

PostScript Printer Driver
Optimization Case Study

Technical Note #5042

31 March 1992

Adobe Developer Support

PN LPS5042

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

®

® ®

Copyright

 1987–1989, 1991-1992 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, the Adobe logo, and TranScript are trademarks of Adobe Systems
Incorporated which may be registered in certain jurisdictions. LaserWriter is a registered trademark of
Apple Computer, Inc. Scribe is a registered trademark of Scribe Systems, Inc. Other brand or product
names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

iii

Contents

PostScript Printer Driver Optimization Case Study

 5

1 Introduction 5

2 The Optimization Process 6
Using bind and Unrolling Nested Procedures 7
Using widthshow Instead of moveto show 8
Coordinate Systems and Arithmetic 8
Summary 10

Appendix: Changes Since Earlier Versions

 11

Index

 13

iv Contents (31 Mar 92)

5

PostScript Printer Driver
Optimization Case Study

1 Introduction

Adobe wants to ensure that owners of PostScript

™

 printers and PostScript
language software get full value from their investment; therefore, we have
participated with major software developers in optimization case studies. One
of these vendors, Scribe Systems (formerly Unilogic Ltd.) allowed us to pub-
lish the following case study using a former version of their PostScript lan-
guage driver as an example.

Scribe Systems publishes a sophisticated text-formatting program called
Scribe

®

, which runs on a variety of mainframes and minicomputers. Scribe
was one of the first programs to support PostScript language output, and
Adobe has used Scribe extensively. Among other projects, camera-ready
copy for the original

PostScript Language Reference Manual

 and

PostScript
Language Tutorial and Cookbook

 were produced with Scribe.

Although Scribe’s original PostScript printer driver was written very early (in
1984), its printing speed on an eight page per minute printer had always been
acceptable. This optimization project began when the LPS-40 printer from
Digital Equipment Corporation became available.

The architecture on the LPS-40 printer has a high degree of parallelism
between the basic PostScript interpreter and the lower level graphics primi-
tives. Imagine the PostScript interpreter building display lists that a separate
processor uses to produce pages. One interesting thing is that the execution
profile of where PostScript language programs spend their time changes as
we speed up different parts of the PostScript interpreter and move it to new
printer/processor architectures, although many optimizations to a PostScript
printer driver will usually improve performance on all interpreters.

The LPS-40 printer can easily be driven at a speed of 40 pages per minute on
simple documents. Output from the

enscript

 program (from Adobe’s
TranScript

™

 package) is quite fast. But when we tried a sample typeset docu-
ment from Scribe (mostly 12 point text), we noticed printer throughput drop-
ping significantly. Scribe’s original PostScript language driver averaged
about 4.8 seconds to compute and print one page. This print speed of 12.5

6 PostScript Printer Driver Optimization Case Study (31 Mar 92)

ppm was far below the rated speed of the printer. Afterwards, the technical
staffs of Scribe Systems and Adobe cooperated on a case study in which we
learned important details about PostScript language optimization.

2 The Optimization Process

In the next several pages we will discuss and illustrate the effects of various
changes made to the Scribe prolog. For reference, here is the original version
of the prolog:

%%EndComments

% PostScript Prolog for Scribe

/BS { /SV save def} def

/ES { showpage SV restore} def

/SC { setrgbcolor} def

/RST { 100 div } def

/CVTXY { RST 792 sub abs exch RST exch} def

/FMTX matrix def

/RDF {

WFT findfont SLT 0 eq { %ifelse

SSZ scalefont

}{ %else

SSZ 0 SLT sin SLT cos div SSZ mul SSZ 0 0 FMTX astore

makefont

} ifelse setfont

}def

/SLT 0 def

/SI { /SLT exch def RDF } def

/WFT /Courier findfont def

/SF { /WFT exch def RDF } def

/SSZ 10 def

/SS { /SSZ exch def RDF } def

/MT { CVTXY moveto } def

/XM { RST currentpoint exch pop moveto } def

/UL {

gsave newpath CVTXY moveto RST dup 2 div 0 exch

rmoveto setlinewidth RST 0 rlineto stroke grestore

} def

/PB { /PV save def CVTXY translate pop } def

/PE { PV restore } def

/SH /show load def

/MSS { SSW RST 0 rmoveto } def

/SNS { SSW add /SSW exch def MSS } def

/MX { /SSW exch def SH MSS } def

/M2 { SH MSS MSS } def

/M { SH MSS SSW } def

/M+ { SH 1 SNS } def

/M- { SH -1 SNS } def

%%EndProlog

2 The Optimization Process 7

2.1 Using bind and Unrolling Nested Procedures

While investigating with an execution profiler, we found that 25% of the
print time was spent in the interpreter. Our first idea was to speed up the
application’s PostScript language prolog by “unrolling” some definitions
and applying the

bind

 operator to each procedure before it is stored in the
dictionary. (Note that this is a transformation that any site can make
unassisted—no changes are needed to the application driver itself, only to the
prolog resource file.) Here is a portion of the prolog after these modifications
were made.

% PostScript Prolog

/BS { /SV save def } bind def

/ES { showpage SV restore } bind def

/SC { setrgbcolor } bind def

/CVTXY { .01 mul 792 sub abs exch .01 mul exch } bind def

/FMTX matrix def

/RDF {

WFT findfont SLT 0 eq { %ifelse

SSZ scalefont

}{ %else

SSZ 0 SLT sin SLT cos div SSZ mul SSZ 0 0 FMTX astore makefont

} ifelse setfont

} def

/SLT 0 def

/SI { /SLT exch def RDF } bind def

/WFT /Courier findfont def

/SF { /WFT exch findfont def RDF } bind def

/SSZ 10 def

/SS { /SSZ exch def RDF } bind def

/MT { .01 mul 792 sub abs exch .01 mul exch moveto } bind def

/XM { .01 mul currentpoint exch pop moveto } bind def

/UL {

gsave newpath CVTXY moveto .01 mul dup 2 div 0 exch

rmoveto setlinewidth .01 mul 0 rlineto stroke

grestore

} bind def

/PB { /PV save def CVTXY translate pop } bind def

/PE { PV restore } bind def

/SH /show load def

/MSS { SSW 0 rmoveto } bind def

/SNS { .01 mul SSW add dup /SSW exch def 0 rmoveto } bind def

/MX { /SSW exch .01 mul def show SSW 0 rmoveto } bind def

/M2 { show SSW 2 mul 0 rmoveto } bind def

/M { show SSW 0 rmoveto } bind def

/M+ { show .01 SSW add dup /SSW exch def 0 rmoveto } bind def

/M- { show -.01 SSW add dup /SSW exch def 0 rmoveto } bind def

%%EndProlog

This change resulted in an improvement of print speed to 14.5 ppm. The
speedup was even noticeable on a LaserWriter

®

, so these changes pay off for
all users of the application. Also, the prolog grew only slightly.

8 PostScript Printer Driver Optimization Case Study (31 Mar 92)

2.2 Using widthshow Instead of moveto show

The next changes made were more complicated. The output of the
application driver looked like the following code.

7200 14512 MT (We)

308 MX(observe)M (today)M (not)M (a)M (victory)M

(of)M (party)M (but)M (a)M (celebration)M-

(of)M (freedom,)M (symbolizing)M (an)M (end)M (as)M (well)

SH

To achieve careful line justification, the driver used

show

 to set a single word
at a time and used the equivalent of a

moveto

 between words. We hand-
crafted a version of the output file using the

widthshow

 operator for word
sequences with constant space between words.

This results in fewer PostScript language commands being transmitted and
executed, without loss of print quality. Fewer procedure calls are made,
because the interpreter overhead for

show

 is incurred much less often. This
results in less scanner and interpreter overhead, a smaller print file, and better
performance inside the inner

show

 loop.

Here is the extra procedure we defined and a look at how the file changed.

/W { 0 32 3 -1 roll widthshow } bind def

7200 14512 MT

.08 (We observe today not a victory of party but a)W

.07 (celebration of freedom, symbolizing an end as well)W

The performance made a quantum leap. This version of the file printed at 28
ppm. The application had all of the necessary information to generate this
code. It was simply a matter of designing the driver somewhat differently.
Better crafting of the definition of the procedures and exact syntax of the
generated PostScript language might yield even better results.

2.3 Coordinate Systems and Arithmetic

Further changes were then made. We changed the underlying coordinate
system of the translator: We let the matrix machinery do most of the arith-
metic work (eliminating the

CVTXY

 procedure in the original prolog). Where
appropriate, numeric constants were specified as real numbers rather than
integers, so the interpreter wouldn’t need to do type conversion at every
execution. (For example,

0 0

moveto

 was replaced with

0.0 0.0

 moveto

.)

We also noticed that in the output script, when a font change occurred, an
intermediate

findfont

,

makefont

, and

setfont

 were performed twice, once to
change the

typeface

 and once to change the

size

. This is the sort of accidental
mismatch between the application’s world view and the PostScript language
imaging model that can creep into any driver design.

2 The Optimization Process 9

The following is the final version of the prolog after these changes were
applied.

%%EndComments

% PostScript Prolog for Scribe

% Copyright (c) 1984, 1986 UNILOGIC, Ltd.

/BS { /SV save def 0.0 792.0 translate .01 -.01 scale } bind def

/ES { showpage SV restore } bind def

/SC { setrgbcolor } bind def

/FMTX matrix def

/OMTX matrix currentmatrix def

/RDF {

WFT SLT 0.0 eq { %ifelse

SSZ 0.0 0.0 SSZ neg 0.0 0.0 FMTX astore

}{ %else

SSZ 0.0 SLT sin SLT cos div SSZ mul SSZ 0.0 0.0 FMTX astore

} ifelse

makefont setfont

} bind def

/SLT 0.0 def

/SI { /SLT exch cvr def RDF } bind def

/WFT /Courier findfont def

/SF { %def

findfont dup /WFT exch def FMTX makefont setfont

} bind def

/AF { %def

findfont /WFT exch def /SSZ exch 100.0 mul def

WFT SSZ 0.0 0.0 SSZ neg 0.0 0.0 FMTX astore makefont setfont

} bind def

/SSZ 1000.0 def

/SS { /SSZ exch 100.0 mul def RDF } bind def

/MT /moveto load def

/XM { currentpoint exch pop moveto } bind def

/UL { %def

gsave newpath moveto dup 2.0 div 0.0 exch rmoveto

setlinewidth 0.0 rlineto stroke grestore

} bind def

/PB { /PV save def translate OMTX setmatrix pop } bind def

/PE { PV restore } bind def

/SH /show load def

/MSS { SSW 0.0 rmoveto } bind def

/SNS { SSW add dup /SSW exch def 0.0 rmoveto } bind def

/MX { /SSW exch def show SSW 0.0 rmoveto } bind def

/M2 { show SSW 2.0 mul 0.0 rmoveto } bind def

/M { show SSW 0.0 rmoveto } bind def

/W { 0.0 exch 32 exch widthshow } bind def

/M+ { show 1.0 SSW add dup /SSW exch def 0.0 rmoveto } bind def

/M- { show -1.0 SSW add dup /SSW exch def 0.0 rmoveto } bind def

%%EndProlog

% ...

%%Page: 1 1

BS

15 /Times-Bold AF

27182 8205 MT (Kennedy’s)SH

27390 9989 MT (Inaugural)SH

27974 11773 MT (Address)SH

12 /Times-Roman AF

10 PostScript Printer Driver Optimization Case Study (31 Mar 92)

7200 14512 MT 8 (We observe today not a victory of party but a)W

7 (celebration of freedom, symbolizing an end as well)W

7200 15709 MT

29

(as a beginning, signifying renewal as well as change. For I have

sworn before you)W

30 (and Almighty)SH

2.4 Summary

This final version runs at 34.3 pages per minute, as compared with the origi-
nal speed of 12.5 ppm. The performance improvement is noticeable on all
PostScript printers, not just the extremely fast printers, since the changes
were made to the program’s “source code.”

The most important optimizations observed in this case study were

• using

bind

 with procedure bodies

• eliminating unnecessary multi-level (nested) procedure calls (14.5 ppm)

• using

widthshow

, where appropriate, for line justification (28 ppm)

• carefully using the coordinate system and scaling arithmetic (34.5 ppm)

11

Appendix: Changes Since
Earlier Versions

Changes since May 4, 1991 version

• Document was reformatted in the new document layout and minor edito-
rial changes were made.

Changes since January 16, 1989 version

• A few layout styles were changed, trademark information was cleaned up,
and a few other minor modifications were done.

• The cover addresses and phone numbers were updated.

12 Appendix: Changes Since Earlier Versions (31 Mar 92)

13

Index

E

enscript 5

L

LPS-40 printer 5

O

optimization

bind

 7
coordinate system 8

moveto

 8
nested procedures

unrolling 7
printer driver

case study 5–10
process 6–10
Scribe 5

final prolog 9
modified prolog 7
original prolog 6

show

 8

widthshow

 8

P

parallelism 5

14 Index (31 Mar 92)

	PostScript Printer Driver Optimization Case Study
	1 Introduction
	2 The Optimization Process
	2.1 Using bind and Unrolling Nested Procedures
	2.2 Using widthshow Instead of moveto show
	2.3 Coordinate Systems and Arithmetic
	2.4 Summary

	Appendix: Changes Since Earlier Versions
	Index

