Worlds. Prentice-Hall, Inc.
Englewood Cliffs, NJ.

[5] Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000.
Theory of Modeling and Simulation: Integrated
Discrete Event and Continuous Complex Dynamic
Systems, 2nd ed. Academic Press. San Diego, CA.

[6] Hall, S. 1998. Personal Communication.
[7] Hall, S. 2005. “Learning in a Complex Adaptive

System for ISR Resource Management”. Spring
Simulation Conference.

[8] Zeigler, B.P. 2006. “DEVS&DESS in DEVS”. DEVS
Integrative Modeling & Simulation Symposium.
Huntsville, Alabama.

[9] IEEE. 2000. HLA Framework and Rules. IEEE 1516-
2000.

[10] North, M., T. Howe, N. Collier, and J. Vos. 2005. “The
Repast Symphony Development Environment”. In
Proceedings of the Agent 2005 Conference on
Generative Social Processes, Models, and Mechanisms.
Chicago, IL, USA.

[11] North, M., T. Howe, N. Collier, and J. Vos. 2005. “The
Repast Symphony Runtime System”. In Proceedings of
the Agent 2005 Conference on Generative Social
Processes, Models, and Mechanisms. Chicago, IL,
USA.

[12] Godding, G., H.S. Sarjoughian, and K. Kempf. 2004.
“Multi-Formalism Modeling Approach for
Semiconductor Supply/Demand Networks”. In
Proceedings of Winter Simulation Conference, pp. 232-
239, Washington, D.C., USA.

[13] Parker, D.C., S.M. Manson, M.A. Janssen, M.J.
Hoffmann, and P. Deadman. 2003. "Multi-Agent
Systems for the Simulation of Land-Use and Land-
Cover Change: A Review". Annals of the Association of
American Geographers. 93(2), 314 – 337.

[14] Swarm. 1996. Swarm Simulation System. Swarm
Development Group. Available from
http://www.santafe.edu/projects/swarm/ (accessed
December 2006).

[15] Minson, R. and G.K. Theodoropoulos. 2000.
Distributing RePast agent-based simulations with HLA.
Concurrency and Computation: Practice and
Experience. John Wiley & Sons, Ltd., pp. 1 – 22.

[16] Ptolemy Project. 2006. Ptolemy II. Available from
http://ptolemy.berkeley.edu/ptolemyII/main.htm
(accessed December 2006)

[17] de Alfaro, L. and T. Henzinger. 2001. “Interface
automata”. In Proceedings of the 8th European
Software Engineering Conference. Vienna, Austria.

[18] Sarjoughian, H.S. and J. Plummer. 2002. Design and
Implementation of a Bridge between RAP and DEVS.
Internal Report, Computer Science and Engineering,
Arizona State University. pp. 1 – 26.

[19] Sarjoughian, H.S. and D. Huang. 2005. A Multi-
Formalism Modeling Composability Framework: Agent
and Discrete-Event Models. In The 9th IEEE
International Symposium on Distributed Simulation and
Real Time Applications, pp. 249 – 256. Montreal,
Canada.

[20] Sarjoughian, H.S., et al. 2005. Hybrid Discrete Event
Simulation with Model Predictive Control for
Semiconductor Supply-Chain Manufacturing. In
Proceedings of the 2005 Winter Simulation Conference,
pp. 255-266, Orlando, FL, USA.

[21] Mayer, G.R., H.S. Sarjoughian, E.K. Allen, S. Falconer,
and M. Barton. 2006. Simulation Modeling for Human
Community and Agricultural Landuse. In Proceedings
of the 2006 Spring Simulation Conference, pp. 65-72,
SCS. Huntsville, AL, USA.

[22] GRASS. 2004. Geographic Resources Analysis Support
System. http://grass.itc.it/ (accessed December 2006).

[23] Neteler, M. and H. Mitasova. 2004. Open Source GIS:
A GRASS GIS Approach, 2nd ed. Springer Science +
Business Media, Inc. New York, NY.

[24] Burrough, P.A. and R.A. McDonnell. 1998. Principles
of Geographic Information Systems. Oxford University
Press Inc. New York, NY.

