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The XY model XY model in 2D and 3D; vortex loop expansion

Part I

The XY model, duality and loop expansion
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Why the XY model?

• An important model used, for example, in superconductivity.

• It presents a particular phase transition involving topological excitations
(vortices).

• It is dual to other interesting models (Coulomb gas model, sos model. . . ).
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The XY model in d dimensions
Towards a dual model

The Hamiltonian of the XY model in d dimensions is given by

βH = −β
∑
µ,i

cos(∇µθi)⇒ Z =

∫
δθ exp

[
β
∑
µ;i

cos(∇µθi)

]
, θi ∈ (−π, π],

where ∇µθi = θi − θi−µ̂ is the discrete derivative in the µ direction. It is invariant
under the transformation ∇µθi 7→ ∇µθi + 2πnµ,i, nµ,i ∈ Z. We can expand the
hamiltonian using the identity

ea cos b =

+∞∑
n=−∞

In(a) einb, In(x) modiVed Bessel function.

Then for kµ;i ∈ Z, substituting and integrating in θ,

Z =

∫
δθ
∏
µ,i

eβ cos(∇µθi) =
∑
{kµ;i}

e
∑
µ;i ln Ikµ;i (β) δ∇·ki,0︸ ︷︷ ︸

null divergence

ki = (kµ;i)µ=1,...d
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XY model in 2D and 3D

Using Einstein’s notation∇µkµ;i = 0 so

d = 2 d = 3

kµ;i = εµν∇νφi kµ;i = εµνλ∇νφλ,i
φi ∈ Z φi ∈ Z3

the new Veld is located on the dual lattice

Z =
∑
{φi}

exp

(∑
µ;i

ln Iεµν∇νφi(β)

)
Z =

∑
{φi}

exp

(∑
µ;i

ln Iεµνλ∇νφλ,i(β)

)

≡
∑
{φi}

exp
(∑

V({ε∇φ})
)

From now on we will work on the dual lattice.
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Poisson summation formula

We can use now the Poisson summation formula

d = 2

∑
{φ}

e
∑

V({ε∇φ}) =

must be invariant under φi 7→φi+φ0, φ0∈R︷ ︸︸ ︷∫
δφ
∑
{mi}

e
∑

V({ε∇φ})+2πi
∑

i miφi ,

∫
δφ

def
=
∏
i

∞∫
−∞

dφi

︸ ︷︷ ︸
now φ is a continuous Veld!

In the previous formula mi ∈ Z. Imposing the invariance
∑

i mi = 0.

d = 3

∑
{φ}

e
∑

V({ε∇φ}) =

must be invariant under φµ;i 7→φµ;i+∇µρi︷ ︸︸ ︷∫
δφ
∑
{mi}

e
∑

V({ε∇φ})+2πi
∑

i mi·φi ,

∫
δφ

def
=
∏
µ;i

∞∫
−∞

dφµ;i

In the previous formula mi ∈ Z3. Imposing the invariance∇ ·mi = 0.
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Low temperature expansion

Now expanding in n, considering β � 1 (low temperature behaviour) and omitting
multiplicative constants, we can substitute

ln In(β) −→ − 1
2β

n2

d = 2 d = 3

Z ≈
∫
δφ
∑
{mi}

e−
1
2β

∑
(∇µφj)

2+2πi
∑

mjφj Z ≈
∫
δφ
∑
{m}

e−
1
2β

∑
(εµνλ∇νφλ,j)2+2πimj·φj

By a gaussian integration over φi we obtain

Z ≈
∑
{mi}

eπβ
∑

r6=r′ m(r)V2(r−r′)m(r′) Z ≈
∑
{m}

eπβ
∑

r6=r′ m(r)·m(r′)V3(r−r′)

where Vd(r) is the Green function on the lattice.
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2D XY model for low temperature
The Coulomb gas

For d = 2, after some calculations we obtain, removing the divergence

V2(r) 7→ Ṽ2(r)
def
= V2(r)− V2(0) = ln r− c, c ∈ R+ ⇒

Z =
∑
{mi}

eπβ
∑

r 6=r′ m(r)m(r′) ln r−πcβ
∑

r m
2(r)

i.e., the system is equivalent to a neutral (
∑

r m(r) = 0) Coulomb gas in 2D! The
variablesm(r) are called vortex variables (topological excitations), because it can be
shown GO! that

m(r)↔ 1
2π

∮
γ

δθ,

γ walk surrounding r on the lattice.
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3D XY model for low temperature
QED analogy and smoke rings

In 3D the partition function looks as the generating function for free photons with
φ(r)↔ A(r):

Z ≈
∫
δφ e−

1
2β

∑
j(εµνλ∇νφλ,j)

2

Ignoring gauge issues

V3(r) ∼
1
r
⇒ “Biot-Savart law”

Moreover ∇ · m(r) = 0 so “currents” m(r) generate closed loops (smoke rings).
Introduce a new “current loop” variable L:

Z =
∑
{mL}

eπβ
∑

L,L′
∑

r6=r′ m
L(r)·mL′ (r′)V3(r−r′)
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Part II

Scaling and Renormalization group
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Phase transition in the 2D model?
Mermin–Wagner–Hohenberg theorem and Kosterlitz–Thouless argument

Mermin–Wagner–Hoenberg theorem
There cannot be any spontaneous breaking of a continuous symmetry in a system in
d ≤ 2 dimensions.

but

1. suppose that vortices are separated by a distance L0 in a lattice with step a;

2. by analogy with electromagnetic theory, they have energy
βE = β

2

∫ L0
a

(m
r

)2
d2 r = πm2β ln L0

a ;

3. there are ∼
( L0

a

)2
diUerent position for them

βf ∼ (πm2β − 2) ln
L0
a
⇒

{
β > 2

π
f > 0 free vortices suppressed

β < 2
π

f < 0 free vortices with m = ±1 proliferate

There is a “transition” regarding vortices for β ∼ 2
π
! No spontaneous magnetiza-

tion appears for β → +∞.
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The fugacity: a control parameter for vorticity

Z =
∑
{mi}

exp

πβ∑
r6=r′

m(r) ln
r
a
m(r′)− πcβ

∑
r

m2(r)


≡
∑
{mi}

exp

πβ∑
r6=r′

m(r) ln
r
a
m(r′)

 y
∑

r m
2(r),

with y = e−πcβ fugacity, y→ 0 for β → +∞.
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Renormalization Group procedure
First step: integrate

• We consider near the transition only vortex pairs m(r1) + m(r2) = 0,
m(r) = ±1 (lowest energy excitations).

• Integration on pairs at distances a < |r1 − r2| < a(1 + δ`) so:

Z = Z+ + δZ

1. Z+ = sum of conVgurations with vortex separations greater than a(1+ δ`);
2. δZ interaction between one pair of separation between a and a(1+ δ`) and the

others pairs

δZ =
∑
{m}+

e−βH
+ ∑

m(r1),m(r2)=±1
a<|r1−r2|<a(1+δ`)

y2 eπβ
∑

r m(r)
[
m(r1) ln

|r1−r|
a +m(r2) ln

|r2−r|
a

]

1 +
δZ
Z+

= 1 + y2
∑

m(r1)=±1

∫∫
|r1−r2|

∈[a,a(1+δ`)]

d2 r1
a2

d2 r2
a2

∏
r6=r1,r2

eπβm(r1) ln
|r1−r|
|r2−r|m(r)

→ → ey
2δ` 2πL2

a2︸ ︷︷ ︸
scaling law for f

e−π
4y2β2δ`

∑
r′ 6=r′′ m(r′) ln

|r′−r′′|
a m(r′′)
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Renormalization Group procedure
Second step: rescale

Rescaling to the new “minimum scale” a 7→ a(1+ δ`) we obtain two contributions to
fugacity

ln
r
a

= ln
r

a(1 + δ`)
+ δ`→ e−πβδ`

∑
r m

2(r)

∫
d2 r
a2

= (1 + 2δ`)
∫

d2 r
a2(1 + δ`)2

→ (1 + 2δ`)
∑

r m
2(r) ≈ e2δ`

∑
r m

2(r)

So Vnally

Z′ = ey
2δ` 2πL2

a2
∑
{mi}

eπ(β−π
3y2β2δ`)

∑
r6=r′ m(r) ln r

a′ m(r′)
(
y e(2−πβδ)`

)∑
r m

2(r)

up to an inVnite constant−−−−−−−−−−−−→
∑
{mi}

eπβ
′∑

r6=r′ m(r) ln r
a′ m(r′) y′

∑
r m

2(r)
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Kosterlitz–Thouless scaling equations

dβ
d`

= −π3β2y2,
dy
d`

= (2− πβ)y⇒ TKT =
π

2

• For T < TTK the model can have
thermally generated topological
excitations in pairs of vortices with
m = ±1 Show me! :

G(r) ∼ 1

r
1
πβ

.

• For T > TTK pairs are separated and
Show me!

G(r) ∼ e−
r
ξ with ξ ∼ e(T−TKT)

− 1
2
.

Note that ξ 6∼ (T− TKT)−ν .
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Scaling and renormalization in 3D
Preparation to the analysis

Let us rewrite the partition function for the 3D XY model as

Z =
∑
{J(L)}

∏
L

y(L) exp

−πβ∑
L′ 6=L

∑
r6=r

J(L)(r′) · J(L
′)(r′)U(r− r′)


where y(L) is the fugacity for each loop L of diameter aL and core dimension ac:

y(L) = exp

−πβ∑
r6=r

J(L)(r) · J(L)(r′)U(r− r′)

 Warning! Approximation in progress−−−−−−−−−−−−−−−−−−−−→
Jµ(r)=0,±1,circular loop of diameter aL

→ exp
[
−2π2β

aL
a
ln

aL
ac

]
=

e−2π2β ln a
ac︸ ︷︷ ︸

y


aL
a

e−2π2β
aL
a ln

aL
a

Z =
∑
{J(L)}

∏
L

y
aL
a e−2π2β

aL
a ln

aL
a exp

−πβ∑
L′ 6=L

∑
r6=r′

J(L)(r) · J(L
′)(r′)U(r− r′)


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RG procedure: a sketch

1. For N loops we can explicit the sum over loop conVgurations assuming
Jµ(r) = 0,±1 (low energy conVgurations), circular loops of center R so that
r(L) = R(L) + ρ(L):

∑
{J}

↔
∞∑
N=0

∑
J(L)µ =0,±1

1
N!︸︷︷︸

shuYing centers

N∏
L=1

∫
d3 R(L)

a3

∫
d3 ρ(L)

a3

2. We can repeat the Kosterlitz procedure for d = 2, decomposing Z = Z+ + δZ
integrating over loops of radius ρ ∈

( a
2 ,

a
2 (1 + δ`)

)
.

3. Rescaling all explicit scale dependences:

aL
a

=
aL

a(1 + δ`)
(1 + δ`), U(r) ∼ 1

r
=

1
a(1 + δ`)r

(1 + δ`).

Finally we can extract the renormalization equation that leave invariant the partition
function.
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Scaling equation in the 3D XY model

dβ
d`

= β − 2π3

3
yβ2,

dy
d`

= y

6− π2

2
β

(
ln

a
ac

+ 1
)

︸ ︷︷ ︸
h“self energy”



• β is not marginal.

• Trivial Vxed point: β∗ = y∗ = 0.

• High temperature:
β = 0⇒ y = y0 e6` → +∞ i.e.,
vorticity proliferates.

• Low temperature: y = 0,
β = β0 e` →∞.

• Nontrivial Vxed point

β∗ =
12
π2h

, y∗ =
h
8π 0.0 0.5 1.0 1.5 2.0
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Β
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Linearized solutions

Writing y = y∗(1 + δy) and β = β∗(1 + δβ){
dβ
d` = β − Ayβ2,
dy
d` = y(6− Bβ)

⇒ d
d`

(
δy
δβ

)
=

(
6− Bβ∗ −Bβ∗

1− 2Ay∗β∗ −Aβ∗y∗
)(

δy
δβ

)

being

{
β∗ = 6

B

y∗ = B
6A

⇒ d
d`

(
δy
δβ

)
=

(
0 −6
−1 −1

)
︸ ︷︷ ︸
A, B indipendent

(
δy
δβ

)

Eigenvalues and eigenvectors:

λ+ = 2, v+ =
1√
10

(
−3
1

)
,︸ ︷︷ ︸

relevant

λ− = −3, v− =
1√
5

(
2
1

)
︸ ︷︷ ︸

irrelevant

We assume that the relevant axis is the temperature axis, i.e., λ+ is the temperature
eigenvalue, so, from general theory

loop size ξ ∼ (T− Tc)
−ν with ν =

1
λ+

=
1
2
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Conclusions

We have studied the XY model in 2D and 3D in absence of external Velds. We have
obtained the following results.

2D model In 2D there is no spontaneous magnetization at T→ 0 but at
T = TKT the system undergoes to a Kosterlitz–Thouless transition:

• for T < TKT free vortices are suppressed but there are pairs
vortex–antivortex; ξ = +∞

• for T > TKT free vortices proliferate; ξ Vnite.

3D model A duality transformation shows that the model is equivalent to an
abelian gauge theory on a lattice (e.g., QED).

• Vortex lines are found as topological excitations.
• A phase transition occurs for a certain Tc between a phase
where linear vortices are suppressed (T < Tc) and a phase with
linear vortices are favoured (T > Tc).

• It can be shown that spontaneous magnetization for T→ 0
is present.
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Thank you for your attention!
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Part III

Appendix
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Additional notes: meaning of φ and m in 2D XY model
The Villain approximation

At low temperature in a lattice of N sites∇µθi ≈ 2πnµ;i, nµ;i ∈ Z.
To take into account the periodicity, we consider θi ∈ R. In this case nµ;i 7→ nµ;i +
∇µρi, ρi ∈ Z, is a redeVnition of θi and we have to Vx a gauge to do not overcount
the conVgurations.

Z = (2β e2β)N
∑
{n}

′
+∞∫
−∞

δθ

+∞∫
−∞

δkµ exp
∑[

−
k2µ;j
2β

+ ikµ;j(∇µθj − 2πnµ;j)
]

= (4πβ e2β)N
∑
{n}

′
∞∫
−∞

δkµ exp
∑[

−
k2µ;j
2β
− 2πikµ;jnµ;j

]∏
i

δ∇·ki,0
null divergence condition−−−−−−−−−−−−→

kµ;i=εµν∇νφi

= (4πβ e2β)N
∑
{n}

′
∞∫
−∞

δφ exp
∑[

− 1
2β

(∇µφj)
2 + 2πiφjεµν∇µnν;j

]

i.e, mi = εµν∇µnν;i . If∇µΘi = ∇µθi − 2πnµ;i then for a loop γ∑
γ

∇µΘ = 2π
∑
s

ms, s dual sites in γ

Back to the 3D model!
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The correlation lenght in the 2D XY model
Below the critical temperature

Below the critical temperaturewe suppose ∆θ small; in the continuum limit

βH = −β
∑
〈ij〉

cos(θi − θj)→ constant− β

2

∫
(∇θ)2 d2 r⇒

G(r)− G(0) ∼ − 1
2πβ

ln r + constant

So

〈s(r) · s(0)〉 ∼ <〈ei(θr−θ0)〉 = e−
〈(θr−θ0)2〉

2 = eG(r)−G(0) =
1

r
1

2πβ
⇒ η =

1
2πβ

Back!
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The correlation lenght in the 2D XY model
Above the critical temperature

Above the critical temperature, being ξ ∼ e`, we denote

{
x = 2− πβ
t = T−TKT

TKT

so

{
dx
d` ≈ Ay2
dy
d` = xy

⇒ dy
dx

=
x
Ay
⇒ Ay2−x2 = constant ≈ 2Ay(0)2t near the critical line

` =

`∫
0

d `′ =

x(`)∫
x(0)

d x
Ay2

=

x(`)∫
x(0)

d x
x2 + 2Ay(0)2t

≈
+∞∫
−∞

d x
x2 + 2Ay(0)2t

=
π√

2Ay(0)2t

ξ ∼ e
constant√

t .

Back!
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