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Abstract

This paper deals with the problem of positive observa-
tion for linear time-delay systems for which the states
take nonnegative values whenever the initial condi-
tions are nonnegative. We focus on the design of pos-
itive observers (possibly with time-delay) which guar-
antee nonnegative estimates of the current states. We
derive necessary and sufficient conditions for the ex-
istence of a positive observer (extended Luemberger-
type) and show that the solvability of the problem
can be decided via standard linear programming tech-
niques. Moreover, on the negative side, it is shown
that one cannot stabilize any unstable positive time-
delay system by using extended Luenberger type pos-
itive observers. In other words, the separation princi-
ple does not hold.

keywords: positive time-delay systems, positive
observers, positive observation, compartmental sys-
tems, linear programming

1 Introduction

Differential delay systems known also as hereditary or
systems with aftereffects, represent a class of infinite-
dimensional systems which model propagation phe-
nomena, population dynamics and many physical and
chemical processes. As matter of fact, the reaction
of real world systems to exogenous signals is never
instantaneous and always infected by certain time de-
lays. Such pathological phenomena can be adequately
described by a mathematical model in which the be-
havior of the rate of the state is described by an equa-
tion including some information on the past evolution
of the system. In general, for linear time-delay sys-
tems and independently of the representation type,
the delay effects on the stability and control of dy-
namical systems (delays in the state and/or in the
input) are problems of a great interest since the delay
presence may induce complex behaviors (oscillations,
instability, bad performances) for the closed-loop sys-
tem. Also, small delays may destabilize some systems,
however large delays may stabilize others. In contrast,
for positive linear time-delay systems, the presence of
delays does not affect the stability performance of the
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system [13, 13, 16, 9]. In particular, this paper shows
that the convergence of the estimated state to actual
state is insensitive to constant delays.

Despite the obvious relevance of positive time-delays
systems in many systems engineering application ar-
eas, the theoretical foundations of such control sys-
tems are not sufficiently well understood and well de-
veloped in the computational sense. This paper fo-
cuses on one particularly relevant aspect of such sys-
tems, the positive observation problem, that is both
theoretically challenging and practically relevant. Such
problem consists of constructing positive observers,
that is, observers that ensure the nonnegativity of the
estimated states.

In the already existing literature, systems that are
linear control systems and whose state variables take
only nonnegative values are referred to be positive (see
[6, 15, 8, 11] for general references). The aim of this
paper is to present a new method and techniques for
the analysis and the synthesis of linear positive ob-
servers for positive linear systems in presence of de-
lays. The proposed approach is as simple as solving
a Linear Programming (LP) problem. In fact, based
on simple idea, this paper develops theoretical results
with necessary and sufficient conditions, which turn
out to be naturally translated into an LP problem.

Most of the literature on linear positive systems
focuse on the positive realization problem (see the tu-
torial paper [5]). To the best of our knowledge, little
has been done in the literature on positive observation
problem. The first study of this subject can be found
in [17], where only a subclass of positive systems called
compartmental systems is considered. In [17] the gain
of the positive observer was shown to be positive. In
fact, this is only necessary and sufficient for the single-
output case with the output resulting from a positive
linear transformation of the state. Unfortunately, for
the multi-output case the positivity of the gain of the
observer is only sufficient even if the output of the sys-
tem results from a positive linear transformation of the
state. With regard to these previous works, this paper
provides a new and complete treatment for the posi-
tive observation problem of positive linear time-delay
systems. Moreover, we do not impose any sign restric-
tion on the output of the system, that is, the linear
output transformation of the state may not be neces-
sary positive. The proposed method is based on linear
programming and follows the approach presented in
[4, 2, 3, 1]. We provide not only checkable necessary
and sufficient conditions but also a simple approach
to address numerically the determination of positive
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observers. We show that the designed observers can
also be used to derive upper and lower bounds on the
observed states. That is , if the initial state of the
observed system is unknown but bounded, the evolu-
tion of the real state will always be between the esti-
mated states. Moreover, these estimated bounds are
positive and converge asymptotically to the observed
state. Also, the stabilization problem by positive ob-
server feedback is studied. In contrast to the classical
theory of observers, we show that it is no longer possi-
ble to stabilize any unstable positive linear time-delays
system by using positive observers as a feedback.

The remainder of the paper is organized as follows.
In section 2 some preliminary results are given. Sec-
tion 3 treats and solves the positive observation prob-
lem in terms of linear programming. Section 4 shows
the impossibility of the stabilization of any unstable
positive linear time-delay system by using positive ob-
servers. Finally, section 5 gives some conclusions.

Notations: <n
+ denotes the non-negative orthant of

the n-dimensional real space <n. MT denotes the
transpose of the real matrix M . For a real matrix
M , M > 0 means that its components are positive:
Mij > 0, and M ≥ 0 means that its components are
nonnegative: Mij ≥ 0. diag(λ) is the diagonal ma-
trix whose diagonal is formed by the components of
the vector λ.

2 Preliminaries

This section presents a precise setting for the positive
observation problem of positive systems described by
a differential delayed linear equation. Also, it provides
some definitions and preliminary results that are used
throughout the paper.

Consider the following observed system

dx

dt
= Ax +

m∑
i=1

Aix(t− τi),

y(t) = Cx(t) +
m∑

i=1

Cix(t− τi) ∈ <r,

(1)

the given matrices A,A1, . . . , Am ∈ <n×n are time-
invariant and 0 < τ1 < · · · < τm ≡ τ are time delays
associated with the system coordinates. The trajec-
tory x(·) is assumed to be nonnegative and unknown,
but its output y(·) is known and not necessarily non-
negative (C,C1 . . . , Cm may be indefinite sign matrix).

Our objective is to determine a nonnegative ap-
proximation x̂(·) of the state x(·), such that the error
e(t) .= x̂(t) − x(t) converges asymptotically to zero.
Based on the classical approach of linear observers
[14], an extended Luenberguer-type observer x̂ for Sys-
tem (1) is given by a linear dynamical delayed observer

as follows:

dx̂

dt
= Ax̂ +

m∑
i=1

Aix̂(t− τi)− L(ŷ − y),

ŷ(t) = Cx̂(t) +
m∑

i=1

Cix̂(t− τi),
(2)

or equivalently,

dx̂

dt
= (A− LC)x̂ +

m∑
i=1

(Ai − LCi)x̂(t− τi) + Ly,

(3)
where L ∈ <n×r is the gain of the observer to be
determined to fulfill the nonnegativity of x̂ and its
asymptotic convergence to the actual state.

Now, it can be easily shown that the estimated
error associated to the observed state e(t) = x̂(t)−x(t)
is governed by the following delayed system

dê

dt
= (A− LC)ê +

m∑
i=1

(Ai − LCi)ê(t− τi). (4)

From here to the rest of this section, we only con-
sider and study autonomous positive linear time-delay
systems, in order to establish its properties and to an-
alyze its stability. The obtained facts will be utilized
further to derive our main result for the existence of
positive observers. Thus, consider the following sys-
tem:

dx

dt
= Ax +

m∑
i=1

Aix(t− τi),

x(t) = φ(t) ∈ <n
+, for − τ ≤ t ≤ 0,

(5)

Some definitions are stated for the rest of the pa-
per.

Definition 2.1 Given any nonnegative initial condi-
tion φ(t) ∈ <n

+ such that x(t) = φ(t) for − τ ≤ t ≤ 0,
System (5) is said to be positive if the corresponding
trajectory is nonnegative: x(t) ∈ <n

+ for all t ≥ 0.

Definition 2.2 A real matrix M is called a Metzler
matrix if its off-diagonal elements are nonnegative:
Mij ≥ 0, i 6= j.

Definition 2.3 A real matrix M is called a positive
matrix if all its elements are nonnegative: Mij ≥ 0.

In fact, the positivity condition in the sense of Defini-
tion 2.1 and with regard to the dynamic of System (5)
can be easily checked. In what follows, it is shown that
one can determine whether a continuous-time delay
system is positive or not by simply checking the sign
of the entries of the matrices involved in the math-
ematical model of System (5). The following result,
can be seen as an extension of a classical result in [15].

Lemma 2.1 System (5) is positive if and only if A is
a Metzler matrix and A1, . . . , Am are positive matri-
ces.

2

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T19-027



The following plays a key role and it shows that posi-
tive linear systems are necessarily monotone with re-
gard to the initial conditions.

Lemma 2.2 Assume that System (5) is positive. Let
φ1(·) and φ2(·) be given initial conditions such that

φ1(s) ≤ φ2(s), ∀s : −τ ≤ s ≤ 0,

also, consider their associated trajectories x1(·) and
x2(·) solution to System (5). Then, we have

x1(t) ≤ x2(t), ∀t ≥ 0.

Proof: It suffices to choose φ(·) .= φ2(·) − φ1(·) ≥ 0
as an initial condition and utilize the linearity and the
positivity of System (5). ♦

Next, our aim is to give conditions on the structure
of observers of positive systems that always guarantee
nonnegative estimates of the states, and tract asymp-
totically the actual state. Since, we have seen that the
error resulting form the estimate of the actual state is
also a solution to the linear time-delay system (3), we
need a stability result to guarantee the convergence of
the error to zero. In the following, conditions for the
global asymptotic stability of a general positive linear
time-delay system (5) are presented.

Theorem 2.1 Assume that System (5) is positive, or
equivalently that the matrix A is Metzler and A1, . . . , Am

are positive matrices. Then, the following statements
are equivalent.

(i): There exist an initial condition φ∗(·) taking val-
ues in the interior of <n

+ such that System (5)
is asymptotically stable.

(ii): System (5) is asymptotically stable for every ini-
tial condition φ(·) taking values in <n

+.

(iii): System (5) is asymptotically stable for every ini-
tial condition φ(·) taking values in <n (φ(·) has
indefinite sign).

(iv): There exists λ ∈ <n such that

(A +
m∑

i=1

Ai)λ < 0, λ > 0. (6)

(v): A +
m∑

i=1

Ai is a Hurwitz matrix: the real part of

its eigenvalues is strictly negative.

Proof: The implications (iii) ⇒ (ii) ⇒ (i) are obvi-
ous.
(iii) ⇒ (iv) : By integrating System (5) we have

x(T )− x(0) = A

∫ T

0

xdt +
m∑

i=1

Ai

∫ T

0

x(t− τi)dt,

which by change of variable can be expressed as the
following identity

(A +
m∑

i=1

Ai)
∫ T

0

xdt =

x(T ) +
m∑

i=1

Ai

∫ T−τi

T

x(t)dt−
m∑

i=1

Ai

∫ 0

−τi

φ∗(t)dt− x(0),

since x(T ) goes to zeros, then also
m∑

i=1

Ai

∫ T−τi

T

x(t)dt.

Moreover, since φ∗ is positive the term
m∑

i=1

Ai

∫ 0

−τi

φ∗(t)dt+

x(0) is constant and positive. Then by gathering these
facts with a sufficiently large T we obtain

(A +
m∑

i=1

Ai)λ < 0, λ > 0,

where λ is defined as λ =
∫ T

0
xdt.

(i) ⇒ (ii) : Assume that for a particular initial func-
tional condition φ∗(·) > 0, System (5) is asymptot-
ically stable. Let φ(·) ≥ 0 be any initial functional
condition. Then, there exist a positive scalar α > 0
such that

φ(s) ≤ αφ∗(s), ∀s : −τ ≤ s ≤ 0.

Now, by using Lemma 2.2 we can conclude

0 ≤ x(t) ≤ αx∗(t), ∀t ≥ 0,

where x(·) and x∗(·) are respectively the associated
trajectories to φ(·) and φ∗(·). Since x∗(t) goes to ze-
ros then also x(t). Hence, we have shown that System
(5) is asymptotically stable for every initial functional
condition φ(·) taking values in <n

+.
(ii) ⇒ (iii) : This implication results from the linear-
ity of the system and the fact that φ can be decom-
posed as φ = φ+ − φ− where φ+ ≥ 0, φ− ≥ 0.
(iv) ⇒ (v) : it suffices to apply the well-known Perron-
Frobenius theorem.
The rest of the proof is similar to the one in [9, 4, 2].
♦

Remark 2.1 if A +
m∑

i=1

Ai is a Metzler and Hurwitz

matrix, then its transpose is also is a Metzler and a
Hurwitz matrix. That is condition (iv) in Theorem
2.1 is also equivalent to its dual [9]:
There exists β ∈ <n such that

(AT +
m∑

i=1

AT
i )β < 0, β > 0. (7)

3 Positive observers design

In this section, the objective is to give conditions on
the structure of observers of positive time-delay sys-
tems that always guarantee nonnegative estimates of
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the states, and which tract asymptotically the actual
state. In particular, we will show that this problem
can be cast as an LP problem and even with indefinite
sign outputs of the actual system (not necessary posi-
tive). In addition to the asymptotic convergence of the
error e, we need to guarantee the nonnegativity of ob-
server (3). This nonnegativity condition follows from
additional restrictions on the structure of its dynamic.
Such restrictions are provided by the following.

Lemma 3.1 There exists a positive observer (3) for
positive system (1) if and only if the following holds
true.

(i): A − LC is a Metzler matrix and A1 − LC1 ≥
0, . . . , Am − LCm ≥ 0.

(ii): LC ≥ 0 and LC1 ≥ 0, . . . , LCm ≥ 0.

(iii): A− LC +
m∑

i=1

(Ai − LCi) is a Hurwitz matrix.

Proof: First, assume that there exists a positive ob-
server of form (3). Since the error associated to the
observed state e(·) .= x̂(·)−x(·) must converge to zero
and since this error is also a solution to the linear
delayed system

dê

dt
= (A− LC)ê +

m∑
i=1

(Ai − LCi)ê(t− τi),

then by Theorem 2.1 we conclude that A − LC +
m∑

i=1

(Ai − LCi) must be a Hurwitz matrix. Moreover,

regarding to the fact that the following augmented
system is positive

d

dt

[
x
x̂

]
=

[
A 0

LC A− LC

] [
x(t)
x̂(t)

]
+

m∑
i=1

[
Ai 0
LCi Ai − LCi

] [
x(t− τi)
x̂(t− τi)

]
,

then by using Lemma 2.1 we conclude that necessarily
conditions (i) and (ii) are fulfilled. The sufficiency
part of the proof follows the same line of argument.
♦ In connection with the result of Lemma 3.1, the
following relevant remark is in order.

Remark 3.1 In already published paper without the
presence of delays [17], the gain of the observer is
shown to be positive L ≥ 0. However, in the multi-
input case, the positivity of the gain is only sufficient
condition. But, for the single-input system with pos-
itive matrix C this condition is necessary and suf-
ficient. More precisely, in the multi-input case this
condition is only sufficient when the matrix C is pos-
itive. In the following counterexample we show that L
is positive is not necessary (even with C positive) for
the existence of a positive observer.

Counterexample: Consider a linear system without

delays as follows: A =

 −6 3 2
2 −8 3
3 4 −7

,

C =
[

1 1 1
1 1 1

]
and L =

 2 −1
2 −1
2 −1

 .

Even the matrix L is a non positive gain it does exist a
positive observer associated to L. First, by calculation
the matrix L fulfills the condition: LC ≥ 0 and A−LC
is Metzler. Thus, according to Lemma 3.1 the observer
with the given gain L is positive. Also, A − LC is a
Hurwitz matrix. This follows from the result of The-
orem 2.1, since by choosing λT =

[
1 1 3

]
> 0,

then we have (A − LC)λ =

 −2
−2
−19

 < 0 (Alterna-

tively, one may check that the spectrum of (A− LC)
is −4.4020,−8.6628,−10.9352).

Positive observers possess an inherent nice prop-
erty. In fact, they can be used to derive upper and
lower bounds on the observed states if the initial func-
tional condition of the actual system is unknown but
bounded.

Theorem 3.1 Assume that the initial condition φ(·)
of the observed system is unknown but bounded:

0 ≤ x ≤ φ(t) ≤ x, for − τ ≤ t ≤ 0.

Then, the evolution of the current state function x(·)
will always be between the estimated states x̂lower(·)
and x̂upper(·):

x̂lower(t) ≤ x(t) ≤ x̂upper(t), ∀t ≥ 0,

where x̂lower(·) has as initial condition φlower(·) ≡
x and x̂upper(·) has as initial condition φupper(·) ≡
x. Moreover, these estimated bounds are positive and
converge asymptotically to the actual state.

Proof: Effectively, since the error is a solution of a
positive time-delay system (4), then it suffices to uti-
lize the monotonicity of the error and this can be done
via Lemma 2.2 ♦

Remark 3.2 System (1) is said to be compartmental
if the associated matrix A is Metzler and

n∑
i=1

[A +
m∑

k=1

Ak]ij ≤ 0.

We have shown that the positive observer must satisfy
the condition LC ≥ 0 and LC1 ≥ 0, . . . , LCm ≥ 0. It
is easily seen that if system (1) is compartmental then
the associated observer is also compartmental. This
fact was also pointed out in [17] for positive linear
systems without delays.

The following result provides necessary and sufficient
conditions for the existence of positive time-delay ob-
servers. Also, it provides a computational approach
via linear programming (our conditions are expressed
as an LP).
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Theorem 3.2 The following statements are equiva-
lent

(i): There exists a positive observer of system (1) of
the form:

dx̂

dt
= (A− LC)x̂ +

m∑
i=1

(Ai − LCi)x̂(t− τi) + Ly,

x̂(t) ≥ 0, ∀t ≥ 0.

(ii): There exists a matrix L ∈ <n×r such that LC1 ≥

0, . . . , LCm ≥ 0 and A−LC +
m∑

i=1

(Ai −LCi) is

a Metzler and Hurwitz matrix.

(iii): The following LP problem in the variables λ ∈
<n and Z ∈ <r×n is feasible

(AT +
m∑

i=1

AT
i )λ− (C +

m∑
i=1

CT
i )Z

 1
...
1

 < 0,

λ > 0,
AT diag(λ)− CT Z + I ≥ 0,
CT Z ≥ 0,
CT

i Z ≥ 0, 1 ≤ i ≤ n,
AT

i diag(λ)− CT
i Z ≥ 0, 1 ≤ i ≤ n.

(8)
Moreover, a gain matrix L in the statements (i)
and (ii) can be computed as follows

L = diag(λ)−1ZT ,

where the vector λ and the matrix Z are any
feasible solution to the above LP problem.

Proof: The equivalence between (i) and (ii) is straight-
forward from Lemma 3.1.
Now let us show that (ii) and (iii) are equivalent.

First, note that A − LC +
m∑

i=1

(Ai − LCi) is Metzler

and Hurwitz if and only if its transpose is Metzler and
Hurwitz. Thus it follows that (ii) is equivalent to the
existence of a matrix L ∈ <n×r satisfying the follow-
ing conditions:

AT − CT LT is Metzler ,
CT LT ≥ 0, CT

1 LT ≥ 0, . . . , CT
mLT ≥ 0,

AT − CT LT +
m∑

i=1

(AT
i − CT

i LT ) is Hurwitz ,

AT
1 − CT

1 LT ≥ 0, . . . , AT
m − CT

mLT ≥ 0.

To show that condition (iii) is equivalent to the above
conditions, it suffices to define L = diag(λ)−1ZT .
Then, note that AT − CT LT is Metzler if and only
if (AT − CT LT )diag(λ) is Metzler, or

(AT − CT LT )diag(λ) + I ≥ 0,

by choosing λ with sufficiently small components (since
the stability condition is homogeneous in λ). The
above inequality is nothing else than the condition

AT diag(λ)− CT Z + I ≥ 0,

in the LP constraints (8). The rest of the proof is a
simple matrix manipulation as shown above. ♦

4 Stabilization does not hold

In the preceding section, we have shown how to solve
the observation problem in terms of LP. In contrast
with the classical theory of observers, it is shown here
that the stabilization of positive systems by using posi-
tive extended Luenberger observers is impossible. More
precisely, consider the following forced linear system:

dx

dt
= Ax +

m∑
i=1

Aix(t− τi) + Bu,

y(t) = Cx(t) +
m∑

i=1

Cix(t− τi) ∈ <r,

(9)

where the trajectory x ∈ <n
+ is assumed to be posi-

tive under the input signal u ∈ <p, but its evolution
is unknown. The output y ∈ <r is known and not
necessarily positive (C may be indefinite sign matrix).
Now, our objective here is to show that there does not
exists any positive observer (x̂ ≥ 0) in the extended
Luenberger form:

dx̂

dt
= (A− LC)x̂ +

m∑
i=1

(Ai − LCi)x̂(t− τi) + Ly + Bu,

(10)

which, simultaneously, guaranties the positivity of the
observed state x ≥ 0, and stabilizes asymptotically
system (9), when an observer feedback law u = Kx̂ is
utilized. To show this, we provide the following result.

Theorem 4.1 Assume that the unforced system (9)
(with u = 0) is not asymptotically stable, or equiva-

lently A +
m∑

i=1

Ai is not a Hurwitz matrix. Then, the

separation principle fails. More precisely, there does
not exist a positive observer of the form (10) for sys-
tem (9) together with a feedback law u = Kx̂ that is
both asymptotically stabilizing and guaranties the non-
negativity of the observed state.

Proof: Assume that A +
m∑

i=1

Ai is not Hurwitz and

that there exist matrices L ∈ <n×r, K ∈ <p×n which
fulfill the positivity of x and x̂, and their asymp-
totic convergence to zeros, under the feedback control
u = Kx̂. We now show that such statement leads to
a contradiction:
Since the following augmented system must be posi-
tive:[

x
x̂

]
=

[
A BK

LC A− LC + BK

] [
x(t)
x̂(t)

]
+

m∑
i=1

[
Ai 0
LCi Ai − LCi

] [
x(t− τi)
x̂(t− τi)

]
,

(11)
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then by using Lemma 2.1 it is easy to see that neces-
sarily BK ≥ 0 holds.
Now, by using the following transformation: v1 = x−x̂
and v2 = x̂, then one can check that the augmented
system (11) is similar to the following time-delay sys-
tem:

d

dt

[
v1

v2

]
=

[
A− LC 0

LC A + BK

] [
v1(t)
v2(t)

]
+

m∑
i=1

[
Ai − LCi 0

LCi Ai

] [
v1(t− τi)
v2(t− τi)

]
.

(12)
Henceforth, if the augmented system (11) is asymptot-

ically stable, then necessarily A +
m∑

i=1

Ai + BK must

be a Hurwitz matrix, but this is impossible. As we
have shown before that BK ≥ 0, this necessarily im-

plies that A +
m∑

i=1

Ai is Hurwitz. Hence, the fact that

A+
m∑

i=1

Ai +BK is a Hurwitz positive matrix leads to

the contradiction that the unforced system (9) (with
u = 0) is asymptotically stable. To see this, The-
orem 2.1 implies the existence of λ > 0 such that

(A +
m∑

i=1

Ai + BK)λ < 0. Thus, as BK is positive,

necessarily, (A +
m∑

i=1

Ai)λ < 0. Then, by using Theo-

rem 2.1, we have shown that A+
m∑

i=1

Ai is necessarily a

Hurwitz matrix, or equivalently that the unforced sys-
tem (9) is asymptotically stable. This fact completes
the proof. ♦

5 Conclusions

We have proposed to study a generalization of the
classical theory of observers by investigating for time-
delay positive systems, the existence and characteri-
zation of positive observers, that is observers that de-
fine themselves a positive linear system. In addition
to developing theoretical results on the solvability of
such problems, we have complemented such analysis
by simply using a very efficient technique: Linear Pro-
gramming (LP). All the proposed conditions are nec-
essary and sufficient, which turn out to be solvable in
terms of LP.
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