I dare to find a proof Area of a Cyclic Quadrilateral

Brahmagupta's Theorem

A surprising but true fact: sometimes a 'low-tech' proof of a theorem is less well-known than the 'hi-tech' one. In this article we see an example of this phenomenon.

When students ask me a relevant question, I am reminded of this conversation between a mother and child. Child: "Mummy, why are some of your hairs turning grey?" Mother (trying to make best use of the question): "It is because of you, my dear. Every bad action of yours turns one of my hairs grey!" Child (innocently): "Now I know why grandmother has only grey hairs on her head!"

I try to answer relevant questions by students in an appropriate way. When students asked me for the proof of Heron's formula which they had found in their textbook (but without proof), I gave them a proof using concepts they know, similar to the one given in At Right Angles (Vol. 1, No. 1, June 2012, page 36), and suggested they look up some internet resources. Later, they told me that they had come across Brahmagupta's formula (for area of a cyclic quadrilateral), had noted its similarity to Heron's formula, but had found the proof used ideas from trigonometry. They asked whether the theorem can be proved using geometry and algebra. I took up the challenge and found such a proof. Here it is.

The theorem is due to the Indian mathematician Brahmagupta (598-670 A.D.) who lived in the central Indian province of Ujjain, serving as the head of the astronomical observatory located there. It was Brahmagupta who wrote the important and influential work Brahmasphutasiddhānta. (This is the first mathematical text to explicitly describe the arithmetic of negative numbers and of zero.)

Brahmagupta's formula gives the area of a cyclic quadrilateral (one whose vertices lie on a circle) in terms of its four sides.

Here is the statement of the theorem.
Theorem (Brahmagupta). If $A B C D$ is a cyclic quadrilateral whose side lengths are a, b, c, d, then its area σ is given by $\sigma=\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where $s=\frac{1}{2}(a+b+c+d)$ is the semi-perimeter of the quadrilateral.

Note the neat symmetry of the formula. We shall prove it using familiar concepts in plane geometry such as: (i) properties of a circle (ii) properties of similar triangles (iii) Heron's formula for the area of a triangle, according to which the area of a triangle $A B C$ with sides a, b, c is equal to $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{1}{2}(a+b+c)$ is half the perimeter of the triangle.

Before offering a proof let us pass the formula through a 'check list' of simple tests.

- Is the formula dimensionally correct? Yes; the quantity within the square root is the product of four lengths, so the quantity $\sigma=\sqrt{(s-a)(s-b)(s-c)(s-d)}$ has the unit of area.
- Is the formula symmetric in the four quantities a, b, c, d ? Yes. (It would be strange if the formula 'preferred' one quantity to another. An example of a formula which is dimensionally correct but not symmetric in a, b, c, d would be the following: $\sqrt{\left(s-\frac{1}{3} a\right)\left(s-\frac{1}{2} b\right)\left(s-\frac{1}{4} c\right)(s-d)}$.)
- Does the formula give correct results when one side shrinks to zero? Suppose that $d=0$. This means that vertices A, D of the quadrilateral have collapsed into each other, and the figure is a triangle (with vertices $A, B, C)$ rather than a quadrilateral. The Brahmagupta formula now reduces to $\sqrt{s(s-a)(s-b)(s-c)}$ which is simply Heron's formula for area of a triangle - a known result.

FIGURE 1. Here, vertices A, D have coalesced into each other (hence $d=0$)

- Does the formula yield the correct result for a rectangle, which is a special case of a cyclic quadrilateral? It does: if the rectangle has dimensions $a \times b$, then $s=a+b$, and the formula yields $\sigma=\sqrt{b \cdot a \cdot b \cdot a}=a b$, which is correct.

We see that the formula has passed all the tests; this increases our confidence in it (but of course, these steps are not a substitute for a proof). It is in general a useful exercise to subject a formula to tests like these.

A final comment: the formula gives the area of a cyclic quadrilateral in terms of its sides. Implicitly such a formula makes the claim that if the sides of a quadrilateral are fixed, and we are told that the quadrilateral is cyclic, then its area gets fixed. This is so, and it can be proved. For a general quadrilateral there cannot be a formula for area only in terms of its four sides, for the simple reason that the four sides alone cannot
fix the quadrilateral. (To see why, think of the quadrilateral as made of four jointed rods having the given lengths. Such a shape is obviously not rigid, so the area is not fixed.)

Proof of the formula

Let $A B C D$ be a cyclic quadrilateral. Since we know that the Brahmagupta formula works for rectangles, there is nothing lost by assuming that $A B C D$ is not a rectangle. In this case at least one pair of opposite sides of the quadrilateral are not parallel to each other. We shall suppose that $A D$ is not parallel to $B C$, and that lines $A D$ and $B C$ meet when extended at point P as shown in Figure 2. (Under the assumption that $A D$ is not parallel to $B C$, this will be the case if $A B<C D$. If $A B>C D$, then $A D$ and $B C$ will meet on the 'other' side of the quadrilateral. The third possibility, that $A B=C D$, cannot happen since we have assumed that $A D$ and $B C$ are not parallel to each other.)
Elementary circle geometry shows that $\triangle P A B \sim \triangle P C D$; for we have $\measuredangle P A B=\measuredangle P C D$ and $\measuredangle P B A=\measuredangle P D C$; and the angle at P is shared by the two triangles. Let a, b, c, d be the lengths of $A B, B C, C D, D A$; let u, v be the lengths of $P A, P B$; and let e, f be the lengths of the diagonals $A C, B D$ respectively (see Figure 2). Our strategy will now be the following:

Step 1: Find u, v in terms of a, b, c, d, using the similarity $\triangle P A B \sim \triangle P C D$.
Step 2: Find the area of $\triangle P A B$ using Heron's formula.
Step 3: Find the area of $\triangle P C D$, once again using the similarity $\triangle P A B \sim \triangle P C D$.
Step 4: Find the area of the quadrilateral, by subtraction.
Sounds simple, doesn't it? Here's how we execute the steps.
Steps 1 \& 2: Let the coefficient of similarity in the similarity $\triangle P A B \sim \triangle P C D$ be k. Since the sides of $\triangle P A B$ are u, v, a, while the corresponding sides of $\triangle P C D$ are $v+b, u+d, c$, we have:

$$
\begin{equation*}
v+b=k u, \quad u+d=k v, \quad c=k a \tag{1}
\end{equation*}
$$

Hence we have:

$$
\begin{equation*}
k=\frac{c}{a}, \quad u-v=\frac{b-d}{k+1}=\frac{a(b-d)}{c+a}, \quad u+v=\frac{b+d}{k-1}=\frac{a(b+d)}{c-a} \tag{2}
\end{equation*}
$$

FIGURE 2.

Therefore the semi-perimeter s^{\prime} of $\triangle P A B$ is given by:

$$
\begin{equation*}
2 s^{\prime}=a+u+v=a+\frac{a(b+d)}{c-a}=\frac{a(b+c+d-a)}{c-a} \tag{3}
\end{equation*}
$$

Hence we have the following relationship between s^{\prime} and the semi-perimeter s of quadrilateral $A B C D$:

$$
\begin{equation*}
s^{\prime}=\frac{a(s-a)}{c-a} \tag{4}
\end{equation*}
$$

To compute the area of $\triangle P A B$ we need expressions for the following:

$$
\begin{aligned}
& 2 s^{\prime}-2 a=u+v-a=\frac{a(b+d)}{c-a}-a=\frac{a(d+a+b-c)}{c-a}=\frac{2 a(s-c)}{c-a} \\
& 2 s^{\prime}-2 u=a+v-u=a-\frac{a(b-d)}{c+a}=\frac{a(c+d+a-b)}{c+a}=\frac{2 a(s-b)}{c+a} \\
& 2 s^{\prime}-2 v=a+u-v=a+\frac{a(b-d)}{c+a}=\frac{a(a+b+c-d)}{c+a}=\frac{2 a(s-d)}{c+a}
\end{aligned}
$$

Hence the area Δ^{\prime} of $\triangle P A B$ is given by

$$
\begin{equation*}
\Delta^{\prime}=\sqrt{s^{\prime}\left(s^{\prime}-a\right)\left(s^{\prime}-u\right)\left(s^{\prime}-v\right)}=\sqrt{\frac{a(s-a)}{c-a} \frac{a(s-c)}{c-a} \frac{a(s-b)}{c+a} \frac{a(s-d)}{c+a}} . \tag{5}
\end{equation*}
$$

This simplifies to:

$$
\begin{equation*}
\Delta^{\prime}=\frac{a^{2}}{c^{2}-a^{2}} \sqrt{(s-a)(s-b)(s-c)(s-d)} \tag{6}
\end{equation*}
$$

We have now found the area of $\triangle P A B$.
Step 3: The scale factor in the similarity $\triangle P A B \sim \triangle P D C$ is $k=c / a$. So the area $\Delta^{\prime \prime}$ of $\triangle P C D$ is $k^{2}=c^{2} / a^{2}$ times the above expression; that is,

$$
\begin{equation*}
\Delta^{\prime \prime}=\frac{c^{2}}{c^{2}-a^{2}} \sqrt{(s-a)(s-b)(s-c)(s-d)} \tag{7}
\end{equation*}
$$

Step 4: The area σ of quadrilateral $A B C D$ is equal to $\Delta^{\prime \prime}-\Delta^{\prime}$. This simplifies to:

$$
\begin{equation*}
\sigma=\sqrt{(s-a)(s-b)(s-c)(s-d)} \tag{8}
\end{equation*}
$$

and we have proved Brahmagupta's formula.
Exercise. Derive the following formulas for u and v :

$$
u=\frac{a(a d+b c)}{c^{2}-a^{2}}, \quad v=\frac{a(a b+c d)}{c^{2}-a^{2}}
$$

References

[1] http://www-history.mcs.st-andrews.ac.uk/Biographies/Brahmagupta.html
[2] http://en.wikipedia.org/wiki/Brahmagupta
[3] http://www.cut-the-knot.org/Generalization/Brahmagupta.shtml

SADAGOPAN RAJESH is a free-lance mathematics educator and an active member of the Association of Mathematics Teachers of India (AMTI), and a former editor of Junior Mathematician, published by AMTI. He describes himself as having "a passion for mathematics and mathematics education." He has been teaching and motivating middle- and high-school students for the past two decades. He may be contacted at sadagopan_rajesh@yahoo.co.in.

