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PSC1000 Microprocessor
32 BIT RISC Processor

GENERAL DESCRIPTIONFEATURES
♦ Low-System-Cost 32-Bit RISC Microprocessor
♦ 100-MHz (10ns/cycle) Operating Frequency
♦  Native execution of JavaTM

♦ Dual-Processor Architecture
• Microprocessing Unit (MPU)

ShBoomTM Architecture
High-performance zero-operand dual-stack archi-

tecture
• Input-Output Processor (IOP)

Used to perform timing, time-synchronous data
transfers, bit outputs, DRAM refresh

♦ 4-Gigabyte Physical Address Space
♦ 50-MHz External Clock
• 2x Internal clock, 4x Bus timing
• On-chip PLL clock circuitry allows use of inexpensive

oscillators
♦ 4-Group Memory/Bus Interface (MIF)
• Supports any combination of EPROM, SRAM, DRAM,

VRAM
• Programmable memory group and I/O-channel timing
♦ 8-Level Interrupt Controller (INTC)
♦ 8-Level Direct Memory Access Controller (DMAC)
♦ 52 General-Purpose 32-Bit Registers
♦ “Glueless” System Interface
♦ Small, low-cost, 100-Pin PQFP package
♦ 5V & 3.3V version available
♦ Power consumption:
• 5V part: 350 mW @ 100 MHz
• 3.3V part: 165 mW @ 100 MHz

The PSC1000 Microprocessor is a highly integrated 32-bit RISC pro-
cessor that offers high performance at low system cost for a wide range
of embedded applications. At 100 MHz internally, the processor ex-
ecutes at 100 native MIPS peak performance, and 28 Dhrystone 2.1
MIPS. The processor is based upon Patriot’s patented ShBoomTM dual
stack architecture, which enables the native execution of Java code.
The 32-bit registers and data paths fully support 32-bit addresses and
data types. The processor addresses up to four gigabytes of physical
memory, and supports virtual memory with the use of external map-
ping logic.

Conventional high-performance microprocessors are register-based
with large register sets, and are pipelined or superscalar. These com-
plex architectures consume costly silicon with multiple-operand instruc-
tions, multiple execution units, or lengthy execution pipelines. All these
features diminish the fastest possible execution of individual instruc-
tions and increase silicon size, thus increasing chip cost.

The PSC1000 CPU architectural philosophy is that of simplification
and efficiency of use. A zero-operand design eliminates most operand
bits and the decoding time and instruction space they require. Instruc-
tions are shrunk to eight bits, significantly increasing instruction band-
width and reducing program size. By not using pipeline or superscalar
execution, the resulting control simplicity increases execution speed to
issue and complete an instruction in a single clock cycle—as often as
every clock cycle—without a conventional instruction cache. To en-
sure a low-cost chip, a data cache and its cost are also eliminated in
favor of efficient register caches.

The PSC1000 CPU operates up to four groups of programmable bus
configurations from as fast as 30 ns to as slow as 820 ns, allowing any
desired mix of high-speed and low-speed memory. Minimum system
cost is reduced, thus allowing the system designer to trade system
cost for performance as needed.

By incorporating many on-chip system functions and a “glueless” bus
interface, support chips are eliminated, further lowering system cost.
The CPU includes an MPU, an I/O processor, a DMA controller, an
interrupt controller, bit inputs, bit outputs, and a programmable memory
interface. It can operate with 32-bit-wide and 8-bit-wide memory and
devices, and includes hardware debugging support. A minimum sys-
tem consists of a PSC1000 CPU, an 8-bit-wide EPROM, an oscillator,
and optionally one x8 or two x16 memories—a total of 4 or 5 active
components. The small die, which contains only 137,500 transistors,
produces a high-performance, low-cost CPU, and a high level of integra-
tion produces a high-performance, low-cost system.
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This information booklet describes the PSC1000 Microprocessor. The
processor is targeted for embedded applications that require high MPU
performance and low system cost. In addition, the processor’s ability
to execute Java natively makes it an ideal choice for Java-based de-
vices. These include laser printers, cell-phones, ignition controllers,
network routers, personal digital assistants, TV set-top boxes, embed-
ded web servers, and many other applications. A full reference manual
is available that provides the information required to design products
that will use the PSC1000 CPU. It includes functional capability, elec-
trical characteristics and ratings, and package definitions, as well as
programming information.

The PSC1000 Microprocessor is a highly integrated 32-bit RISC pro-
cessor that executes at 100 native MIPS peak performance, and 28
Dhrystone 2.1 MIPS,  with a 100-MHz internal clock frequency. The
CPU is designed specifically for use in those embedded applications
for which MPU performance and system cost are deciding selection
factors.

The PSC1000 CPU instruction sets are hardwired, allowing most in-
structions to execute in a single cycle, without the use of pipelines or
superscalar architecture. A “flow-through” design allows the next in-
struction to start before the prior instruction completes, thus increasing
performance.

The PSC1000 MPU contains 52 general-purpose registers, including
16 global data registers, an index register, a count register, a 16-deep
addressable register/return stack, and an 18-deep operand stack. Both
stacks contain an index register in the top element, are cached on
chip, and, when required, automatically spill to and refill from external
memory. The stacks minimize the data movement typical of register-
based architectures, and also minimize memory accesses during pro-
cedure calls, parameter passing, and variable assignments. Addition-
ally, the MPU contains a mode/status register, stack pointers, and 41
locally addressed registers for I/O, control, configuration, and status.

KEY FEATURES
Dual-Processor Architecture: The CPU contains both a high-perfor-
mance, zero-operand, dual-stack architecture microprocessing unit
(MPU), and an input-output processor (IOP) that executes instructions
to transfer data, count events, measure time, and perform other tim-
ing-dependent functions.

Zero-Operand Architecture: Many RISC architectures waste valu-
able instruction space—often 15 bits or more per instruction—by speci-
fying three possible operands for every instruction. Zero-operand (stack)
architectures eliminate these operand bits, thus allowing much shorter
instructions—typically one-fourth the size—and thus a higher instruc-
tion-execution bandwidth and smaller program size. Stacks also mini-
mize register saves and loads within and across procedures, thus al-
lowing shorter instruction sequences and faster-running code.

Fast, Simple Instructions: Instructions are simpler to decode and
execute than those of conventional RISC processors, allowing the

PSC1000 MPU and IOP to issue and complete instructions in a single
clock cycle, as often as every clock cycle—each at 100 native MIPS
peak execution.

Four-Instruction Buffer: Using 8-bit opcodes, the CPU obtains up to
four instructions from memory each time an instruction fetch or pre-
fetch is performed. These instructions can be repeated without reread-
ing them from memory. This maintains high performance when con-
nected directly to DRAM, without the expense of a cache.

Local and Global Registers: Local and global registers minimize the
number of accesses to data memory. The local-register stack auto-
matically caches up to sixteen registers and the operand stack up to
eighteen registers. As stacks, the data space allocated efficiently nests
and unnests across procedure calls. The sixteen global registers pro-
vide storage for shared data.

Posted Write: Decouples the processor from data writes to memory,
allowing the processor to continue executing after a write is posted.

Programmable Memory/Bus Interface: Allows the use of lower-cost
memory and system components in price-sensitive systems. The in-
terface supports many types of EPROM/SRAM/DRAM/VRAM directly,
including fast-page mode on up to four groups of DRAM devices. On-
chip support of RAS cycle /OE  and /WE, CAS-before-RAS, and the
DSF signal allow use of VRAM without additional external hardware.
Programmable bus timing and driver power allow the designer a range
of solutions to system design challenges to match the time, perfor-
mance and budget requirements for each project.

Clock Multiplier: Internally doubles and quadruples the external clock.
An on-chip PLL circuit eliminates typical stringent oscillator specifica-
tions, thus allowing the use of lower-cost oscillators.

Fully Static Design: A fully static design allows running the clock from
DC up to rated speed. Lower clock speeds can be used to drastically
cut power consumption.

Hardware Debugging Support: Both breakpoint and single-step ca-
pability aid in debugging programs.

Virtual Memory: Supported through the use of external mapping
SRAMs and support logic.

Floating-Point Support: Special instructions implement efficient single-
and double-precision IEEE floating-point arithmetic.

Direct Memory Access Controller: Supports up to eight prioritized
levels at data rates of up to 100 MB/second.

Interrupt Controller: Supports up to eight prioritized levels with inter-
rupt responses as fast as eight 2X-clock cycles.

Eight Bit Inputs and Eight Bit Outputs: I/O bits are available for
MPU and IOP application use, reducing the need for external hard-
ware.

PURPOSE

OVERVIEW
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Figure 1- CPU Block Diagram

The PSC1000 CPU architectural philosophy is that of simplification
and efficiency of use: implement the simplest solution that adequately
solves the problem and provides the best utilization of existing re-
sources. In hardware, this typically equates to using fewer transistors,
and fewer transistors means a lower-cost CPU.

Early RISC processors reduced transistor counts compared to CISC
processors, and gained their cost and performance improvements
therein. Today, interconnections between transistors dominate the sili-
con of many CPUs. The PSC1000 MPU architectural philosophy re-
sults in, along with fewer transistors, the minimization of interconnec-
tions compared to register-based MPUs.

Resources
The PSC1000 CPU contains ten major functional areas:
microprocessing unit (MPU), input-output processor (IOP), global reg-
isters, direct memory access controller (DMAC), interrupt controller
(INTC), on-chip resources, bit inputs, bit outputs, programmable
memory interface (MIF), and clock. In part, the PSC1000 CPU gains
its small silicon size and capability from the resource sharing within
and among these areas. See Figure 1. For example.

• The global registers are shared by the MPU, the IOP, and the trans-
fer logic within the MIF. They are used by the MPU for data storage
and control communication with the DMAC and the IOP; by the IOP for
transfer information, loop counts, and delay counts; and by the DMAC
for transfer information. Further, the transfer information is used by the

transfer logic in the MIF that is shared
by the IOP and DMAC.

• The MIF is shared by the MPU, the
IOP, the DMAC, the bit outputs and
the bit inputs for access to the sys-
tem bus. Bus transaction requests
are arbitrated and prioritized by the
MIF to ensure temporally determin-
istic execution of the IOP.

• The bit inputs are made available
to the system through the On-Chip
Resource Registers. They are shared
by the INTC and the DMAC for ser-
vice requests, are available to the
MPU and the IOP for programmed
input, and are bit-addressable.

• The DMAC transfer-termination
logic is significantly reduced by us-
ing specific termination conditions
and close coupling with the MPU for
intelligent termination action.

• The INTC is shared by the bit in-
puts, the IOP, and the DMAC (through
the MIF transfer logic) for interrupt re-
quests to the MPU.

• The bit outputs are made available
to the system through the On-Chip
Resource Registers. They are shared
by the MPU and the IOP for pro-
grammed output, and are bit-addres-
sable.

Although the maximum usage case requiring a complex IOP program,
many interrupt sources, many input bits, many output bits, all available
DMA channels, and maximum MPU computational ability might leave
a shortage of resources, such applications are not typical. The sharing
of resources among functional units significantly reduces transistor
count, package pin count, and thus silicon size and cost, and increases
CPU capability and flexibility. The ability to select among available re-
sources, compared to the fixed resource set of other CPUs, allows the
PSC1000 CPU to be used for a wider range of applications.

Clock Speed
The clock speed of a CPU is not a predictor of its performance. For
instance, the PowerPC 604, running at about half the speed of the
DEC Alpha 21064A, achieves about the same SPECint95 benchmark
performance. In this respect, the PSC1000 CPU is more like the DEC
Alpha than the PowerPC. However, the PSC1000 CPU is based on a
significantly different design philosophy than either of these CPUs.

CENTRAL PROCESSING UNIT
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MICROPROCESSING UNIT

Most processors historically have forced the system designer to main-
tain a balanced triangle among CPU execution speed, memory band-
width, and I/O bandwidth. However, as system clock rate increases so
typically does bus speed, cache memory speed and system interface
costs. Typically, too, so does CPU cost, as often thousands of transis-
tors are added to maintain this balance.

The PSC1000 CPU lets the system designer select the performance
level desired, while maintaining low system cost. This may tilt the tri-
angle slightly, but cost is not part of the triangle-balancing equation.
The PSC1000 CPU’s programmable memory interface permits a wide

range of memory speeds to be used, allowing systems to use slow or
fast memory as needed. Slow memory will clearly degrade system
performance, but the fast internal clock speed of the PSC1000 CPU
causes internal operations to be completed quickly. Thus the multi-
cycle multiply and divide instructions always execute quickly, without
the silicon expense of a single-cycle multiply unit. At up to eight times
the clock rate of competing parts with single-cycle multipliers, the dif-
ference in multiply/divide performance diminishes while the remainder
of the application executes correspondingly faster. Although higher
performance can sometimes be gained by dedicating large numbers
of transistors to functions such as these, silicon cost also increases.

The PSC1000 MPU supports the PSC1000 CPU architectural philoso-
phy of simplification and efficiency of use through its basic design in
several interrelated ways.

Whereas most RISC processors use pipelines and superscalar execu-
tion to execute at high clock rates, the PSC1000 MPU uses neither. By
having a simpler architecture, the PSC1000 MPU issues and com-
pletes most instructions in a single clock cycle. There are no pipelines
to fill and none to flush during changes in program flow. Though more
instructions are sometimes required to perform the same procedure in
PSC1000 MPU code, the MPU operates at a higher clock frequency
than other processors of similar silicon size and technology, thus giv-
ing comparable performance at significantly reduced cost.

A microprocessor’s performance is often limited by how quickly it can
be fed instructions from memory. The MPU reduces this bottleneck by
using 8-bit instructions so that up to four instructions (an instruction
group) can be obtained during each memory access. Each instruction
typically takes one 2x-clock cycle to execute, thus requiring four 2x-
clock cycles to execute the instruction group. Because a memory ac-
cess can take four or fewer 2x-clock cycles, the next instruction group
can be available when execution of the previous group completes. This
makes it possible to feed instructions to the processor at maximum
instruction-execution bandwidth without the cost and complexity of an
instruction cache.

The zero-operand (stack) architecture makes 8-bit instructions pos-
sible. The stack architecture eliminates the need to specify source and
destination operands in every instruction. By not using opcode bits on
every instruction for operand specification, a much greater bandwidth
of functional operations—up to four times as high—is possible. Table
1 depicts an example PSC1000 MPU instruction sequence that dem-
onstrates twice the typical RISC CPU instruction bandwidth. The in-
struction sequence on the PSC1000 MPU requires one-half the in-
struction bits, and the uncached performance benefits from the result-
ing increase in instruction bandwidth.

Stack MPUs are thus simpler than register-based MPUs, and the
PSC1000 MPU has two hardware stacks to take advantage of this: the
operand stack and the local-register stack. The simplicity is widespread
and is reflected in the efficient ways stacks are used during execution.

The ALU processes data from primarily one source of inputs—the top
of the operand stack. The ALU is also used for branch address

calculations. Data bussing is thus greatly reduced and simplified. In-
termediate results typically “stack up” to unlimited depth and are used
directly when needed, rather than requiring specific register allocations
and management. The stacks are individually cached and spill and
refill automatically, eliminating software overhead for stack manipula-
tion typical in other RISC processors. Function parameters are passed
on, and consumed directly off of the operand stack, eliminating the
need for most stack frame management. When additional local stor-
age is needed, the local-register stack supplies registers that efficiently
nest and unnest across functions. As stacks, the stack register spaces
are only allocated for data actually stored, maximizing storage utiliza-
tion and bus bandwidth when registers are spilled or refilled—unlike
architectures using fixed-size register windows. Stacks speed context
switches, such as interrupt servicing, because registers do not need to
be explicitly saved before use—additional stack space is allocated as
needed. The stacks thus reduce the number of explicitly addressable
registers otherwise required, and speed execution by reducing data
location specification and movement. Stack storage is inherently local,

g5  =  g1  - (g2  +  1 ) +  g3  - (g4  *  2 )

T yp ica l R IS C  M P U P SC 1000  M P U

push g1
push g2

add g2 ,#1 ,g5 inc #1

sub g5 ,g1 ,g5 sub

push g3
add g5 ,g3 ,g5 add

push g4
shl g4 ,#1 ,tem p shl #1

sub
sub tem p ,g5 ,g5 pop g5

20  bytes 10  bytes

E xam p le  o f tw ice  th e  in stru c t ion  b an d w id th
ava ilab le  on  th e P S C 1000  M P U

T a b le  1
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Figure 2.  MPU Registers

so the global registers supply non-local register resources when re-
quired.

Eight-bit opcodes are too small to contain much associated data. Addi-
tional bytes are necessary for immediate values and branch offsets.
However, variable-length instructions usually complicate decoding and
complicate and lengthen the associated data access paths. To simplify
the problem, byte literal data is taken only from the rightmost byte of
the instruction group, regardless of the location of the byte literal opcode
within the group. Similarly, branch offsets are taken as all bits to the
right of the branch opcode, regardless of the opcode position. For 32-
bit literal data, the data is taken from a subsequent memory cell. These
design choices ensure that the required data is always right-justified
for placement on the internal data busses, reducing interconnections
and simplifying and speeding execution.

Since most instructions decode and execute in a single clock cycle,
the same ALU that is used for data operations is also available, and is
used, for branch address calculations. This eliminates an entire ALU
often required for branch offset calculations.

Rather than consume the chip area for a single-cycle multiply-accu-
mulate unit, the higher clock speed of the MPU reduces the execution
time of conventional multi-cycle multiply and divide instructions. For
efficiently multiplying by constants, a fast multiply instruction will multi-
ply only by the specified number of bits.

Rather than consume the chip area for a barrel shifter, the counted bit-
shift operation is “smart” to first shift by bytes, and then by bits, to
minimize the cycles required. The shift operations can also shift double
cells (64 bits), allowing bit-rotate instructions to be easily synthesized.

Although floating-point math is useful, and sometimes required, it is
not heavily used in embedded applications. Rather than consume the
chip area for a floating-point unit, MPU instructions to efficiently per-
form the most time-consuming aspects of basic IEEE floating-point math
operations, in both single and double precision, are supplied. The op-
erations use the “smart” shifter to reduce the cycles required.

Byte read and write operations are available, but cycling through indi-
vidual bytes is slow when scanning for byte values. These types of
operations are made more efficient by instructions that operate on all
of the bytes within a cell at once.

Registers and Stacks
The register set contains 52 general-purpose registers, a mode/status
register, two stack pointers, and 41 local address-mapped on-chip re-
source registers used for I/O, configuration, and status. See Figure 2.

The operand stack contains eighteen registers and operates as a push-
down stack, with direct access to the top three registers (s0–s2 ).
These registers and the remaining registers (s3–s17 ) operate to-
gether as a stack cache. Arithmetic, logical, and data-movement op-
erations, as well as intermediate result processing, are performed on
the operand stack. Parameters are passed to procedures and results
are returned from procedures on the stack, without the requirement of
building a stack frame or necessarily moving data between other reg-
isters and the frame. As a true stack, registers are allocated only as
needed for efficient use of available storage. External operand stack
memory is addressed by register sa .

The local-register stack contains sixteen registers and operates as a
push-down stack with direct access to the first fifteen registers (r0–

r14 ). Theses registers and the  remaining register (r15 ) operate
together as a stack cache. As a stack, they are used to hold subroutine
return addresses and automatically nest local-register data.  External
local-register stack memory is addressed by register la .

Both cached stacks automatically spill to memory and refill from memory,
and can be arbitrarily deep. Additionally, s0  and r0  can be used for
memory access.

The use of stack-cached operand and local registers improves perfor-
mance by eliminating the overhead required to save and restore con-
text (when compared to processors with only global registers avail-
able). This allows for very efficient interrupt and subroutine process-
ing.

In addition to the stacks are sixteen global registers and three other
registers. The global registers (g0–g15 ) are used for data storage,
as operand storage for the MPU multiply and divide instructions (g0 ),
and for the IOP. Since these registers are shared, the MPU and the
IOP can also communicate through them. Remaining are mode, which
contains mode and status bits; x , which is an index register (in addi-
tion to s0  and r0 ); and ct ,  which is a loop counter and also partici-
pates in floating-point operations.

Programming Model
For those familiar with American National Standard Forth (ANS Forth),
or Hewlett-Packard calculators that use postfix notation, commonly
known as Reverse Polish Notation (RPN), programming the PSC1000
MPU will in many ways be very familiar.

An MPU architecture can be classified as to the number of operands
specified within its instruction format. Typical 16-bit and 32-bit CISC
and RISC MPUs are usually two- or three-operand architectures,
whereas smaller microcontrollers are often one-operand architectures.
In each instruction, two- and three-operand architectures specify a
source and destination, or two sources and a destination, whereas
one-operand architectures specify only one source and have an im-
plicit destination, typically the accumulator. Architectures are also usu-
ally not pure. For example, one-operand architectures often have two-
operand instructions to specify both a source and destination for data
movement between registers.
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The PSC1000 MPU is a zero-operand architecture, known as a stack
computer. Operand sources and destinations are assumed to be on
the top of the operand stack, which is also the accumulator. An opera-
tion such as add  uses both source operands from the top of the oper-
and stack, adds them, and returns the result to the top of the operand
stack, thus causing a net reduction of one in the operand stack depth.
See Figure 3.

Most ALU operations behave similarly, using two source operands and
returning one result operand to the operand stack. A few ALU opera-
tions use one source operand and return one result operand to the
operand stack. Some ALU and other operations also require a non-
stack register, and a very few do not use the operand stack at all.

Non-ALU operations are also similar. Loads (memory reads) either use
an address on the operand stack or in a specified register, and place
the retrieved data on the operand stack. Stores (memory writes) use
either an address on the operand stack or in a register, and use data
from the operand stack. Data movement operations push data from a
register onto the operand stack, or pop data from the stack into a reg-
ister.

Once data is on the operand stack it can be used for any instruction
that expects data there. The result of an add , for instance, can be left
on the stack indefinitely, until needed by a subsequent instruction. In-
structions are also available to reorder the data in the top few cells of
the operand stack so that prior results can be  accessed when re-
quired. Data can also be removed from the operand stack and placed
in local or global registers to minimize or eliminate later reordering of
stack elements. Data can even be popped from the operand stack and
restacked by pushing it onto the local-register stack.

Computations are usually most efficiently performed by executing the
most deeply nested computations first, leaving the intermediate results
on the operand stack, and then combining the intermediate results as
the computation unnests. If the nesting of the computation is complex,
or if the intermediate results need to be used some time later after
other data will have been added to the operand stack, the intermediate
results can be removed from the operand stack and stored in global or
local registers. Global registers are used directly and maintain their
data indefinitely. Local registers are registers within the local-register
stack cache and, as a stack, must first be allocated. Allocation can be
performed by popping data from the operand stack and pushing it onto
the local-register stack one cell at a time. It can also be preformed by
allocating a block of uninitialized stack registers at one time; the
uninitialized registers are then initialized by popping data, one cell at a
time, into the registers in any order. The allocated local registers can

be deallocated by pushing data onto the operand stack and popping it
off of the local register stack one cell at a time, and then discarding
from the operand stack the data that is unneeded. Alternatively, the
allocated local registers can be deallocated by first saving any data
needed from the registers, and then deallocating a block of registers at
one time. The method selected will depend on the number of registers
required and whether the data on the operand stack is in the required
order.

Registers on both stacks are referenced relative to the tops of the stacks
and are thus local in scope. What was accessible in r0 , for example,
after one cell has been push onto the local-register stack, is accessible
as r1 ; the newly pushed value is accessible as r0 .

Parameters are passed to and returned from subroutines on the oper-
and stack. An unlimited number of parameters can be passed and re-
turned in this manner. An unlimited number of local-register allocations
can also be made. Parameters and allocated local registers thus con-
veniently nest and unnest across subroutines and program basic blocks.

Subroutine return addresses are pushed onto the local-register stack
and thus appear as r0  on entry to the subroutine, with the previous
r0  accessible as r1 , and so on. As data is pushed onto the stacks
and the available register space fills, registers are spilled to memory
when required. Similarly, as data is removed from the stacks and the
register space empties, the registers are refilled from memory as
required. Thus from the program’s perspective, the stack registers
are always available.

All MPU instructions consist of eight bits, except for those that
require immediate data. This allows up to four instructions (an
instruction group) to be obtained on each instruction fetch, thus
reducing memory-bandwidth requirements compared to typical RISC
machines with 32-bit instructions. This characteristic also allows
looping on an instruction group (a micro-loop) without additional
instruction fetches from memory, further increasing efficiency.

Operand Stack

a
b
c
d
e
f

s0

s1

s2

s3

s4

s5

.

.

a  + b
c
d
e
f

s0

s1

s2

s3

s4

s5

.

.

add

Figure 3.  add Execut ion  Example

offset

offset

offsetbranch

branchopcodeopcodeopcode

opcodeopcode

opcode branch

branch

push.bopcodeopcode value

opcodepush.bopcode value

opcodeopcodepush.b value

push.n

opcodepush.lopcode opcode

opcodeopcodeopcode opcode

data for first push.l

data for fourth push.l (if present)

opcodeopcodeopcode opcode

push long
(any position)

push byte

push nibble

Branches

Literals

All Others

data for second push.l (if present)

data for third push.l (if present)

3-bit offset

11-bit offset

19-bit offset

27-bit offset

Figure 4.  MPU instruct ion Formats
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Table 2. MPU Instructions

Mnemonic Description Mnemonic Description Mnemonic Description
add add ld [x++] load indirect and postincrement x rnd round

add pc add program counter ld [x] load indirect using x scache fill/empty operand stack cache

adda add address ld [] load indirect sdepth operand stack depth

addc add with carry ld.b [] load byte indirect sexb sign-extend byte

addexp add exponents ldo [] load on-chip indirect sframe allocate operand stack frame

and bitwise AND ldo.i [] load bit on-chip indirect shift counted shift

bkpt breakpoint ldepth depth of local-register stack shiftd counted shift double

br offset branch unconditionally lframe allocate local-register stack frame shl #1 shift left one bit

br [] branch indirect mloop micro-loop unconditionally shl #8 shift left eight bits

bz offset branch if zero mloop_ micro-loop on condition (c,n,nc,nz,p,z) shld #1 shift double left one bit

call offset call subroutine mulfs multiply fast signed shr #1 shift right one bit

call [] call subroutine indirect muls multiply signed shr #8 shift right eight bits

cmp compare mulu multiply unsigned shrd #1 shift double right one bit

copyb copy byte mxm maximum skip skip unconditionally

dbr offset decrement ct and branch neg negate skip_ skip on condition (c,n,nc,nz,p,z)

dec #1 decrement by one nop no operation split split cell

dec #4 decrement by four norml normalize left st [--r0] store indirect and predecremented r0

dec ct decrement ct by one normr normalize right st [--x] store indirect and predecrement x

denorm denormalize notc complement carry st [r0++] store indirect and postincrement r0

di disable interrupts or bitwise OR st [r0] store indirect using r0

divu divide unsigned pop pop stack st [x++] store indirect and postincrement x

ei enable interrupts pop reg pop into register st [x] store indirect using x

eqz equal zero pop lstack pop into local-register stack st [] store indirect

expdif exponent difference push push stack sto [] store on-chip indirect

extexp extract exponent push reg push from register sto.i [] store bit on-chip indirect

extsig extract significand push lstack push from local-register stack sub subtract

iand bitwise invert then AND push.b # push byte subb subtract with borrow

inc #1 increment by one push.l # push long subexp subtract exponents

inc #4 increment by four push.n # push nibble testb test cell for zero bytes

lcache fill/empty local-register stack cache replb replace byte testexp test exponent

ld [--r0] load indirect and predecremented r0 replexp replace exponent xcg exchange stack

ld [--x] load indirect and predecrement x ret return from subroutine xor bitwise exclusive OR

ld [r0++] load indirect and postincrement r0 reti return from interrupt

ld [r0] load indirect using r0 rev revolve stack
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The Input-Output Processor (IOP) is a special-purpose processing unit
that executes instructions to transfer data between devices and memory,

refresh dynamic memory, measure time, manipulate bit inputs and bit
outputs, and perform system timing functions. IOP programs are usu-
ally written to be temporally deterministic. Because it can be difficult or
impossible to write programs that contain conditional execution paths
that execute in an efficient temporally deterministic manner, the IOP
contains no computational and minimal decision-making ability. IOP
programs are intended to be relatively simple, using interrupts to the
MPU to perform computation or decision making.

To ensure temporally deterministic execution, the IOP exercises abso-
lute priority over bus access. Bus timing must always be deterministic;
wait states are programmed in the MIF. Temporal determinism is
achieved by counting IOP-execution and bus clock cycles between the
timed IOP events. Bus access is granted to the IOP unless it is execut-
ing delay , which allows MPU and DMA requests access to the bus
during a specified time. Thus, when a memory access is needed, the
IOP simply seizes the bus and performs the required operation at pre-
cisely the programmed instant.

The MIF ensures that the bus will be available when the IOP requires
it. The MPU and the DMAC request the bus from the MIF, which priori-
tizes the requests and grants the bus while the IOP is executing de-
lay . The MIF ensures that any transactions will be completed before
the delay time expires and the IOP then siezes the bus. When transfer-
ring data, the IOP does not modify any data that is transferred; it only
causes the bus transaction to occur at the programmed time. It per-
forms time-synchronous I/O-channel transfers, as opposed to the
DMAC, which prioritizes and performs asynchronous I/O-channel trans-
fers. Other than how they are initiated, the two types of transfers are
identical.

Instruction Latch

Multiplexer

Decode/Execute

IOP Program Counter

iopreset

control

ioip

ioin

ioout

data

address

iopdelay

MIF

8

8

8

8 8

8

8

4–28

32

322

32

Global
Registers

On-Chi p
Resource
Registers

8

Figure 5.  IOP Block  Diagram

Usage
An IOP program can be used to eliminate an extensive amount of ex-
ternal logic and simplify system designs. Further, by using the IOP for
timing-dependent system and application operations, timing constraints
on the MPU program can often be eliminated or greatly relaxed.

For example, an IOP program of about 150 bytes supplies the data
transfers and timing for a video display. The program produces vertical
and horizontal sync, and transfers data from DRAM to a video shift
register or palette. Additionally, the IOP supplies flexibility. Video data
from various areas of memory could be displayed, without requiring
that the data be moved to create a contiguous frame buffer. As new
data areas are specified, the IOP instructions are rewritten by the MPU
to change the program the IOP will execute for the next video frame.
While this is executing, the MPU still has access to the bus to execute
instructions and process data, and the DMAC still has access to the
bus to transfer data.

Many other applications are possible. The IOP is best used for applica-
tions that require data to be moved, or some other event to occur, at
specific times. For example:
• sending digitized 16-bit data values to a pair of DACs to play CD-

quality stereo sound,
• sampling data from input devices at specified time intervals for

the MPU to later process,
• sending data and control signals to display images on an LCD

display,
• transferring data packets for an intelligent network interface,
• transferring synchronous data blocks for an intelligent SCSI con-

troller,
• sending multiple channels of data to DACs for a wave-table syn-

thesizer,
• controlling video and I/O for serial and X-Windows video termi-

nals or PC video accelerators,
• controlling timed events in process-control environments,
• controlling ignition and fuel for automotive engines, or
• combining several of the above applications to create a PC multi-

media board.

The IOP is designed to dictate access to the bus (to ensure temporally
deterministic execution), but to be a slave to the MPU. The IOP can
communicate status to the MPU by:
 • the status changing on a device the IOP has accessed,
• loading a value in a global register,
• setting a bit output, or
• consuming a bit input.

The MPU can control the IOP by:
• rewriting IOP instructions in memory,
• modifying the global registers the IOP is using,
• clearing a bit input, or
• resetting the IOP.

The events controlled do not need to occur at a persistent, constant
rate. The IOP is appropriate for applications whose event rates must
be consistently controlled, whether once or many times. As an example
of the former, the IOP can take audio data from memory and send it to

INPUT-OUTPUT PROCESSOR
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a DAC to play the sound at a continuous rate, for as long as the audio
clip lasts. As an example of the latter, the IOP can be synchronized to
the rotation of an automotive engine by the MPU in order for the IOP to
time fuel injection and ignition, with the synchronization constantly
changed by the MPU (by changing global registers or rewriting the IOP
program) as the MPU monitors engine performance.

Figure 6.  IOP Instruction Formats

dest inat ion

dest inat ion

dest

jumpopcodeopcodeopcode

opcodeopcode jump

opcode jump

jump

opcodeld #,gnopcode opcode

data for f irst ld #,gn

opcodeopcodeopcode opcode

data for fourth ld #,gn (if  present)

opcodeopcodeopcode opcode

load register
(any posit ion)

Jumps

Literals

All Others

4-bit  destination

12-bit  destination

20-bit  destination

28-bit  destination

data for second ld #,gn ( i f  present)

data for third ld #,gn (if  present)

• delay : load iopdelay  and wait the specified number of 2X-
clock cycles, allowing bus access for DMA and the MPU.
iopdelay  counts down once each 2X-clock cycle. DMA and
MPU bus transactions are granted only when iopdelay  indi-
cates that sufficient time remains for the complete bus transaction
to occur. When iopdelay  reaches zero, the IOP instruction
after delay  executes.

• dskipz : decrement the specified global register and skip the
remainder of the instruction group if the register is zero. Primarily
used to create program loops by following dskipz  with jump .
Loops can be nested by using a different global register for each
level of loop counter.

• int : request the specified interrupt from the MPU. Used to notify
the MPU that an event has occurred.

• jump : branch to the specified page-relative address.
• ld : load the specified global register with the specified data. Used

to load values for xfer , mloop , dskipz  and delay , or to
communicate with the MPU.

• mloop : loop on the instructions within the current instruction
group. Used to loop on sequences of up to three other instruc-
tions without requiring the re-fetching of the instructions from
memory.

• nop : no operation. Used as a placeholder for an instruction to  be
later placed or to waste time.

• outt : Set the specified bit output high.
• outf : Set the specified bit output low.
• refresh : performs a RAS-only refresh cycle on the memory

groups that have refresh enabled. IOP program code must be
written to include refresh  at intervals adequate for any DRAM
used.

• tskipz : test and consume the specified bit input, and skip the
remainder of the instruction group if the bit is zero. Used to cause
the IOP code to operate conditionally on bit inputs.

• xfer : cause an I/O-channel transfer to occur immediately using
the specified global register. The global register contains the de
vice address, memory address, and control information.
See Figure 7. The type of bus transaction performed depends on
whether the memory group involved is cell-wide or byte-wide and
on the device transfer type. xfer  bus transactions are identical
to DMA bus transactions except for how they are initiated.

Instruction Set
All IOP instructions consist of eight-bit opcodes except for ld , which
requires 32-bit immediate data following, and jump , which requires a
page-relative destination address. The use of eight-bit opcodes allows
up to four instructions (referred to as an instruction group) to be ob-
tained on each instruction fetch, thus reducing instruction memory-band-
width requirements compared to typical RISC machines with 32-bit in-
structions. This characteristic also allows looping on the instruction
group (a micro-loop) without additional instruction fetches from memory,
further increasing efficiency. Each instruction requires one 2X-clock
cycle to execute plus any delay or explicit or implicit bus cycle speci-
fied. Instruction formats are depicted in Figure 6.

31 01516 12

non-increment ing bi ts increment ing bi ts

910

Transfer interrupt enable

Memory transfer direct ion (0=memory wri te, 1=memory read)

1024-byte page boundary detect bi ts (page end when transfer with bi ts al l  ones)

Used in g8 to g15

Figure 7.  I /O Fi le Transfer Data Format

Table 3. Instruction Set

YALED NOITAREPOON

PIKSDNATNEMERCED EURTTUPTUO

UPMTPURRETNI ESLAFTUPTUO

PMUJ HSERFER

RETSIGERDAOL PIKSDNATUPNITSET

POOL-ORCIM REFSNART
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The Direct Memory Access Controller (DMAC) allows I/O devices to
transfer data to and from system memory without the intervention of
the MPU. It supports eight I/O channels prioritized from eight separate
sources. Direct memory access (DMA) requests are received from the
bit inputs through ioin . DMA and MPU bus request priorities are
either fixed, which allows higher-priority requests to block lower-prior-
ity requests, or revolving, which prevents higher-priority requests that
cannot be satisfied from blocking lower-priority requests.

1.Refers to device type specified in iodtta  or iodttb .
2.Data is transferred directly between device and memory.
3.Data is stored in the MIF during part of the transfer.
4.The entire sequence of cycles is an atomic bus transaction.

Table  4. I/O Channel Transfer Characteristics

DMA is supported for both cell-wide and byte-wide devices in both cell-
wide and byte-wide memory. Each I/O channel can be individually con-
figured as to the type of device and bus timing requirements. Byte-
wide devices can be configured as either one-byte byte-transfer or four-
byte byte-transfer devices. Transfers are flybys or are buffered, as re-
quired for the I/O-channel bus transaction. and IOP xfer  transfers

are identical except for how they are initiated. DMAC transfers occur
from asynchronous requests whereas xfer  transfers occur at their
programmed time.

Prioritization
A DMA request is prioritized with other pending DMA requests, and, if
the request has the highest priority or is the next request in revolving-
priority sequence, its corresponding I/O channel will be the next to re-
quest the bus. DMA request prioritization requires one 2X-clock cycle
to complete. When the I/O channel bus request is made, the MIF waits
until the current bus transaction, if any,  is almost complete. It  then
checks iopdelay  to determine if the available bus slot is large
enough for the required I/O channel bus transaction. If the bus slot is
large enough, the bus is granted to the I/O channel, and the bus trans-
action begins.

The IOP always seizes the bus when iopdelay  decrements to zero.
Otherwise, a DMA I/O channel bus request and an MPU bus request
contend for the bus, with the DMA I/O channel bus request having
higher priority.

Memory and Device Addressing
Addresses used for I/O channel transfers contain both the I/O device
address and the memory address. By convention, the uppermost ad-
dress bits (when A31 is set) select I/O device addresses, while the
lower address bits select the memory source/destination for the trans-
fer. Multi-cycle transfer operations (e.g., transferring between a byte
device and cell memory) assume A31 is part of the external I/O-device
address decode and pass/clear A31 to select/deselect the I/O device
as needed during the bus transaction.

1024-byte memory page boundaries have special significance to I/O
channel transfers. When each I/O-channel bus transaction completes,
bits 15–2 of the memory address in the global register are incremented.
The new address is evaluated to determine if the last location in a
1024-byte memory page was just transferred (by detecting that bits 9–
2 are now zero). When the last location in a 1024-byte memory page
was just transferred, an MPU interrupt can be requested or DMA can
be disabled.

Interrupts
An MPU interrupt can be requested after an I/O channel transfer ac-
cesses the last location in a 1024-byte memory page. The interrupt
requested is the same as the I/O-channel number, and occurs if inter-
rupts are enabled on that channel (i.e., if bit zero of the corresponding
global register is set). This allows, for example, the MPU to be notified
that a transfer has completed (by aligning the end of a transfer memory
area with the end of a 1024-byte memory page), or to inform the MPU
of progress during long transfers.

Request
Lo g ic

Prioritizer

Expiration Lo g ic

fdmap

ioXdmae_i

ioXdmaex

I/O channel #

8

8

8

8

8

3
#

MIF
control

Transfer page
boundary

I/O channel
acknowledge

I/O channel
request

Bit In puts

ioXin_i

zero-persist
INx

bypass
sample INx 8

1 of 8

Figure 8. DMAC B lock  D iagram
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The interrupt controller (INTC) allows multiple external or internal
requests to gain, in an orderly and prioritized manner, the attention of
the MPU. It supports up to eight prioritized interrupt requests from
twenty-four sources. Interrupts are received from the bit inputs
through ioin , from I/O-channel transfers, or from the IOP interrupt
instruction int .

Each interrupt request is shared by three sources. A request can arrive
from a zero bit in ioin  (typically from an external input low), from an
I/O-channel transfer interrupt, or from the IOP instruction int . Inter-
rupt request zero comes from ioin  bit zero, I/O channel zero (using
g8 ), or int 0 ; interrupt request one comes from ioin  bit one, I/O
channel one (using g9 ), or int 1 ; the  other interrupt requests are
similarly assigned. Application usage typically designates only one
source for an interrupt request, though this is not required.

ioXie_i

zero-persist
 INx ioXin_i

Bit Inputs

D Q

CLR

CLK

ioXi p_i

D Q

CLK

ioXius_i

Prioritizer

IOP
int x

MIF
transfer interrupt x

global int
enable

reti

int ack

int req

int #

2X-clock

MPU

8

8

8

8

3

Figure 9.  INTC Block Diagram

Q

MPU on-chip register R/W capabil i ty not depicted

1 of 8

Boot Signature
IOP Hardware Reset
MPU Hardware Reset

Boot Program

80000000
80000004
80000008

F F F F F F F F

I/O Devices

0

10

100
104
108
10c
110
114
118
11c
120
124
128
12c
130
134
138
13c
140
144
148
14c

Interrupt 0
Interrupt 1
Interrupt 2
Interrupt 3
Interrupt 4
Interrupt 5
Interrupt 6
Interrupt 7
FP Exponent
FP Underf low
FP Overf low
FP Normalize
FP Round
Breakpoint
Single Step
Memory Fault
LRS Overf low
LRS Underf low
OS Overf low
OS Underf low

IOP Software Reset

Figure 10  CPU Memory Map

Associated with each of the eight interrupt requests is an interrupt
service routine (ISR) executable-code vector located in external
memory. See Figure 10. A single ISR executable-code vector for a
given interrupt request is used for all requests on that interrupt. It is
programmed to contain executable code, typically a branch to the
ISR. When more than one source is possible, the current source
might be determined by examining associated bits in ioin , ioie ,
iodmae  and the global registers.

Eight external bit inputs are available in bit input register ioin .
They are shared for use as interrupt requests, as DMA requests,
as input to the IOP instruction tskipz , and as bit inputs for
general use by the MPU. They are sampled externally from one
of two sources determined by the state of pkgio .

All asynchronously sampled signals are susceptible to meta-
stable conditions. To reduce the possibility of metastable condi-
tions resulting from the sampling of the bit inputs, they are held
for four 2X-clock cycles to resolve to a valid logic level before
being made available to ioin  and thus for use within the CPU.
The worst-case sampling delay for bit inputs from /IN[7:0]
to reach ioin  is eight 2X-clock cycles.

BIT INPUTS

INTERRUPT CONTROLLER

i npb lk .wpg

÷ 4

AD
Sample

Clock

A/B

A

B

Q

B

A

A/B

Q D Q

C L K

D Q

C L K

D Q

C L K

zero-persist  INx

bypass sample INx

D M A

zero-persist  INx

INTC

write INx

MPU
CAS

RAS

ADx

INx ioXin_i

IOP
set INx

Zero-
Pers is tence

Contro l

pkgio

2X-c lock

1 of  8

Figure 11.  Bit Input Block
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On-Chip Resource Registers

Eight general-purpose bit outputs can be set high or low by either the
MPU or the IOP. The bits are available in the bit output register,
ioout .

The bits are read and written by the MPU as a group with ldo
[ioout]  and sto [ioout ], or are read and written individually
with ldo.i [ioXout_i]  and sto.i [ioXout_i] .

The bit outputs are written individually by the IOP with outt  and outf .
The bit outputs cannot be read by the IOP.

ioout

A

B

QA/B

drivers

outdrv addrv

32

8 8

88

8

MIF AD[7:0]

OUT[7:0]

AD[7:0]RAS

outblk.wpg

MIF Control

Figure 12.  Bi t  Outputs Block Diagram

The on-chip resource registers
comprise portions of various
functional units on the CPU.
The registers are addressed
from the MPU in their own ad-
dress space at the register level
or at the bit level (for those reg-
isters that have bit addresses).
On other processors, resources
of this type are often either
memory-mapped or opcode-
mapped. By using a separate
address space for these re-
sources, the normal address
space remains uncluttered, and
opcodes are preserved.

The first six registers are bit
addressable in addition to
being register addressable.
This allows the MPU to modify
individual bits without
corrupting other bits that
might be changed concur-
rently by the IOP, DMAC, or
INTC logic.

1 5 1 0 7 01 33 1

240 mg0casbt Memory Group 0 CAS Bus Timing Register
220 mg3ebt Memory Group 3 Extended Bus Timing Register
200 mg2ebt Memory Group 2 Extended Bus Timing Register
1e0 mg1ebt Memory Group 1 Extended Bus Timing Register
1c0 mg0ebt Memory Group 0 Extended Bus Timing Register
1a0 miscc Miscel laneous C Register
180 mgds Memory Group Device Size Register
160 msgsm Memory System Group Select Mask Register
140 mfltdata Memory Fault Data Register
120 mfltaddr Memory Fault Address Register
100 miscb Miscellaneous B Register
0e0 misca Miscellaneous A Register
0c0 vram VRAM Control Bit  Register
0a0 iodmae DMA Enable Register
080 ioie Interrupt Enable Register
060 ioout Bit Output Register
040 ioius Interrupt Under Service Register
020 ioip Interrupt Pending Register
000 ioin Bit Input Register

260 mg1casbt Memory Group 1 CAS Bus Timing Register
280 mg2casbt Memory Group 2 CAS Bus Timing Register
2a0 mg3casbt Memory Group 3 CAS Bus Timing Register
2c0 mg0rasbt Memory Group 0 RAS Bus Timing Register
2e0 mg1rasbt Memory Group 1 RAS Bus Timing Register
300 mg2rasbt Memory Group 2 RAS Bus Timing Register
320 mg3rasbt Memory Group 3 RAS Bus Timing Register
340 io0ebt I/O Channel 0 Extended Bus Timing Register340 io0ebt I/O Channel 0 Extended Bus Timing Register340 io0ebt I/O Channel 0 Extended Bus Timing Register
360 io1ebt I/O Channel 1 Extended Bus Timing Register
380 io2ebt I/O Channel 2 Extended Bus Timing Register
3a0 io3ebt I/O Channel 3 Extended Bus Timing Register
3c0 io4ebt I/O Channel 4 Extended Bus Timing Register
3e0 io5ebt I/O Channel 5 Extended Bus Timing Register
400 io6ebt I/O Channel 6 Extended Bus Timing Register
420 io7ebt I/O Channel 7 Extended Bus Timing Register
440 msra Memory System Refresh Address Register (WO)
440 iopdelay IOP Delay Register (RO)
460 iodtta I/O Device Transfer Types A Register
480 iodttb I/O Device Transfer Types B Register
7a0 iodmaex I/O DMA Enable Expiration Register
7c0 drivers Driver Current Register
7e0 iopreset IOP Reset Register

Figure 13.  On-Chip Resource Registers

Register Size  Addr Mnemonic Description

BIT OUTPUTS

ON-CHIP RESOURCE REGISTERS
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The Programmable Memory Interface (MIF) allows the timing and be-
havior of the CPU bus interface to be adapted to the needs of periph-
eral devices with minimal external logic. A variety of memory devices
are supported, including EPROM, SRAM, DRAM and VRAM, as well
as a variety of I/O devices. Most aspects of the bus interface are pro-
grammable, including address setup and hold times, data setup and
hold times, output buffer enable and disable times, write enable activa-
tion times, memory cycle times, DRAM-type device address multiplex-
ing, and when DRAM-type RAS cycles occur. Additional specifications
are available for I/O devices, including data setup and hold times, out-
put buffer enable and
disable times, and de-
vice transfer type (one-
byte, four-byte or one-
cell).

The MIF supports di-
rect connection to a
variety of memory and
peripheral devices.
The primary require-
ment is that the device
access time be
deterministic; wait
states are not avail-
able because they
would create non-
deterministic timing for
the IOP. The MIF di-
rectly supports a wide
range of sizes for mul-
tiplexed-address de-
vices (DRAM, VRAM,
etc.) up to 128 MB, as
well as sizes for
demultiplexed- ad-
dress devices (SRAM,
EPROM, etc.) up to 1
MB. Fast- page mode
access and RAS-only
refresh to DRAM-type
devices are supported.
SRAM-type devices
appear to the MIF as
DRAM with no RAS
address bits and a
large number of CAS
address bits.

Address bits are mul-
tiplexed out of the CPU on AD[31:9] to reduce package pin count.
DRAM-type devices collect the entire memory address in two pieces,
referred to as the row address and column address. Their associated
bus cycles are referred to as Row Address Strobe (RAS) cycles and
Column Address Strobe (CAS) cycles. With the exception of memory
faults, refresh, and CAS-before-RAS VRAM cycles, a RAS cycle con-
tains, enclosed within the /RAS active period, a CAS cycle.

Though I/O devices can be addressed like memory for access by the

mgbtrast
mgbtras

mgbtcast  + mgebtdobe

mgbtdob

RAS Prefix CAS Part

mgbtrh ld

mgbtcas mgebtcase
ioebtcase

mgebtdobe
ioebtdobe

mgbteras

CAS cycle

mgbtewea

CAS cycle

mgbteoe

mgbtewemgbt lwea

DataCAS Address Bi tsRAS Address Bits

Note

Note: DOB  r ise tracks OE or EWE and LWE  rise.

RAS

CAS

DOB

OE

EWE

LWE

AD

external
clock

Figure 14 . Programmable Bus Timing Reference

ioebtdobe

MPU, I/O-channel transfers require addressing an I/O device and a
memory location simultaneously. This is achieved by an application-
dependent splitting of the available 32 address bits into two areas: the
lower address bits, which address memory, and the higher address
bits, which address I/O devices. The areas can overlap, if required,
with the side effect that an I/O device can only transfer data with a
corresponding area of memory.

The MIF must always grant the bus to the IOP immediately when re-
quested in order to guarantee temporally deterministic IOP execution.

To allow this, the IOP has exclusive access to the bus except when it is
executing delay. When a DMA or MPU bus request is made, the MIF
determines the type of bus transaction, computes the estimated time
required, and compares this to iopdelay—the amount of time before
the IOP seizes the bus. This available bus time is called the slot. If
iopdelay is zero, the IOP currently has the bus. If iopdelay is larger
than the value computed for the bus transaction, the bus is granted to
the requestor. Once a bus request has passed the slot check, the bus
transaction begins on the next 2X-clock cycle.

PROGRAMMABLE MEMORY INTERFACE
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Table 5
SYMBOL TYPE DESCRIPTION

cVSS PWR Ground for core logic and all output driver pre-drivers.
cVCC PWR Power for core logic and all output driver pre-drivers.

ctrlV SS PWR Ground for control signal output drivers (DSF, OUT[7:0] , all RASes, all CASes, /DOB, /OE,  /xWE) .

ctrlV CC PWR Power for control signal output drivers (DSF, OUT[7:0] , all RASes, all CASes, /DOB,  /OE, /xWE).

adVSS PWR Ground for AD[31:0]  output drivers.

adVCC PWR Power for AD[31:0]  output drivers.

CLK I EXTERNAL OSCILLATOR:  The processor operating frequency is twice the external oscillator frequency.

/RESET

I
A( )

RESET: Asserting /RESET causes the entire CPU to be initialized and the MPU and IOP to begin execution at
their hardware reset locations. If /RESET is not held low during power-up, the signal alternatively is input on
AD8 during /RAS active and /CAS inactive, and /RESET is ignored.

DSF
O

I(L)
DEVICE SPECIAL FUNCTION: Set on VRAM memory cycles during /RAS and /CAS accesses by the
MPU to control VRAM function.

/MFLT

I
S(/RAS)

MEMORY FAULT:  Asserted by external memory-management hardware before /RAS active to invalidate the
current MPU bus cycle and cause the MPU to trap if the configuration bit pkgmflt  is set. The signal
alternatively is input on AD8 at /RAS fall during /CAS inactive, if the bit pkgmflt  is clear.

/IN[7:0]

I
A( )

INPUTS: Asserted by external hardware to request an interrupt or DMA, or to input a bit, when the
configuration bit pkgio  is set. The bits alternatively are input on AD[7:0]  during /RAS active and /CAS
inactive, if the bit pkgio  is clear.

OUT[7:0]
O

I(H)
OUTPUTS: Bit outputs writable from the IOP or MPU. These bits are also available on AD[7:0]  during
/RAS inactive.

/RAS
O

I(L)
ROW ADDRESS STROBE: A control signal asserted to define row address valid and deasserted only when
another row address cycle is required.

RAS O, I(H) Inverted /RAS

/CAS
O

I(H)
COLUMN ADDRESS STROBE: A control signal asserted to define column address valid and deasserted at
the end of the current bus cycle.

CAS O, I(L) Inverted /CAS

/MGS0…3/
/RAS0…3

O
I(L)

MEMORY GROUP SELECTS/ROW ADDRESS STROBES: In multiple memory bank (MMB) mode
(configuration bit mmb is set), the strobes are active during all bus cycles for the entire bus cycle. In single
memory bank (SMB) mode, they are similar to /RAS.

/CAS0-3
O

I(H)
COLUMN ADDRESS STROBES: Similar to /CAS, to assert a column address cycle on the specified
memory bank within the current memory group.

/DOB O, I(H) DATA ON BUS: Active during data portion, inactive during the address portion of cycle.

/OE
O

I(H)
OUTPUT ENABLE:  Active when the current bus transaction is a read from memory. The configuration bit
oed  is set or cleared during the CPU reset startup process.

EWE
O

I(H)
EARLY WRITE ENABLE:  Active when the current bus transaction is a write to memory. Active time at
either start of cycle or /CAS fall is programmable for each memory group.

/LWE
O

I(H)
LATE WRITE ENABLE:  Active when the current bus transaction is a write to memory and for VRAM
control. Active time either at or after /DOB active is programmable for each memory group.

AD[31:0]

I/O
S(/DOB)
S(/RAS)

A( )
I(Z)

ADDRESS DATA BUS: Multiplexed address, data, I/O and control bus.
For data.
For alternate memory fault on AD8.
For alternate reset on AD8. See /RESET.

Notes:
   I =
  O =
 I/O =

Input-Only Pins
Output-Only Pins
Bidirectional Pins

   A( ) =
S(sym) =

Asynchronous inputs
Synchronous inputs must meet setup and
hold requirements relative to symbol.

I(H) =
I(L) =
I(Z) =

high value on reset
low value on reset
high impedance on
reset
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MICROPROCESSING UNIT (MPU)
Zero-operand dual-stack architecture
10-ns instruction cycle
52 General-purpose 32-bit registers
16 global data registers (g0–g15)
16 local registers (r0–r15) double as return stack cache
r0 is an index register with predecrement and postincrement
Automatic local-register stack spill and refill
18 operand stack cache registers (s0–s17)
s0 is an address register
Automatic operand stack spill and refill
Index register (x) with predecrement and postincrement
Count register (ct)
Stack paging traps
Cache-management instructions
MPU communicates with DMA and IOP via global registers
Hardware single- and double-precision IEEE floating-point
support
Fast multiply
Fast bit-shifter
Hardware single-step and breakpoint
Virtual-memory support
Posted write
Power-on-reset flag
Instruction-space-saving 8-bit opcodes

DIRECT MEMORY ACCESS CONTROLLER (DMAC)
Eight prioritized DMA channels
Fixed or revolving DMA priorities
Byte, four-byte or cell DMA devices
Single or back-to-back DMA requests
Transfer rates to 100 MB/second
Programmable timing for each channel
Interrupt MPU on transfer boundary/count reached
Terminate DMA on transfer boundary/count reached
Channels can be configured as event counters
DMA communicates with MPU and IOP via global registers

INPUT-OUTPUT PROCESSOR (IOP)
Executes instruction stream independent of MPU
Deterministic execution
Performs timing, time-synchronous data transfers, bit-output
operations, DRAM refresh
Eight transfer channels
Byte, four-byte or cell device transfers
Programmable timing for each channel
Interrupt MPU on transfer boundary/count reached
Set/reset output bits
Set MPU interrupt
Test and branch on input bit
Looping instructions
Load transfer address, direction, interrupt on boundary
IOP communicates with DMA and MPU via global registers or
memory
Channels can be configured as timers
Instruction-space-saving 8-bit opcodes

INPUT-OUTPUT/INTERRUPTS
Eight bit inputs; Bits can be configured as zero-persistent
Eight bit outputs
I/O Bits are Register- and bit-addressable
I/O bits available on pins or multiplexed on bus
Eight prioritized and vectored interrupts

PROGRAMMABLE MEMORY INTERFACE (MIF)
Programmable bus interface timing to 1/4 external clock
Four independently configurable memory groups:
Any combination of 32-bit and 8-bit devices
Any combination of EPROM, SRAM, DRAM, VRAM
Almost any DRAM size/configuration
Fast-page mode access for each DRAM group
Glueless support for one memory bank per group
1.25 gates per memory bank for decoding up to 16 memory
banks (four per memory group)
Virtual-memory support
DRAM refresh support (via IOP)
VRAM support includes DSF,/OE, WE,/CAS before /RAS control
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