
Maximum area of polygon 
 
Suppose I give you n sticks.  They might be of different lengths, or the 
same length, or some the same as others, etc.  Now there are lots of 
polygons you can form with those sticks.  Your job is to find the one 
with maximum (planar) area. 
 
I was given this problem by a friend at a mathematics meeting.  [For a 
mathematician a new problem is a gift––the most wonderful gift a 
friend can bestow.]  Good timing, because at math meetings there are 
always talks that lose me after a while, and it’s good to have something 
to click over in my mind.  Actually this problem was enticing enough 
that even the good talks had serious competition.   
 
The problem seems at first to be hard.  You are not given much 
information and there are lots and lots of things you can do.  Actually 
there are two different kinds of decisions you have to make.  The first is 
to put the sticks in the “right” order (sequentially) and the second is to 
determine the angles between them.   
 
It’s hard to know how to begin.  One idea is to start with a small value 
of n, and the smallest non-trivial value is n=4.  Another is to take a very 
large value of n and make the edges quite short.  That’s what I first 
thought of, because it made it feel a lot like the classic fence problem.  
You are given a fixed length of fencing and you want to make an 
enclosure of maximum area, and most people know that the answer is a 
circle.   

 
 

 
So I figured that if there were a lot of short edges, the answer might be 
that the vertices should lie in a circle.   And then I wondered if that just 
might be the answer for all polygons.  Well, maybe that was a bit much 
to expect.  On the other hand, the problem had been given to me by a 
mathematician and mathematicians like to known by the quality of the 
problems they talk about, and so this was likely a pretty nice problem, 
and circles are pretty nice too.   So I kept that circle idea in the back of 
my mind.   
 
I began by thinking about the order of the edges.  Because that seemed 
to make things quite complicated, and I was hoping something simple 
would appear.   
 
Could I imagine a situation in which I could increase the area by 
rearranging the order of the sides?  As a particular special case––could 
I increase the area by permuting two adjacent sides?  [Such a 
permutation is called a transposition.] 
 
Well the answer to that is clearly no.  If I take any polygon, and reverse 
the order of two adjacent sides, leaving the other sides fixed in place, 
the area remains the same.  That insight is a real breakthrough.  For 
example, if I have a 5-sided polygon with sides in order abcdefg, and I 
know the maximum area of that, I don’t have to worry about bacdefg––
it must have the same maximum area.   
 

polygon area 
cd
f
 a

b
e

g
b

a

1



What about other permutations?  What about dbgeafc?  Well it’s not 
hard to argue that any permutation can be obtained by a sequence of 
transpositions of adjacent terms.  For example, starting with abcdefg, 
use a sequence of adjacent transpositions to put d first, then a sequence 
to put b next, then a sequence to put g next, etc.  It follows from this 
that the area cannot be increased by any permutation of the edges.     
 
That’s a big step.  It means we don’t have to worry about the order of 
the edges.  We can take any particular ordering of the edges and work 
with that.  So we are left with the question of what the angles should 
be.   
 
 
The case n=4 
Perhaps this is the moment to focus on the case n=4.  Take a 4-sided 
polygon abcd.  What are the possible shapes we can have for fixed side 
lengths a, b, c and d?  Well we have one degree of freedom.  For 
example, if we let x be the length of the diagonal between the a-b sides 
and the c-d sides, then the area A = A(x) of the quadrilateral is 
determined by x.    
 

So the problem becomes: given a, b, c and d, 
choose x to maximize A(x). 

 
How might we do that?  Well A is the sum of the areas of the two 
triangles and we know the side lengths of each triangle.  Is there a 
formula for the area of a triangle in terms of the lengths of the three 
sides?   
 
 
Yes there is.  It’s called Heron’s formula.  For the upper triangle with 
sides a, b and x, we let the semiperimeter be s:  

s  =  
2

xba ++  

and then the area is: 

Area = ))()(( xsbsass −−−  

Do the same for the lower triangle––if the semiperimeter is t: 

t  =  
2

xdc ++  

then the area of the entire quadrilateral is: 

A(x)  = ))()(())()(( xtdtcttxsbsass −−−+−−−  

and we want to choose x to make this a maximum.  The way to do this 
is to set the x-derivative of this to be zero.  But all this is not what I did.   
 
There are a couple of reasons for that.  One is that I did not really want 
to differentiate that fairly complex expression with respect to x.  [Note 
that s and t also depend on x, so we have a bit of a chain-rule to 
navigate.]  And even if I did, could I solve the result for x?  And even if 
I could do that, where would I then be?   
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But there’s a much more significant reason I did not want to go the 
Heron’s formula route.  I still had the fence problem in mind and I was 
hoping that the maximum area would be found when the vertices of the 
quadrilateral lay in a circle.  Now a quadrilateral with that property is 
called cyclic, and a standard theorem says that a quadrilateral is cyclic 
when opposite angles add to 180°.  In the diagram at the right, that 
means that θ + φ = 180.  So that was the condition I was gunning for, 
and therefore I wanted angles to appear in my analysis.  And Heron’s 
formula doesn’t use angles.   
 
 
Okay.  So what I want is a formula for the area of a triangle that 
involves one of the angles.  Since a and b are the given side lengths, 
we’ll look for a formula that involves a and b and the contained angle 
θ.  [It’s clear enough that the triangle––and therefore its area––are 
determined by these three quantities.]   
 
That’s not so hard to do.  Taking b to be the base, the altitude h of the 
triangle will satisfy: 

h/a = sin(180–θ). 

and since sin(180–θ) = sinθ: 

h = asinθ. 

Finally, the area is one-half base times height:  

Area = 
2
sinθab . 

As an immediate check on this formula, if θ=0 we should get a zero 
area (and we do) and if θ=90, a will be an altitude and the area should 
be ab/2 (and it is).   
 
Now the problem becomes: choose θ and φ to maximize the total area: 

A(θ, φ)  =  A1 + A2  =  
2
sin

2
sin φθ cdab

+  

The trouble with this formulation is that it looks as if θ and φ are two 
independent variables, but they’re not.  If we choose one of them, the 
other is determined, so there’s really only one variable here.  We could 
try to find the relationship between them (hence express one of them in 
terms of the other) but in fact it’s geometrically (and intuitively) nicer 
to work (as before) with the single variable x.  That is (for fixed a, b, c 
and d), we will regard θ and φ as functions of x: 

θ  =  θ(x) 
φ  =  φ(x) 

These in turn determine the areas of the two triangles and if we add 
those together we get A.   

x {φ 
A

A2  
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Finding x to maximize A 
The formula is: 
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A(x)  =  
2

)(sin xab θ  + 
2

)(sin xcd φ . 

As before, to find the value of x which maximizes A, we set the 
derivative dA/dx equal to zero.  Using the chain rule: 

dx
dA   =  

dx
dab θθ

2
cos  + 

dx
dcd φφ

2
cos   =  0 

Now we need dθ/dx and dφ/dx.   Let’s do the first.  We can write x as a 
function of θ using the cosine law: 

x2  =  a2  +  b2  –  2abcosθ.   

Now differentiate with respect to x (treating θ as a function of x): 

2x  =  2absinθ (dθ/dx) 

Solve for dθ/dx: 

θ
θ

sinab
x

dx
d

=  

Similarly: 

φ
φ

sincd
x

dx
d

= . 

 
If we put these into the equation for dA/dx, we get: 

dx
dA   =  

θ
θ

sin2
cos

ab
xab  + 

φ
φ

sin2
cos

cd
xcd   =  0 

θtan2
x  + 

φtan2
x   =  0 

tanθ  =  – tanφ. 

Now when to two angles (in quadrants 1 and 2) have tangents which 
are negatives of one another?––when they add to 180°.  Thus: 

θ + φ = 180. 

That’s the result we were after.  It tells us that the quadrilateral is 
cyclic. 
 
 
Now it’s time to move on to more sides.  One idea is to use an 
inductive approach.  If we cut the polygon with a chord, we have two 
polygons each with fewer sides than the original.  If we know the result 
for these (that the vertices have to lie on a circle) maybe we can put 
these together to get the result for the original.   
 
It’s a good idea and it works.  There are lots of ways to do it, though, 
and it turns out to be a bit of a challenge (at least it was for me) to find 
one that feels “right.”  Actually the nicest one I know of is not a 
traditional induction at all, but goes directly from n=4 to the general 
result.  Take some time to play with this a bit. 
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It might be easier to take one step at a time.  Try to prove the n=5 
result.  We’ve done four sides.  Can you extend that result to do five? 
 A

B

C D

E

The case n=5. 
Suppose we have a pentagon ABCDE and the vertices have been 
positioned to give maximal area.  I show that the vertices must lie on a 
circle.  Now the three vertices ABC determine a unique circle, so it’s a 
question of showing the other two must lie on this circle.   
 
 
Take D.  Draw the chord AD.   Now consider the polygon ABCD with 
fixed side lengths.  I claim that it must be of maximum area.  Indeed, if 
this were not so, I could increase the area by adjusting the position of B 
and C leaving A and D in position (since the distance AD won’t 
change) and this would increase the area of the original polygon 
ABCDE.  Thus, if ABCD is of maximal area, our n=4 result tells us 
that ABCD is cyclic C and therefore D lies on the circle determined by 
ABC.   
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A similar argument works for E, using the chord CE.   
 
 
 
The general case. 
As I said there are many ways to generalize the above argument to any 
value of n.  Here is the most elegant I have encountered.   
 
Suppose we have an n-gon with fixed side lengths whose vertices have 
been positioned to give maximal area.  Take three adjacent vertices 
ABC.  These determine a unique circle (it’s easy to argue that they 
cannot lie in a straight line), and I show that all other vertices must lie 
on this circle.  Take any other vertex X and consider the polygon 
ABCX with fixed side lengths.  I claim that it must be of maximum 
area.  Indeed, if this were not so, I could increase the area by adjusting 
the position of the vertices.  Since AX and CX won’t change in length 
in this adjustment, the other vertices can be “attached” to AX and CX 
giving us a new n-gon with the original side lengths but of greater area.  
That’s a contradiction, so ABCX must be of maximal area.  By the n=4 
result, ABCX is cyclic and X must lie on the circle determined by 
ABC.  And we are finished. 

A B

C

some
vertices

some
vertices

X

 
 
 
 
 
 
 

polygon area 5


	The case n=4

