XY model in 2D and 3D

Gabriele Sicuro
PhD school “Galileo Galilei”

University of Pisa

September 18, 2012

¥l



The XY model

XY model in 2D and 3D; vortex loop expansion
oo

000
(e]e]

Part |

The XY model, duality and loop expansion



XY model in 2D and 3D; vortex loop expansion

000
(e]e]

The XY model
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Why the XY model?

for example, in superconductivity.

>

e An important model used

e |t presents a particular phase transition involving topological excitations

(vortices).

2).

o It is dual to other interesting models (Coulomb gas model, sos model..
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The XY model in d dimensions

Towards a dual model

The Hamiltonian of the XY model in d dimensions is given by

BH = —BZCOS(VMQ,) =Z= /(59exp [BZCOS(VMQi)] , 0 € (—m, 7],

Wl il

where V,0; = 0; — 0,_, is the discrete derivative in the u direction. It is invariant
under the transformation V,0; — V.0, + 2wn,;, n,,; € Z. We can expand the
hamiltonian using the identity

“+ oo
etoosh Z I(a) ei"b7 I,(x) modified Bessel function.

n=-—-oo =
o

Then for ky;i € Z, substituting and integrating in 6,

7= /60Heﬁcos(vugi) _ Z eE,L;ilnIkW(ﬁ) 89 1,0 ki = (ki) p=r,..d
3 {kepsi}

null divergence
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XY model in 2D and 3D

Using Einstein’s notation V  k,;; = 0 so

d=2 \ d=3
kp,;i = fuuvud)i kp;i = EuuAvu¢A,i
¢ €Z ¢, €7’

the new field is located on the dual lattice

Z= Z €xp <Z lnlmuvwbi(/g)) Z= Z €xp <Z lnlﬂwwiﬁx,i(ﬁ))

{#i} i {#:} Mt

= exp (Y V{eve))

{¢:i}

¥l

From now on we will work on the dual lattice.
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Poisson summation formula

We can use now the Poisson summation formula

d=2

must be invariant under ¢;— ¢;+¢po, PoER

o0
3 S eveh :/5¢Zez VeV o)) ami Sy mis /Md:efH / oA
LN

{¢} {mi}

now ¢ is a continuous field!

In the previous formula m; € Z. Imposing the invariance ), m; = 0.

d=3 =

must be invariant under ¢ ,;i+> @ i+ VYV pi

S WeTeD /5¢Zez V(e 0))+ami T e, /5¢d:ef 11 / T

{¢} {m;} wsi

—oo

In the previous formula m; € Z’. Imposing the invariance V - m; = 0.
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Low temperature expansion

Now expanding in n, considering 8 > 1 (low temperature behaviour) and omitting
multiplicative constants, we can substitute

1
InL,(8) — —ﬁnz
{m:} {m}
By a gaussian integration over ¢; we obtain o
7 Z &8 e M V2 (1=t )m(e") | 5 Z P Xt m(;:))-m(r/)‘/ﬂrfr')
{mi} {m}

where V,(r) is the Green function on the lattice.
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2D XY model for low temperature
The Coulomb gas

For d = 2, after some calculations we obtain, removing the divergence

Va(r) = Vo(r) £ Vo(r) — Vo(0) =Inr— c,ce R =
7= Z e'/rﬁ Zr;ﬁ/ m(r)ym(r’) In r—mcB DB m?(r)
{m}
i.e., the system is equivalent to a neutral (3 _m(r) = 0) Coulomb gas in 2D! The
variables m(r) are called vortex variables (topological excitations), because it can be
shown that

1 |
m(r) < P ?{56’,
v

v walk surrounding r on the lattice.
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3D XY model for low temperature
QED analogy and smoke rings

In 3D the partition function looks as the generating function for free photons with
é(r) < A(r):
7 / 5¢e_ﬁ YilepraVuda )

Ignoring gauge issues
1 «p. »
Vs(r) ~ = = “Biot-Savart law
r

Moreover V - m(r) = 0 so “currents” m(r) generate closed loops (smoke rings).
Introduce a new “current loop” variable L:

- |

7= e Ty Yo b (r) (/)5 (r=1')
{m'}
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Phase transition in the 2D model?

Mermin-Wagner—Hohenberg theorem and Kosterlitz-Thouless argument

Mermin-Wagner—Hoenberg theorem

There cannot be any spontaneous breaking of a continuous symmetry in a system in

d < 2 dimensions.

but

1. suppose that vortices are separated by a distance L, in a lattice with step g;

2. by analogy with electromagnetic theory, they have energy
BE=E s fL” (z ) d’r=mm'Blnk;

3. there are ~ (7‘]) different position for them &

ﬁfN(Wmﬁ—Z)ln; {

B>
B <

2
™
2
™

f> 0 free vortices suppressed

f < 0 free vortices with m = +1 proliferate

Bibliography

There is a “transition” regarding vortices for 3 ~ 2! No spontaneous magnetiza-
s

tion appears for  — +o0.
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Scaling and renormalization in 2D
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The fugacity: a control parameter for vorticity

zZ= Zexp wﬂz ln m —WC,BZm

{m;} r#r/
—Zexp 71',62 r)ln m(r') | y

{mi} r#£r/

|

with y = e~ ™% fugacity, y — 0 for 8 — +o0.

Bibliography

) 52, m?(r) 7
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Scaling and renormalization in 2D
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Renormalization Group procedure
First step: integrate
e We consider near the transition only vortex pairs m(r;) + m(r;) = 0,

m(r) = £1 (lowest energy excitations).
e Integration on pairs at distances a < |r; — 12| < a(1+ d¢)

Z=7"4+6zZ

[e]
(o] le]e]

1. Zt = sum of configurations with vortex separations greater than a(1 + &)
2. 6Z interaction between one pair of separation between a and a(1 + 6¢) and the

others pairs

6z="3 " > 3 & T m®) [mtrr) n 2] ey o 22l

{m}+ m(ry),m(rz)==%1 -
a<|ry—rz|<a(145¢)

52 & r d
1+ =145 Y // n ”}_[e

m(ry)==1 |11 —12|
€la,a(14+56¢)]

&
wBm(ry) In 1= m(r)

|r2—f\

//|
m@x'")

N | ; 2
_ eyzaz% e—ﬂ‘*}ﬁ,ezaezr,#,u m(r’) In

scaling law for f
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Renormalization Group procedure

Second step: rescale

Rescaling to the new “minimum scale” a — a(1+ 0¢) we obtain two contributions to

fugacity
r r b 2
In- =In 50 mBL YT, m*(r)
n 7( Ty 6() + —e
dz d’r St 250 m(r)
So finally

\ 2 5027

Z eﬂ'(‘? Y B25¢0) Zr;ér’ m(r) In ai,m(r/) (ve()—m"'ha%)zr m' (r)
{mi} )
up to an infinite constant Z eﬂ-g/ Zr;ﬁr’ m(r) In a,r/m(r/) )’/Z' m? (r)
{mi}
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Kosterlitz—Thouless scaling equations

d d s
B g Yoyt
e For T < Trk the model can have 05 ) . N
thermally generated topological ] *\\\\\\\\\_t/4/‘/‘/ B
excitations in pairs of vortices with ‘ |\ N\ /‘/«/‘/’
m= 1 o ;&\u\=\ ~—
1 ] \ \\\\’M/// ==
03 .
G(r) ~ T I\ \\\\ //////
rTf > 1y x\ NN S
0.2] “\\\\“\3«//////
e For T > Ty pairs are separated and \\ - o
it \\\\'“////f/// 7
01 ‘ — ) 4
. | \\\\\\/ 7 /// //7//
G(r)~e ¢ with§~e ™ ¥ 7, 00 ARRN (T
0.0 0.5 1.0 15

Note that £ % (T— Tir) ™"

=
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Scaling and renormalization in 3D

Preparation to the analysis

Let us rewrite the partition function for the 3D XY model as

Z= Z Hy<L) exp | —7p Z ZJ(L) ( Nr —1)

J(L)} L L' #L r#r

where y! is the fugacity for each loop L of diameter a; and core dimension a.:

Bibliography

y(L) = exp —ﬂﬁ ZJ(L) (r) . J(L> (r/)U(r - r/) Warning! Approximation in progress
r#r

a

S a

a1, e 2m?B1n A7 —2m?B L n L
OE—H’XP{ZWﬁ :|_ d n o 627r,3alna
N— <

7 = Z H 7L —2m BEL In “‘f exp —Trﬁ Z ZJ(L) (1') ~J(L') (r')U(r _ l‘/)
SR

L' #Lr#r

Iy (r)=0,ZIz¢ircular loop of diameter aj,
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RG procedure: a sketch

1. For Nloops we can explicit the sum over loop configurations assuming
Er0) = 4=l (Iow energy configurations), circular loops of center R so that
D = RO 4 oW,
- 1y [ERY &P
Sey ¥ o5 /S [%
0 N= 4y M~ 1

shuffling centers

2. We can repeat the Kosterlitz procedure for d = 2, decomposing Z = Z" + §Z
integrating over loops of radius p € (£, 4(1+ 60)).

3. Rescaling all explicit scale dependences: =

Finally we can extract the renormalization equation that leave invariant the partition
function.
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Scaling equation in the 3D XY model

B, w . dy_ | @

2.0 L — T
e (s not marginal. % ;f? I f; I M&S}:{/{;g?g
e Trivial fixed point: 8* = y* = 0. o ; T ! ff//jf }\\\\\i“:ggggg
e High temperature: H;’/‘/ // /Tﬁ\tﬁ“;??“‘;g
,8:‘0.:>y:‘yoe“—>+oo ie., Tff///// //‘/‘ \vj:jé??‘:f
vorticity proliferates. > 1.0 W}‘/// //5//‘5// //»'7;???5
e Low temperature: y = 0, ff///‘////“//;’,//,i,//;,/;\‘\\ﬁ(?(//?é‘;

‘ —n
B=Fhre = oo 05 rr/// ;// /////»:S\\‘f\\( {
e Nontrivial fixed point /i ///'(/ 1::3\\-;\\\\
[ —
., 12 Moy o e

B = —n A o 0.0
mth 8m 0.0 05 10 15 20
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Linearized solutions
Writing y = y*(1+ dy) and 8 = 8" (1 + 60)

#=B-a8, _ d <6y) _( 6—BB*  —BB" ) (6y)

dy—y(G—B,B) de \68) — \1-24y"B" —AB"y") \4p

. B = % d [dy 0 -6 dy
e {y*:;: =5 (5)=(5 ) (3)

N————
A, Bindipendent
Eigenvalues and eigenvectors

1 -3 1
)\+—2,V+—ﬁ(1), Ao =3, Vv

_ 1 2
) I~ | ‘/g 1
relevant

irrelevant

We assume that the relevant axis is the temperature axis, i.e., Ay is the temperature
eigenvalue, so, from general theory

loop size § ~ (T—T.) ™"

1 1
withy = — = =

L2



Conclusions

Conclusions

We have studied the XY model in 2D and 3D in absence of external fields. We have
obtained the following results.

2D model In 2D there is no spontaneous magnetizationat T — 0 but at
T = Tir the system undergoes to a Kosterlitz—Thouless transition:
e for T < Tkr free vortices are suppressed but there are pairs
vortex—antivortex; £ = 400
e for T > Tkr free vortices proliferate; £ finite.

3D model A duality transformation shows that the model is equivalent to an
abelian gauge theory on a lattice (e.g., QED).

e Vortex lines are found as topological excitations.

o A phase transition occurs for a certain T, between a phase
where linear vortices are suppressed (T < T) and a phase with
linear vortices are favoured (T > T,).

e |t can be shown that spontaneous magnetization for T — 0
is present.



Thank you for your attention!
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Meaning of m fields clarified

Additional notes: meaning of ¢ and m in 2D XY model
The Villain approximation
At low temperature in a lattice of N'sites V.0, =~ 2mn,;;, nu;i € Z.
To take into account the periodicity, we consider §; € RR. In this case ny;; — ng; +
Vupi, pi € Z, is a redefinition of 6; and we have to fix a gauge to do not overcount
the configurations.

= (28¢€%) NZ /50/5kuexp2{ ’j—i—zk (V05 — 27rnw-)}

{n} — o8
28 \N null divergence condition
471',66 5 Z / (Sku CXPZ |:—7 - 27l'lk ]n,w:| Hév -k;i,0 m}
w;i=€uv V@i
{n} o

= (4mp 625 NZ / o9 eXPZ [ V5.9)) +;é7ri¢16uuvunu;j:|

{n} "

i.e, . If V,©; = V,60; — 2mny;; then for a loop

E V.0 = 2712 ms, s dual sites in ~y
% s
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Meaning of m fields clarified

The correlation lenght in the 2D XY model

Below the critical temperature

Below the critical temperature we suppose Af small; in the continuum limit

BH=-p3 Z cos(; — 6;) — constant — g /(Ve)z & r=

(i)
G(r) — G(0) ~ fﬁ Inr+ constant
So
. ((0r—00)%)
(s(6) - 5(0)) ~ R0 = o= T = 0O L B o = L
1B 271—5
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The correlation lenght in the 2D XY model

Above the critical temperature

x=2-—7p

Above the critical temperature, being £ ~ e’, we denote {t T—Tier
= Tk

SO

dx
~ A d
{ Y L) S N Ay’ —x* = constant & 2Ay(0)’¢ near the critical line

% = Xy dx Ay
x(£) x(£) +oo
E/M 7_/LN/ e T
= B 2 X4 24y0)2t ) @ +24y(0)%t |\ /2Ay(0)%t
x(0) x(0) —oo —
2|

constant

T leg~e v
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