Chapter 2

Particle Motions in a Penning
Trap

A single charged particle in a Penning trap is a bound system that has many
analogies to the hydrogen atom except that the atomic nucleus has been replaced
by an external electrostatic quadrupole potential superimposed on a spatially uni-
form, stable magnetic field.

In this chapter, the essential elements of particle motions in the Penning trap

are summarized. Detailed accounts are reviewed elsewhere [13].

2.1 Perfect Ti'ap

If a particle of charge e and mass m is placed in a uniform magnetic field
B = B,z, the particle travels around the field line in a cyclotron orbit, with the

free space cyclotron frequency
leBl

=7 = w.i. 2.1
wWe = —tF = wd (2.1)
The motion of the particle is bound in a Penning trap by superimposing an
electric quadrupole potential

V(r) = %#fz, 22)

The variables z and p are cylindrical coordinates and d is a characteristic trap

dimension.



The quadrupole potential has traditionally been produced by placing electrodes
along equipotentials of V{(r). Two ‘endcaps’ follow the hyperbola of revolution

2=+ + p2/2, | (2.3)
and one ‘ring’ electrode is along the hyperbola of revolution
1
2= 2 - ). (29
The characteristic trap dimension is defined by
=Lz, n
@ =32+ 2) (25)

in terms of the minimum axjal and radial distances to the trap electrodes, 2o and
Po- _
The equations of motion result from the Lorentz force on the charged particle

F=—eVV+ Ev x B. (2.6)

The axial motion along Z decouples since v,Z x B = 0. The resulting equation of

motion is that of a simple harmonic oscillator

P4 wliz =0, (2.7)
with angular ! axjal frequency
-
wy=—g (2.8)

The radial equation of motion is
mp = elE, + (%) x B (2.9)

where E, is the radial component of the quadrupole electric field which we can
express in terms of the axial frequency

vV W lm ,

= ap_ﬁp=§c =P

'Throughout this thesis, either the frequency » or the equivalent angular frequency w = 2xv is
used depending upon which is more convenient in the immediate context.

(2.10)
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Thus the radial equation of motion in terms of the free space cyclotron and axial
frequencies w, and w,, in a Penning trap is

P—wexp— %wfp =0. @11)

When w, — 0 (i.e. the voltage V; — 0), we recover the equation of motion
describing uniform circular motion at the free space cyclotron frequency w,.
Solving Eq. 2.11 yields two eigenfrequencies given by

= W — Wi _ (2.12)

and

= 2l (2.13)
The frequency w/ is the modified cyclotron frequency, and it reflects the deviation
from the free space cyclotron frequency w, resulting from the presence of the
electric quadrupole field. The magnetron frequency w,, describes the slow circular
motion that results from a balance between the radially inward motional electric
field and the radially outward electric field. The magnetron motion is unstable in
that removing energy from it increases the orbit size. Fortunately, the radiation
damping is usually so small that the motion is stable for many years.

The condition for which a charged particle will be bound in the Penning trap
is

< ﬁﬁ; (214)

which requires that the inward motional field be larger than the outward motional
field. For typical trap sizes and field strengths

W € Wy € W (2.15)

describes the hierarchy in the trap eigenfrequencies.

In a perfect Penning trap the free space cyclotron frequency is given exactly
by Eq. 2.12 and 2.13 so that a measurement of v/ and v, is sufficient to measure
Ve . A comparison of charge to inertial mass ratios can be made in a Penning

trap by measuring the free space cyclotron frequency of two different particles.
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Figure 2.1: (a) Schematic representation of the orbit of a charged particle confined
in a Penning trap. (b) A scaled representation of the three oscillatory motions for
a confined antiproton (T, = T, =4K, T}, = (wm/w.)4 K).



For example, the ratio of the cyclotron frequencies for a proton with mass m, and

charge ¢,, to that of an antiproton with mass mz and ¢; is

ve(p) _ wB/myc _ g mz

__ v(p) gB/mzc my g5

This last equality requires the magnetic field to be the same for both species over
the duration of the comparison, a topic we return to in Chapter 10.

(2.16)

A comparison of cyclotron frequencies is a often referred to as a comparison
of the inertial masses. For matter ions, reference to a cyclotron frequency being a
mass comparison is justified by charge quantization and the stringent experimental
limits put on charge neutrality between the proton and electron of (gy+ + ¢.-) <
10~"% [62]. Strictly speaking, the measurements reported in this thesis are a
comparison of the charge to mass ratio of the antiproton and the proton.

2.2 Imperfect Traps: The Invariance Theorem

Real traps have physical imperfections. For example, the trap electrodes can
be slightly distorted and the quadrupole electrostatic field is not perfectly aligned
along the uniform magnetic field.

Imperfections in the quadrupole potential field introduce anharmonic terms
to the axial equation of motion expressed in Eq. 2.7. For this reason, the three
electrode Penning trap is often modified by adding two ‘compensation’ electrodes
[95,30]. The purpose of such electrodes is to tune out possible higher order anhar-
monic contributions to the potential. Nevertheless, the degree to which a perfect
quadrupole can be produced is limited by the asymmetries and misalignment which
exist.

The degree to which leading imperfections affect the achievable precision in

‘a cyclotron frequency measurement has been discussed by Brown and Gabrielse
[8,13]. Let @, , @, , and @, be the measured cyclotron, axial, and magnetron
frequencies in a non-ideal trap with an asymmetry parameter ¢ representing devi-
ations from the ideal quadrupole potential by

U= Sl - 2% +y7) - nela® - 97, (2.17)
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and angles (6, ¢) representing a misaligned magnetic field given by
B = B(sin 8 cos 61 + sin #sin ¢7 + sin fsin ¢k). - (21)
Brown and Gabrielse [8,13] have derived an invariance theorem
W=at+@d + @ (2.19)

This theorem provides a means of obtaining the free space cyclotron frequency (the

one of interest for mass comparisons) from the measured trap eigenfrequencies.
The measured eigenfrequencies @, , @, , and @y, can be expanded in terms of

the distortion parameter € and the tilting angles (#, ¢) by the following expressions:

o Wil — §sm 26(1 + 1vs cos 2¢)] (2.20)
—2

= Ty gt - 3 g 1 -3/2

@m 251,:(1 e)'41 5 Sin 6(1 + FEcos 24] (2.21)

Eliminating &, from the invariance theorem, we obtain an expression for the free

space cyclotron frequency in terms of the asymmetry parameter € and tilé angle 8

o) R fore. em

c

as

From Eq. 2.15, terms proportional to (w,/w.)® and higher order terms are small
and can be neglected. For vanishing # and ¢, we recover Eq. (2.12) for an ideal
trap.

As an example, assuming that 8 =1° or || = 1%, the correction term for elec-
trons in a typical trap in (7.(e”)/7.(e~))* 1074, Using protons, such imperfec-
tions can become significant. For the small trap (d=0.112 cm) used by VanDyck
and Schwinberg [98] to measure the proton to electron mass, (7.(p)/7.(p))* =~
3x10~* and the correction term in Eq. 2.22 is about 5 x103. Therefore trap
imperfections and misalignments can play an important role when measuring pro-
tons or antiprotons. However, our use of a much larger trap (Chapter '3) makes
the third term negligible at the precison reported in this thesis.
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2.3 Extension to Many Particles

The equations in Sections 2.1 and 2.2 are derived only for the case of a single
particle. For the comparisons reported here, we have always used more than one.

Wineland and Dehmelt generalized the equations of motion to the case of n
harmonically bound particles of a single species [115]. They model the particles
each of mass m and bound with a spring constant k, and driven by the potential
between capacitor plates separated by a distance d. The equation of motion in-
cluding mutual interactions (for simplicity assumed to be in the z direction only)
is for the i** particle

mz; = —kz; + »_ Fy5 + FY;. (2.23)
J#
The term F}; is the Coulomb force on the i** particle due to the j*h particle. FY;

is the external force on the i* particle given by

V n
Fo= % + Z -Fmd(laj) (2'24)

F!4i,3) is the force on the i** particle from the induced image charge in the
capacitor plates (in actuality the trap electrodes) of the j* particle. The spring
constant k in Eq. 2.23 is a function of Fi,4(%, j), thus there is an n dependence.

For large particle numbers, such a force will yield a number dependent shift
in the oscillation frequency (ref. [115] and Chapter 4). Assuming the numbers
are kept small or the trap is sufficiently large, F,; = 0 we sum Eq. (2.23) over n
particles giving

mZ =-—kZ+—+Zn:in (2.25)
i ik

where Z = 37 Z;/n is the center of mass coordinate for the n particle system.
Newton’s third law implies F;; = —F}; so the sum vanishes. In the small number

approximation, {2.25) becomes
mZ + —kZ = =, (2.26)

This equation for n particles also describes the motion of a harmonic oscillator

with a center of mass oscillation at the frequency of a single particle of mass m

13



and charge ¢. Analogously, the cyclotron and magnetron center of mass motions
are also similar to those of a single particle.
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