

 shape and position of the papilla at each measured phase of sound stimulation.
In corsss section tor a given ongitudian position the papilila moves as a a giod body, In cross-section tor a a given longitudinal postion the papilia moves as a a rigid body,
rocking about an axx on the neural side. Because the axis of totation is on the
neural side, the drive for hair bundle deflection is larger tor more abneural hair neural side, the dive for hair bundile deflection is larger for more abneural hair
cells. Although each cross-section moves as a rigid body, the motion of cross-

DOES THE BASILAR PAPILLA SIMPLY ROTATE?

In models, basilar papilla motion is simple rotatio ${ }^{2,3,7}$
In measurements, more complex motions have been seen ${ }^{1,4,5}$

How does the basilar papilla move?

Does papilla motion account for limitations of models?
30 dB range of thresholds ${ }^{6}$
"Extra" low-pass filter needed in models ${ }^{2,3,7}$

DOES THE BASILAR

 PAPILLA EXHIBIT MULTIPLE MODES OF MOTION?Multiple modes of motion play a role in most models of cochlear mechanics (5,8 for review)
Does the alligator lizard cochlea have multiple modes of motion?

Are these modes important for hearing?

(3)

RESLICE 3-D IMAGES

(4)

MEASURE MOTION

take 3-D images at several phases of sound stimulus
measure motions of papilla and hair bundles from images

PAPILLA MOTION VARIES WITH POSITION AND FREQUENCY

The Basilar Papilla Has a Translational and a Rotational Mode

Lateral (x) position ($\mu \mathrm{m}$)

- Motions are elliptical
- Motion on the abneural side is primarily transverse
- Motion on the neural side contains lateral and transverse components
- best 2-mode fit has 1.96° peak rotation and $1.77 \mu \mathrm{~m}$ peak z translation (lines)

Excitatory Stimulus Varies

 With Lateral Position

Motion Varies With Frequency and Longitudinal Position

- Displacement peaks near 5 kHz
- Peak is largest at basal end
- Lateral (x) motion is similar on the neural and abneural sides
- Transverse (z) motion is larger on the abneural side
- Longitudinal (y) motion is small

Lateral Motion Lags Transverse Motion

$$
\begin{aligned}
& \text { Lag increases with frequency } \\
& \text { Lag is larger on neural side }
\end{aligned}
$$

DISCUSSION

- The basilar papilla exhibits multiple modes of motion
- Papilla motion can be described by one translational and one rotational mode

Both modes affect hair cell excitation

- Lateral variations in the excitatory component of motion do not account for 30 dB range of thresholds
- Increased papilla motion in the base near 5 kHz may increase the sensitivity of high-CF hair cells
- Phase lag of lateral relative to transverse motion resembles that of a second order low-pass filter
- Individual structures within the mammalian cochlea may also exhibit multiple modes of motion

Supported by NIH Research Grant R01-DCOO238. D.M. Freeman was supported in part by the W.M. Keck Career Development Professorship. A.J. Aranyosi was supported in part by a training grant to the Harvard-MIT
References
1. Aranysi and Freeman, ARO 2000
2. Freeman and Weiss, Hearing Research 35, 1988
5. Hubbard and Mountain, in Auditiory Computation (Hawkin
Hotoo and Weiss, J. Physiol $345,1983$.
8. Patuzzi, in The Cochlea (Dallos, Popper and Fay, eds), 1996
ch 20.1985

Career Development Professorship thy the W.M. Keck
supported in part by a training grant to the HarvardMI

References

2. Freeman ann Weiss, Hearing Research 35, 1988
3. Freman and Wiess, Hearing Research 48, 1990
F Fishkoend
4. Frishkopo and Deforier, Hearing Research 12, 1283
5. Hubbard and MOuntain, in Audiory Computation (Hawkins,

6. Paturzi, in The Cocochear (Dallos, Popper and Fay, eds), 1996
