
Dear Ngo Bao Chau,

Dear Professor Remmert,

Ladies and Gentlemen,

It is a great pleasure to give the laudatory speech for Ngô Bao Châu who is the recipient

of the 2007 Oberwolfach prize. This prize is awarded approximately every three years

to a young European mathematician below the age of 36 by the Oberwolfach Foundation

in cooperation with the Mathematical Research Institute Oberwolfach and its Scientific

Committee. The field of mathematics within which the recipient of this year’s prize was

selected is algebra and number theory. Ngô Bao Châu was chosen for his work on the

Fundamental Lemma conjecture of Langlands and Shelstad. With his proof of this long

standing conjecture, Ngo has established himself as a leader in a central area of mathematics

at the crossroads between algebraic geometry and automorphic forms.

I have structured my talk as follows. First, I will give a short curriculum vitae of Ngo in

the form of a table. Then I will place the result of Ngo in its historical context. Finally, I

will state a special case of his result and give some comments on his proof.

1. Short curriculum vitae of Ngô Bao Châu

• 1972 born in Hanoi, Vietnam

• 1990 moves to France

• 1992-1995 student at the ENS, rue d’Ulm

• 1993-1997 doctoral studies at U. de Paris Sud, with G. Laumon

• 1997 dissertation ‘Le lemme fondamental de Jacquet et Ye’

• 1998-2004 chargé de recherches au CNRS, at Univ. de Paris Nord

• 2004 Habilitation

• 2004– Professor U. de Paris-Sud

• 2006– IAS, Princeton

• distinctions: Clay Research Award 2004, Speaker at ICM 2006.

2. Background

The conjecture of Langlands and Shelstad lies in the field of automorphic forms. In

the beginning of the 20th century this theory was the theory of modular forms, i.e., of

holomorphic functions on the upper half plane transforming in a prescribed way under the

action of discrete groups of conformal motions. It was only in the 1950’s, under the influ-

ence of I. Gelfand and Harish-Chandra, that the theory of automorphic forms on arbitrary

semi-simple Lie groups, or semi-simple algebraic groups, was developed. In the 1960’s the

theory was dramatically refocused through the introduction by R. Langlands of his func-

toriality principle. This principle is a conjecture that stipulates correspondences between

automorphic forms on semi-simple groups which are related by a homomorphism between

their Langlands dual groups. This principle is surely among the most ingenious ideas of

the last century and constitutes the deepest statement about automorphic forms known to

us today (as a conjecture!). Langlands himself also showed how his functoriality principle
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bears upon one of the central problems of arithmetic algebraic geometry, that of calculating

the zeta function of Shimura varieties and of determining the `-adic Galois representations

defined by their cohomology.

At the same time, Langlands emphasized the importance of the Selberg trace formula as

a tool for a proof of the functoriality principle in many cases, for instance for establishing

correspondences between automorphic forms on classical groups. He also pointed to the

relevance of the Selberg trace formula for the zeta function problem.

One of the first tests of these radically new ideas is contained in the paper by J.-P.

Labesse and Langlands on SL2. At a certain point in their paper they prove an innocuous-

looking statement that later turned out to be an instance of a general phenomenon. This

result allowed them to construct a transport of certain functions between groups, dual to

the desired transport of automorphic forms.

Langlands soon recognized the importance of this statement in the general context of the

functoriality principle, and named this conjecture ‘fundamental lemma’; a more appropriate

name would have been the fundamental matching conjecture. In joint work with D. Shelstad,

he formulated a precise conjecture in the general case. Already the formulation of this

conjecture is very complicated, and, in fact, the conjecture comes in several variants (e.g.,

endoscopic version, or base change version, etc.), depending on which homomorphism on

the Langlands dual group one uses to transport automorphic forms.

In the ensuing 25 years the matching conjecture has turned out to be absolutely essen-

tial in achieving progress on the functoriality principle. Furthermore, R. Kottwitz showed

that the matching conjecture is also crucial in the zeta function problem. In spite of its

importance and its proof in special cases, the fundamental lemma resisted intense efforts

and its proof seemed out of reach. Indeed, quite a number of papers were written during

this period which were conditional on the fundamental matching conjecture.

Ngo has now finally proved this conjecture and has thereby removed this major stumbling

block to further progress. More precisely, he proved the endoscopic fundamental lemma

for unitary groups in joint work with G. Laumon. Very recently, he posted a 188 page

manuscript with a solution in the general endoscopic case.

What is the fundamental lemma about? As indicated above, it arises in the comparisons

of trace formulas. The trace formula is an identity, where on one side, the ‘geometric side’,

there appear sums of orbital integrals. The fundamental lemma is an identity between

orbital integrals of simple functions, like characteristic functions of open compact subgroups.

The field of automorphic forms, and in particular the fundamental lemma, has the rep-

utation of being impenetrable, with results only appreciable by an insider. In the rest of

my talk I want to show that this is not necessarily so. I will state a special case of the FL

theorem of Laumon/Ngo which is highly non-trivial, yet can be understood by many. And

my hope is that the beauty of the statement, if not of its proof, can be appreciated by all.

3. The theorem
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As mentioned above, the result of Laumon/Ngo concerns orbital integrals for unitary

groups. As a warm-up, let us first consider orbital integrals for GL(n):

OG
γ (1K) =

∫

Gγ\G
1K(g−1γg)

dg

dgγ
,

where we used the following notation.

• F non archimedean local field, OF the ring of integers of F

• G = GL(n, F ), K = GL(n,OF ) maximal compact open subgroup.

• 1K = the characteristic function of K

• γ ∈ G regular semi-simple, hence its centralizer Gγ is a maximal torus in G

• dg and dgγ Haar measures on G and Gγ .

This orbital integral has a combinatorial description as the cardinality of a set of lattices,

as follwos.

OG
γ = |Xγ/Λγ |.

Here:

• Xγ = {OF -lattices M ⊂ F n | γ(M) = M},

• γ is regular semi-simple, i.e., the F -subalgebra F [γ] of Mn(F ) generated by γ is

commutative semi-simple of dimension n, hence F [γ] =
∏

i∈I Ei, where (Ei)i∈I is a

finite family of finite separable extensions of F ,

• after choosing uniformizers πi = πEi
in the Ei we have F [γ]× ∼= Λγ × Kγ , where

Λγ = Z
I and Kγ =

∏

i∈I O×
Ei

is a maximal compact open subgroup of Gγ = F [γ]×,

• Λγ ⊂ Gγ acts freely on Xγ ,

• we normalized the Haar measures by vol(K,dg) = vol(Kγ ,dgγ) = 1.

Thus we see that this simple orbital integral unwinds as a cardinality, namely the number

of lattices fixed under translation by γ, taken up to the obvious homotheties commuting

with the action of γ.

Next, we want to describe the orbital integrals for unitary groups. We will use the

following general notation to describe the relevant unitary groups.

• F is a local field of equal characteristic p

• F ′ is an unramified quadratic field extension of F , with Galois group Gal(F ′/F ) =

{1, τ}.

• E is a totally ramified separable extension of F .

• Φ(α) is a non degenerate hermitian form on the F ′-vector space E ′ = E ⊗F F ′

Φ(α)(x, y) = trE′/F ′(αxτy),

(α ∈ E×).

• The discriminant of Φ(α) only depends on the valuation of α. Fix α+, resp. α− such

that Φ+
E′ = Φ(α+) has even parity of the order of the discriminant, and Φ−

E′ = Φ(α−)

has odd parity of the order of the discriminant.
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Now we can exhibit a typical endoscopic subgroup of a unitary group. Fix totally ramified

separable finite extensions E1 and E2 of F of degrees n1 and n2. Let E′
1 and E′

2 denote the

unramified quadratic field extensions E1F
′ and E2F

′ of E1 and E2.

Let E′ = E′
1 ⊕ E′

2 (a F ′-vector space of dimension n1 + n2). Endow E ′ with the non

degenerate hermitian forms

Φ+ = Φ+
E′

1

⊕ Φ+
E′

2

and

Φ− = Φ−
E′

1

⊕ Φ−
E′

2

.

These two forms are equivalent. Therefore we can find g ∈ GLF ′(E′) such that

Φ−(x, y) = Φ+(gx, gy) (∀x, y ∈ E ′).

Let us now fix γ1 ∈ E′×
1 and γ2 ∈ E′×

2 such that γ1γ
σ
1 = γ2γ

σ
2 = 1. We assume that

E′
i = F ′[γi], i.e. the minimal polynomial Pi(T ) ∈ F ′[T ] of γi has degree ni. We assume

moreover that the polynomials P1(T ) and P2(T ) are separable and prime to each other.

The diagonal element (γ1, γ2) ∈ GLF ′(E′) may be simultaneously viewed as

• an elliptic regular semi-simple element γ+ in the unitary group

G
dfn
== U(E′,Φ+) = gU(E′,Φ−)g−1 ⊂ GLF ′(E′),

• as an elliptic regular semi-simple element γ− in the unitary group

U(E′,Φ−) ⊂ GLF ′(E′)

• and as an elliptic (G,H)-regular semi-simple element δ in the endoscopic group

H = U(E′
1,Φ

+
1 ) × U(E′

2,Φ
+
2 ) ⊂ GLF ′(E′).

The elements γ+ and gγ−g−1 of G are conjugate in GLF ′(E′) but are not conjugate in

G. The conjugacy class of δ in H is equal to its stable conjugacy class. To see this, note

that an element of U(E ′
i,Φ

+
i ) ⊂ GLF ′(E′

i) is stably conjugate to γi if and only if it has the

same minimal polynomial as γi.

Define subgroups

K = FixG(OE′
1
⊕ OE′

2
), KH = FixH(OE′

1
⊕ OE′

2
) .

These are hyperspecial maximal open compact subgroups of G and H respectively.

Now we define stable and unstable orbital integrals. Let

• The κ-orbital integral,

Oκ
γ (1K) = |{L′ ⊂ E′ | L′⊥+

= L′ and (γ1, γ2)L
′ = L′}|

−|{L′ ⊂ E′ | L′⊥−

= L′ and (γ1, γ2)L
′ = L′}|

( L′’s are OF ′-lattices, (·)⊥
±

denotes the duality for such lattices with respect to the

hermitian form Φ±).
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• The stable orbital integral,

SOH
δ (1KH ) = |{M ′

1 ⊂ E′
1 | M

′⊥+

1

1 = M ′
1 and γ1M

′
1 = M ′

1}|

×|{M ′
2 ⊂ E′

2 | M
′⊥+

2

2 = M ′
2 and γ2M

′
2 = M ′

2}|.

(M ′
i ’s are OF ′-lattices and (·)⊥

+

i denotes the duality for such lattices with respect

to the hermitian form Φ+
i ).

Before we can state the main theorem, we need to define an additional numerical invariant

of the situation. Let

r = r(γ1, γ2) = val
(

Res(P1, P2)
)

,

where

Res(P1, P2) =

n1−1
∏

k1=0

n2−1
∏

k2=0

(γ
(k1)
1 − γ

(k2)
2 ) ∈ OF ′

is the resultant of the minimal polynomials P1(T ), P2(T ) ∈ F ′[T ] of γ1, γ2. Here γi =

γ
(0)
i , . . . , γ

(ni−1)
i are the roots of Pi(T ) in some algebraic closure of F ′ containing E ′

1 and

E′
2.

A special case of the theorem of Laumon and Ngo (which confirms the matching conjec-

ture of Langlands-Shelstad in this particular case) is now the following statement.

Theorem 0.1. Under the above hypotheses, assume that the characteristic p of F is bigger

than n. Then

Oκ
γ (1K) = (−q)rSOH

δ (1KH ),

where q is the number of elements in the residue field k.

As is obvious, the theorem is a purely combinatorial statement. However, the combina-

torics are quite difficult. In earlier attempts, methods of combinatorial geometry based on

Bruhat-Tits buildings were used; and these methods are successful in low-dimensional cases.

In the proof of Laumon/Ngo, the whole arsenal of modern algebraic geometry is brought

to bear on the problem. The starting point is the observation that G/K = (LG/L+G)(k)

is the set of k-points of the affine Grassmannian of G, an ind-algebraic variety of infinite

dimension. I cannot go here into this proof.

In the end, I stress that I have not given the history of the problem. Any such history

would have to mention at least the following names, which are ordered here alphabet-

ically : Chaudouard, Clozel, Goresky, Haines, Hales, Kazhdan, Kottwitz, Labesse, Lang-

lands, MacPherson, Rogawski, Saito, Schröder, Shelstad, Shintani, Waldspurger, Weissauer,

Whitehouse, . . .

And now I ask you all to join me in congratulating Ngô Bao Châu for his brilliant

achievement.


