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The Scope of the Course 1

Topics

Topic I: The Framework of Multiuser Detection
Multiuser detection as a canonical application in wireless communications

Topic II: The Two Theories
From classical random matrix theory to free probability theory

Topic III: The Return of Physics
Random matrix theory as a special case of statistical mechanics
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Chapter 1:

Multiuser Detection
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The Multiple–Access Scheme

Definition 1 A multiple–access scheme is an algorithm that defines how to generate
the signals x1(t), x2(t), . . . , xK(t) corresponding to user 1 to K from the discrete–time
data streams b1[µ], b2[µ], . . . , bK[µ] ∈ A.

In general, xk(t) depends on the data streams of all users.

In practice, xk(t) often depends on the data stream of user k only.

The symbol alphabet A is determined by the modulation scheme that is used, e.g. A = {+1,−1} for

binary phase shift keying.
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Linear Multiple–Access

Definition 2 A multiple–access scheme is called linear if and only if the signal xk(t)
is a linear combination of the data stream bk[µ] for all users k = 1 . . . K.

This means

xk(t) =
+∞∑

µ=−∞
gk,µ(t) ∗ bk[µ] δ(t− µTs)

for some symbol waveforms gk,µ(t) with Ts denoting the symbol clock cycle.

In practice, symbol waveforms are often invariant to discrete time, i.e.

gk,µ(t) = gk(t) ∀µ.
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The Chips

In practice, the symbol waveform can often be split up into a chip sequence and a chip
waveform

gk,µ(t) =
+∞∑

ν=−∞
ψk(t) ∗ sk,µ[ν] δ(t− νTc) .

ν: chip time

Tc: chip clock cycle

ψk(t): chip waveform

sk,µ[ν]: chip sequence

In practice, often

ψk(t) = ψ(t) ∀ k

sk,µ[ν] = sk[ν] ∀µ

Note that chip-asynchronism can be modelled by different chip waveforms amongst the
users.
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Gaussian Multiple–Access Channel

Two users:

Channel is additive.

Noise is additive, white, and Gaussian distributed.

Noise is independent of X1 and X2.
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Block Structure of Linear CDMA

kxxkb N
k
(t)k

y(t)
k,

s

n(t)

[µ] ψ
[ν] (t)

µ[ν]

• Upsampling

• Filtering

• Pulse shaping
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CDMA with ISI

Construct a set of virtual spreading sequences which is the convolution of the actual
spreading sequences and the impulse responses of the channels.

sk[ν] ∗ hk[ν] = s̃k[ν]

CDMA with ISI and the actual sequences is equivalent to CDMA without ISI and the
virtual sequences.

Though, the actual sequences can be designed orthogonal, the virtual sequences cannot,
unless all channels are known to all users.

For purpose of analysis, interchip interference is often neglected and lost orthogonality
is taken into account by the random spreading assumption.
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Discrete–Time Channel

If the chip waveforms are identical for all users, i.e. ψk(t) = ψ(t), and Ts is a multiple
of Tc, there exists a sufficient discrete–time description

y[ν] = n[ν] +
K∑

k=1

xk[ν]

with

xk[ν] =
+∞∑

µ=−∞
sk,µ[ν −Nµ]bk[µ]

where

N =
Ts
Tc

is called the spreading factor (spreading gain, processing gain).

The discrete–time noise process n[ν] is white, if ψ(t) is a
√
Nyquist waveform.
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Discrete–Time Vector Channel

Write sequences as vectors:
















y[0]

y[1]
...

y[N−1]

y[N+0]

y[N+1]
...

















︸ ︷︷ ︸
y

=

















n[0]

n[1]
...

n[N−1]

n[N+0]

n[N+1]
...

















︸ ︷︷ ︸
n

+

















s1,0[0] . . . sK,0[0] s1,1[0−N ] . . . sK,1[0−N ] . . .

s1,0[1] . . . sK,0[1] s1,1[1−N ] . . . sK,1[1−N ] . . .
... . . . ... ... . . . ...

s1,0[N−1] . . . sK,0[N−1] s1,1[−1] . . . sK,1[−1] . . .

s1,0[N+0] . . . sK,0[N+0] s1,1[0] . . . sK,1[0] . . .

s1,0[N+1] . . . sK,0[N+1] s1,1[1] . . . sK,1[1] . . .
... . . . ... ... . . . ... . . .

















︸ ︷︷ ︸

S

















b1[0]
...

bK [0]

b1[1]
...

bK [1]
...

















︸ ︷︷ ︸

b

Equation accounts for asynchronous (but chip–synchronous) users as well as sequences
with more than N non–zero chips.
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Memoryless and Synchronous Case

Assume
sk,µ[ν] = 0 ∀ ν < 0, ν ≥ N, k, µ.

Then, the spreading matrix S becomes block–diagonal:
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S[0] 0

0 S[1] 0
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b[0]

b[1]
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y[µ] = n[µ] + S[µ] b[µ]

N × 1 N × 1 N ×K K × 1

Notation:

Discrete time runs in chips and symbols for scalars and vectors (matrices), respectively.
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Orthogonal Multiple–Access

Necessary and sufficient condition for orthogonal signals in discrete time:

SHS is diagonal

Time–division multiple–access:

S is (weighted) permutation matrix

Orthogonal frequency–division multiplexing:

S[µ] is (part of) FFT matrix

Orthogonal code–division multiple–access:

S[µ] is (part of) Walsh–Hadamard matrix
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Analog Frequency Multiplex

Signals are orthogonal for arbitrary time shifts.

Spreading sequences of different users are the impulse responses of non-overlapping
bandpass filters.

Spreading sequences are much longer than the spreading factor.

Disadvantages:

• Loss of radio spectrum due to transfer function with finite slope.

• Sensitive to multipath fading.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



1 Multiuser Detection 16

Frequency Hopping CDMA

Form of analog frequency multiplex which frequently changes the spreading sequence.

FH-CDMA was not invented for the purpose of multiplex, but to avoid jamming in
military applications. It is the first form of CDMA reported in literature.

In 1908, Jonathan Zenneck references the invention to the
German company Telefunken. FH was used by the German
military in World War I.

Reinventions:

1926: Otto B. Blackwell, De Loss K. Martin, and Gilbert S. Vernam

were granted U.S. Patent 1,598,673

1929: Leonard Danilewicz in Poland

1932: Willem Broertjes was granted U.S. Patent 1,869,659

1942: Hedy Kiesler Markey and George Antheil were granted U.S.

Patent 2,292,387.
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In 1908, Jonathan Zenneck references the invention to the
German company Telefunken. FH was used by the German
military in World War I.

Reinventions:

1926: Otto B. Blackwell, De Loss K. Martin, and Gilbert S. Vernam

were granted U.S. Patent 1,598,673

1929: Leonard Danilewicz in Poland

1932: Willem Broertjes was granted U.S. Patent 1,869,659

1942: Hedy Kiesler Markey and George Antheil were granted U.S.

Patent 2,292,387.

Hedy Kiesler Markey in 1938
born Hedwig Eva Maria Kiesler
known as actress Hedy Lamarr
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Correlated Waveforms

Why correlated waveforms?

• More users than spreading factor, i.e. K > N .

• No synchronism required.

• Some channels destroy orthogonality anyway.

Popular design of spreading sequences:

• Pseudo–noise sequences, e.g. maximum-length sequences

• Gold sequences

• Kasami sequences
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Random Waveforms

Each spreading sequence is chosen randomly.

Popular model for purpose of performance analysis.

In the large–system limit, i.e. K,N → ∞, analytical expressions are known for the
singular values of the spreading matrix S.

Exist for both K > N and K ≤ N .

The marginal probability distribution of the chips hardly matters. It is irrelevant in the
large system limit in many cases.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



1 Multiuser Detection 19

Multi–User Detection

The problem:

• Given the observation y(t), find the most likely transmitted sequence of data
vectors b[µ].

• Special case of a vector–classification problem

• In general, np–complete, i.e. it belongs to a class of problems for which no
algorithm is known whose complexity scales as a polynomial function of K.

• In particular cases, multi–user detection is not np–complete, e.g. orthogonal
sequences or maximum-length sequences.
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Sufficient Discrete–Time Statistics

Theorem 1 The outputs of a bank of K linear filters matched to the K symbol
waveforms form a set of sufficient statistics for estimation of all users’ data in AWGN.
If the chip waveform is unique to all users and

√
Nyquist, they can be sampled at the

symbol rate.

v = A−1SHy

= A−1SHSb +A−1SHn

The matrix A is arbitrary, but invertible.

Note that a unique chip waveform implicitly assumes chip-synchronous reception.
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Memoryless and Synchronous Case

Unless stated otherwise, all further considerations assume this case.

v[µ] = A−H[µ]SH[µ]S[µ]b[µ] +A−H[µ]SH[µ]n[µ]

Define the cross–correlation matrix

R[µ]
△
= A−H[µ]SH[µ]S[µ]A−1[µ].

Then, the CDMA channel is canonically described by

v[µ] = R[µ]A[µ]b[µ] +A−H[µ]SH[µ]n[µ].
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Further Assumptions

Unless stated otherwise, all further considerations are conditioned on the following
assumptions:

• All random processes are ergodic.

• The data symbols are statistically independent in both µ and k.

• The users have power

A2 △
= diag

(
SHS

)
.

• The noise power is σ2n.

The dependency on µ is not always stated explicitly.
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Optimum Receiver

Definition 3 The jointly optimum receiver minimizes

Pr
(

b̂ 6= b

∣
∣
∣v
)

.

Definition 4 The individually optimum receiver minimizes

Pr
(

b̂k 6= bk

∣
∣
∣v
)

∀ k.

Lemma 1 The individually optimum receiver minimizes

K∑

k=1

Pr
(

b̂k 6= bk

∣
∣
∣v
)

.
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Output Distribution

The probability density function (PDF) of the sufficient statistics given b

pv|b(v, b) =
exp
(

− 1
σ2n
(v −RAb)HR−1 (v −RAb)

)

(πσ2n)
K detR

is actually the distribution of the matched–filtered noise.

Joint PDF of sufficient statistics and data is

pv,b(v, b) = pv|b(v, b)pb(b)

with
pb(b) =

∑

b̃∈AK

Pr
(

b̃
)

δ
(

b− b̃
)

.
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Jointly Optimum A–Posteriori Detection

Bayesian law gives:

pb|v(v, b) =
pv|b(v, b)pb(b)

∫

pv|b
(

v, b̃
)

pb

(

b̃
)

db̃

Denominator is irrelevant for detection:

argmax
b

pb|v(v, b) = argmax
b

pv|b(v, b)pb(b)

= argmax
b∈AK

pv|b(v, b)Pr(b)

= argmax
b∈AK

− 1

σ2n
(v −RAb)HR−1 (v −RAb) + log Pr(b)

= argmin
b∈AK

bHSHSb− 2ℜvHAb− σ2nlog Pr(b)
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Individually Optimum A–Posteriori Detection

Bayesian law gives:

pbk|v(v, bk) =

∫

pv|b
(

v, b̃
)

pb

(

b̃
)∏

i 6=k
db̃i

∫

pv|b
(

v, b̃
)

pb

(

b̃
)

db̃

Denominator is irrelevant for detection:

argmax
bk

pbk|v(v, bk) = argmax
bk

∫

pv|b
(

v, b̃
)

pb

(

b̃
)∏

i 6=k
db̃i

= argmax
bk∈A

∑

b̃∈AK :b̃k=bk

pv|b
(

v, b̃
)

Pr
(

b̃
)
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Maximum Likelihood Detection

If all bits are transmitted equally likely, i.e.

Pr(b) = |A|−K

the detection rules slightly simplifies:

• jointly optimum detection

argmin
b∈AK

bHSHSb− 2ℜvHAb

• individually optimum detection

argmax
bk∈A

∑

b̃∈AK :b̃k=bk

pv|b
(

v, b̃
)
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Linear Multi–User Detection

Since the optimum detectors are np–complete, suboptimum approaches are frequently
used in practice.

Definition 5 A multiuser detector is called linear if its estimate is formed by component–
wise quantization of a linear transform on the sufficient statistics.

b̂ = quant
A

(Lv)

with
quant

A
(x)

△
= argmin

x̃∈A
|x− x̃|
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Single–User Matched Filter

The SUMF (conventional detector) ignores the presence of multi–user interference:

L = A−1

• Used for sake of simplicity

• Poor performance
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Decorrelator

The decorrelator follows from the approximation

AK ≈ C
K

and equal prior probability for all symbols

pb(b) = lim
ξ→∞

K∏

k=1

{

(πξ)−1 for |bk| < ξ

0 otherwise
.

It is given as
L = A−1R−1.

For signal sets with constant amplitude, it does not depend on the users’ powers.
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LMMSE Detector
The LMMSE detector follows from the approximation

AK ≈ C
K

and a Gaussian density for the transmitted symbols

pb(b) = π−K exp
(
−bHb

)

It minimizes the mean squared error

E
(

b− b̂
)H (

b− b̂
)

among all linear detectors and is given by the filter matrix

L = A−1
(
R + σ2nA

−2
)−1

.

For vanishing noise, it becomes identical to the decorrelator.

For overwhelming noise, it becomes identical to the SUMF.
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Unbiased LMMSE Detector

The bias problem:
For orthogonal sequences, the LMMSE detector is worse than the SUMF.

This is overcome by constraining the LMMSE detector to

diag (LRA) = I.

This leads to the detector

L = diag−1
(
A2 + σ2nR

−1
)−1

A−3
(
R + σ2nA

−2
)−1

For signal sets with constant amplitude, the bias problem does not occur.
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Multi-User Efficiency

Signal−to−noise ratio →

B
it 

er
ro

r 
pr

ob
ab

ili
ty

 →

with interference 

without interference 

η 

Multiuser efficiency measures
uncoded error probability.

η ∈ [0; 1]

(−∞ dB; 0 dB]
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Multi-User Efficiency (cont’d)

Definition 6 Let Pk(σ
2
n,R, ’det’) denote the uncoded symbol error rate of user k

after detection with detector ’det’ and signature sequences with covariance matrix R.
Then, the number ηk ensuring

Pk(σ
2
n,R, ’det’) = Pk(σ

2
n/ηk, I, ’MAP’)

is called multi–user efficiency of user k with detector ’det’.

The multi–user efficiency lies within

ηk ∈ [0; 1].

The asymptotic multi–user efficiency is given as

η̃k = lim
σn→0

ηk.

Verdú introduced the notion of multiuser efficiency in 1986.

Sergio Verdú
born in Barcelona in 1958
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The Decorrelator

Assume R is invertible:
The decorrelator completely suppresses all interference, but enhances the AWGN.

ηk =
1

(
R−1

)

kk

Since, multi–user efficiency is independent of AWGN and interfering users’ powers:

η̃k = ηk

Unless, the cross–correlation matrix is singular, multi–user efficiency is non–zero.
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The Decorrelator (cont’d)

Theorem 2 Assume that the spreading sequences are i.i. complex Gaussian distributed,
and normalized such that A = I, then the pdf of the multi–user efficiency is given by
[9]

pη(η) =

{
(N−3)!

(N−K−2)!(K−2)! η
N−K(1− η)K−2 for 0 ≤ η ≤ 1

0 otherwise.

Mean and variance are

E η = 1− K − 1

N
Var η =

(N −K + 1)(K − 1)

N 2(N + 1)
.

For N → ∞, η becomes deterministic.
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The LMMSE Detector

The LMMSE detector maximizes the signal-to-interference-and-noise ratio (SINR) among
all linear detectors.

SINRk = sHk
(
SSH − sks

H
k + σ2nI

)−1
sk =

sHk
(
SSH + σ2nI

)−1
sk

1− sHk
(
SSH + σ2nI

)−1
sk

Multi–user efficiency is approximately

ηk ≈ SINRk
σ2n
A2
k

.

This is only an approximation as the remaining interference plus noise is, in general,
not exactly Gaussian distributed.
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The LMMSE Detector (cont’d)

Consider the eigenvalue decomposition

SSH − sks
H
k = V ΛV H.

Then,
SINRk = s̃Hk

(
Λ + σ2nI

)−1
s̃k

with
s̃k = V Hsk

The performance of the LMMSE detector depends on the eigenvalue distribution of
SSH − sks

H
k and the transformed spreading sequence s̃k.

The aim of this course is to study the properties of the two for several wireless com-
munication channels.
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Chapter 2:

Random Matrix Theory

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



2 Random Matrix Theory 40

Eigen- vs. Singular Values

Singular value decomposition:

∀S ∈ C
N×K ∃ V ∈ C

N×N ,U ∈ C
K×K,Σ ∈

(
R

+
0

)N×K
:

S = V ΣU ,

V HV = I,UUH = I,

(Σ)i,j = 0∀i 6= j

Thus,

SHS = UH
Σ

T
ΣU

SSH = V ΣΣ
TV H

The eigenvalues of a covariance matrix are the squared singular values of the respective
spreading matrix.
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An Experiment with MATLAB

>>randn(’state’,0);

>>A=randn(24,24)/sqrt(24);

>>a=svd(A);

>>plot(sort(a),(1:24)/24)
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>>B=rand(24,24)/sqrt(2);

>>b=svd(B);

>>plot(sort(b),(1:24)/24)

>>rand(’state’,0);

>>C=sign(rand(24,24)-.5)/sqrt(24);

>>c=svd(C);

>>plot(sort(c),(1:24)/24)
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Change svd(·) to sum(·).
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Observations

• In both cases, the limit distribution did not depend on the distribution of the
matrix entries.

• For svd(·) convergence is faster than for sum(·).

• The limit distribution depends on the projection

f : R
K×K 7→ R

K
.
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The Two Theories

Random Matrix Theory (RMT) considers the limit distributions for various
projection functions f and various joint distributions of the matrix elements.Free Probability Theory (FPT) considers the large random matrix as a single
random operator and develops a probability theory for non-commutative opera-
tor algebras.

The two theories are very relevant for communications engineering.
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Convergence of Random Variables
Definition 7 Given a sequence of random variables X1, X2, . . . , we say that the
sequence converges to X

1. in distribution (also called in law) if

lim
n→∞

FXn(x) = FX(x) ∀x ∈ R

2. in probability if

lim
n→∞

Pr {|Xn −X| > ǫ} = 0 ∀ǫ > 0,

3. in rth mean if
lim
n→∞E {|Xn −X|r} = 0,

4. almost surely (also called with probability 1) if

Pr
{

lim
n→∞

Xn = X
}

= 1.
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Convergence of Random Variables (cont’d)

Theorem 3 Almost sure convergence implies convergence in probability.

Theorem 4 Convergence in any mean r > s implies convergence in any mean s ≥ 1.

Theorem 5 Convergence in any positive mean implies convergence in probability.

Theorem 6 Convergence in probability implies convergence in distribution.
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Semi-Circle Law (Wigner 1955)

For a K × K random matrix H with i.i.d. zero mean elements of variance 1
K
, the

empirical distribution of the eigenvalues of 1√
2
(H +HH) converges almost surely to a

deterministic limit distribution with density

f(x) =
1

2π

√

4− x2 x ∈ (−2; +2)

as K → ∞.

Eugene Paul Wigner
born in Budapest in 1902.
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Quarter Circle Law

For aK×K random matrix with i.i.d. elements of variance 1
K , the empirical distribution

of the singular values converges almost surely to a deterministic limit distribution with
density

f(x) =
1

π

√

4− x2 x ∈ [0; 2)

as K → ∞.
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Full Circle Law

For a K × K random matrix with i.i.d. zero-mean elements of variance 1
K , the em-

pirical distribution of the eigenvalues converges almost surely to a deterministic limit
distribution with density

f(z) =
1

π
|z| < 1

as K → ∞.

Uniform distribution on the complex unit disc.
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Haar Distribution

For a K × K random matrix H with i.i.d. zero-mean Gaussian elements of finite
variance, the empirical distribution of the eigenvalues of T = H(HHH)−

1
2 converges

almost surely to a deterministic limit distribution with density

f(z) =
1

2π
|z| = 1

as K → ∞.

Uniform distribution on the complex unit circle.

The matrix T is uniformly distributed on the set of unitary random matrices.
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Inverse Semi-Circle Law

Let the K ×K random matrix H be composed of i.i.d. zero-mean Gaussian elements
of finite variance, and define the matrix

T = H(HHH)−
1
2 .

Moreover, let
Y = T + T H.

Then, the empirical distribution of the eigenvalues of Y converges almost surely to a
non-random distribution function as K → ∞ whose density is given by

f(x) =
1

π

1√
4− x2

x ∈ (−2; +2)
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Deformed Quarter Circle Law

For an N ×K, N < K random matrix with i.i.d. elements of variance 1
N
, the empir-

ical distribution of the singular values converges almost surely to a deterministic limit
distribution with density

f(x) =

√

4α− (x2 − 1− α)2

πx
x ∈ (

√
α− 1;

√
α + 1)

as K = αN → ∞.

α=1 α=8 α=4 α=2 
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Deformed Quarter Circle Law (eigenvalues)

As K = αN → ∞:

pλ(x) =







√
(

x− (1−√
α)

2
)(

(1 +
√
α)

2 − x
)

2παx
for (1−√

α)
2
< x < (1 +

√
α)

2

(

1− 1

α

){

0 for α ≤ 1

δ(x) for α > 1
otherwise

This appears to be inconsistent with page 52. What is different here?
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Deformed Quarter Circle Law (eigenvalues)

α
=

0.05

K,N → ∞
but α

△
= K

N fixedα
=
0.1

α
=
0.2

α
=
0.4α = 0.7

α = 1
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Convergence Properties of Eigenvectors

Let H be an N ×K random matrix with i.i.d. real-valued random entries with zero
mean and all positive moments bounded from above. Let the orthogonal matrix U be
defined by the eigenvalue decomposition

UT
ΛU = HTH.

Let x ∈ R
N be an arbitrary vector with unit Euclidean norm and the random vector

y = [y1, . . . , yN ]
T be defined as

y = Ux.

Then, as K = αN → ∞,
⌈tN⌉
∑

k=1

y2k −→ t

almost surely for every t ∈ [0; 1].

This result is like a law of large numbers for the components of any linear combination
of the components of the eigenvectors of HTH .
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The Stieltjes Transform

The densities for most other projections cannot be given in explicit form. They are
more easily characterized in terms of their Stieltjes transforms

G(s)
△
=

∫
f(x)dx

x− s
ℑ(s) > 0.

Stieltjes Inversion Formula:

f(x) = lim
y→0+

1

π
ℑ [G(x + jy)]
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The Moments Problem

In 1894, Stieltjes looked at the problem of finding a distribution given its moments

mn =

∫

xndF(x).

He introduced the power series

G(s) = −
k∑

n=0

mns
−n−1 + o

(
s−k−1

)

of the complex variable s and found the Stieltjes inversion for-
mula as the solution to the moments problem.

Thomas Joannes Stieltjes
born in Zwolle in 1856
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Some Stieltjes Transforms

identity : G(s) =
1

1− s

semi-circle : G(s) =
s

2

√

1− 4

s2
− s

2

quarter circle : G(s) =
2
√
4− s2

π
ln

(

2 +
√
4− s2

−s

)

− s

2
− 2

π

(quarter circle)2 : G(s) =
1

2

√

1− 4

s
− 1

2

(def. quarter circle)2 : G(s) =

√

(1− α)2

4s2
− 1 + α

2s
+

1

4
− 1

2
− 1− α

2s

inverse semi-circle : G(s) =
1√
s2 − 4

projector : G(s) =
α

1− s
+
1− α

−s =
1− α− s

s2 − s
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Convergence of the LMMSE-SINR

Consider the linear MMSE detector studied in Chapter 1 with a real-valued spreading
matrix S.

SINRk = s̃Tk
(
Λ + σ2I

)−1
s̃k.

We have the almost sure convergence

s̃Tk
(
Λ + σ2I

)−1
s̃k −→ Tr

(
Λ + σ2I

)−1
.

From the deformed quarter circle law, we get the almost sure identity

Tr
(
σ2I +Λ

)−1
= GΛ

(
−σ2

)
.

Thus,

SINRk −→
(1− α)P

2σ2
− 1

2
+

√

(1− α)2P 2

4σ4
+

(1 + α)P

2σ2
+
1

4
.

The SINR is almost surely identical for all users.
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Products of Random Matrices

Let the random matrixH fulfill the same conditions as needed for the deformed quarter
circle law. Moreover, let X = XH be an N × N Hermitian matrix, independent of
H , with an empirical eigenvalue distribution converging almost surely in distribution
to a distribution function PX(x) as N → ∞. Then, almost surely, the eigenvalue
distribution of the matrix product

P = HHHX

converges in distribution, as K,N → ∞, but α = K/N fixed, to a nonrandom
distribution function whose Stieltjes transform satisfies

GP (s) =

∫
dPX(x)

x
(
1− α− αsGP (s)

)
− s

for ℑs > 0.
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Sums of Random Matrices

Let the random matrixH fulfill the same conditions as needed for the deformed quarter
circle law. LetX = XH be anN×N Hermitian matrix with an eigenvalue distribution
function converging weakly to PX(x) almost surely. Let Y = diag (y1, . . . , yK) be a
K ×K diagonal matrix and the empirical distribution function of {y1, . . . , yK} ∈ RK

converge almost surely in distribution to a probability distribution function PY (x) as
K → ∞. Moreover, let the matrices H,X,Y be jointly independent. Then, almost
surely, the empirical eigenvalue distribution of the random matrix

S = X +HY HH

converges weakly, as K,N → ∞, but α = K/N fixed, to the unique nonrandom
distribution function whose Stieltjes transform satisfies

GS(s) = GX

(

s− α

∫
y dPY (y)

1 + yGS(s)

)

for ℑs > 0.
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LMMSE Detector with Random Spreading

Theorem 7 Let the chips of any user be i.i.d. zero–mean random variables with finite
sixth moment and the sequences of all users jointly independent. Then, the multi–user
efficiencies of all users converge almost surely, as N,K → ∞ but

α
△
=
K

N

fixed, to the deterministic unique positive solution of the fixed–point equation

1

ηLMMSE
= 1 + α

∫
x

σ2n + ηLMMSE x
dPA2(x),

if the powers of the users converge weakly to the limit distribution PA2(x).

The multi–user efficiency in large systems is idential for all users regardless of their
powers.
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Girko’s Law

Let the N × K random matrix H be composed of independent entries (H)ck with
zero-mean and variances w2

ck/N such that all w2
ck are uniformly bounded from above.

Assume that the empirical joint distribution of variances w2 : [0, 1]2 7→ R defined by
w2(x, y) = w2

ck for c, k satisfying

c

N
≤ x ≤ c + 1

N
and

k

K
≤ y ≤ k + 1

K

converges to a bounded joint limit distribution w2(x, y) as K = αN → ∞. Then, for
each a, b ∈ [0, 1], a < b, and ℑ(s) > 0

1

N

⌈bN⌉
∑

c=⌈aN⌉

(
HHH − sI

)−1

cc
−→

b∫

a

g(x, s)dx

where convergence is in probability and the function g(x, s) is a chip-dependent Stieltjes
transform.
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Girko’s Law (cont’d)

The function g(x, s) satisfies the fixed point equation

g(x, s) =







−s + α

1∫

0

w2(x, y) dy

1 +
1∫

0

g(x′, s)w2(x′, y) dx′








−1

for every x ∈ [0, 1]. The solution always exists and is unique in the class of functions
g(x, s) ≥ 0, analytic for ℑ(s) > 0 and continuous on x ∈ [0, 1].

Moreover, almost surely, the empirical eigenvalue distribution of HHH converges
weakly to a limiting distribution whose Stieltjes transform is given by

GHHH(s) =

1∫

0

g(x, s) dx.

Girko has also studied more general cases of random matrices with statistically depended entries that

are relevant in communications engineering, but they exceed the introductory scope of this course.
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Unitary Invariance

Definition 8 A Hermitian random matrix X is called unitarily invariant, if the joint
distributions of the entries of X and UXUH are identical for any unitary matrix U

that is independent of X .

Definition 9 A rectangular random matrixX is called bi-unitarily invariant, if the joint
distributions of the entries of X and UXV are identical for any unitary matrices U
and V that are independent of X .

Haar matrices and i.i.d. Gaussian matrices are bi-unitarily invariant.

Lemma 2 If X is bi-unitarily invariant, XXH is unitarily invariant.
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Chapter 3:

Antenna Arrays
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Dual Antenna Arrays

Consider a single user communication system with T antenna elements at transmitter
site and R antenna elements at receiver site.

Example (T = R = 2):

transmitter receiver

Channel is described by
y[µ] = n[µ] +H [µ]b[µ]

with H containing the TR channel coefficients from the T transmit to the R receive
antennas at discrete time µ.
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Dual Antenna Arrays as Special Case of CDMA

Regard
the antenna elements at transmitter site as users indexed by k

and
the antenna elements at receiver site as discrete chips at “time” (space) instant ν.

Then, dual antenna arrays become equivalent to CDMA with spreading matrix

S[µ] = H [µ].

A vector of sufficient statistics can be formed by (spatial) matched filtering

v[µ] = A−1[µ]HH[µ]
(

H [µ]b[µ] + n[µ]
)

The standard algorithms of multi–user detection apply without changes.
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I.i.d. Complex Gaussian Fading

Assume the entries of H are i.i.d. complex Gaussian.

Then, the eigenvalues of HHH are distributed as

pλ(x) =







R

T

min{T,R}−1
∑

k=0

k!

(k + |T − R|)!
(

L
(|T−R|)
k (xR)

)2

(xR)|T−R|e−xR for x > 0

(
1− R

T

)

{

0 for T ≤ R

δ(x) for T > R
otherwise

with the Laguerre polynomials

L(b)
a (x)

△
=

ex

a!xb
da

dxa

(

xa+b e−x
)
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I.i.d. Complex Gaussian Fading (cont’d)

R = 3T
T = 1

T = 3

T = 9
T = 27

Eigenvalues of
HHH for i.i.d.
entries in the R × T
matrix H .
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I.i.d. Complex Gaussian Fading (cont’d)
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I.i.d. Complex Gaussian Fading (cont’d)
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I.i.d. Complex Gaussian Fading (cont’d)
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I.i.d. Complex Gaussian Fading (cont’d)

R = 3T
T = 1

T = 3

T = 9
T = 27

T → ∞

Eigenvalues of
HHH for i.i.d.
entries in the R × T
matrix H .
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CDMA with Dual Antenna Arrays

Without loss of generality T = K.

The system is described by the virtual NR×K spreading matrix

S̃ =









h11s1 h12s2 . . . h1KsK

h21s1 h22s2 . . . h2KsK
... ... . . . ...

hR1s1 hR2s2 . . . hRKsK









Note that with the Kronecker product ⊗:

s̃k = hk⊗sk

Note also that the entries of S̃ are not jointly independent even if those ones of S and
H are.
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A Resource Pooling Result

Theorem 8 Let the chips of any user be i.i.d. zero–mean complex Gaussian random
variables, the sequences of all users jointly independent, and the antenna array channel
hrk follow the i.i.d. complex Gaussian model. Then, the multi–user efficiency of the

linear MMSE detector converges for all users almost surely, as N,K → ∞ but α
△
= K

N
and R fixed, to the deterministic unique positive solution of the fixed–point equation

1

ηLMMSE
= 1 +

α

R

∫
x

σ2n + ηLMMSE x
dPÃ2(x),

if the powers of the users converge weakly to the limit distribution PÃ2(x) with

|Ãk|2 = |Ak|2
R∑

r=1

|hrk|2.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



3 Antenna Arrays 73

Factor i.i.d. Model

Trouble of the i.i.d. model:
Dependencies among entries of H due to

• limited number of scatterers

• correlation between closely spaced antennas

Factor channel model
H = Φ Θ

R× T R× S S × T

can be confirmed by measurements for i.i.d. matrices Φ and Θ, and appropriate choice
of S.

For S → ∞, the entries of H become i.i.d.

For the factor channel model, large system results for several detectors are known.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



3 Antenna Arrays 74

Kronecker Model

Trouble of the i.i.d. model:
Dependencies among entries of H due to

• limited number of scatterers

• correlation between closely spaced antennas

Kronecker channel model

H =
√
CR G

√
CT

R× T R×R R× T T × T

can be confirmed by measurements for an i.i.d. complex Gaussian matrix G and ap-
propriate choices for the correlation matrices CR and CT .

For the Kronecker channel model, large system results for several detectors are known.
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Jointly Correlated Channel Model

Trouble of the i.i.d. model:
Dependencies among entries of H due to

• limited number of scatterers

• correlation between closely spaced antennas

Jointly correlated channel model

C = E vec(H)H vec(H)

RT ×RT RT × 1 1×RT

The Kronecker model is a special case with C = CT ⊗CR.

Some measurements agree only with the jointly correlated channel model.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



3 Antenna Arrays 76

Generalized Kronecker Channel Model

Kronecker channel model:

H =
√
CR Φ A Θ

√
CT

R× T R×R R× S S × S S × T T × T

The matrices Φ and Θ are steering matrices. They depend on the array geometry and
the location of scattering objects.

The matrices CR and CT are coupling matrices. They depend only on the array
geometry. They converge to identity matrices for large element spacing.

The steering matrices can be well approximated by i.i.d. random matrices. With this
assumption the product ΦAΘ converges to an i.i.d. random matrix for S → ∞ (rich
scattering).

Why look steering matrices like i.i.d. random matrices?
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Pseudo-Randomness in Steering Matrices

Example: Uniform linear array, scatterers in far-field

Θs,t = exp(jϑs,t) = exp

(

jθs − j(t− 1)
2πd

λ
sin(αs)

)

Linear congruential random number generator (used in MATLAB up to version 4)

Xn+1 = (aXn + c)modm, n ≥ 0

with seed X0 and a = 1.

Each scattering object acts as random number generator with its distance as seed and
the sine of its angle times the element spacing as increment.
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Correlated Resource Pooling
Theorem 9 Let the chips of any user be i.i.d. zero–mean complex Gaussian random
variables, the sequences of all users jointly independent, and the empirical distributions
of the channel gains hrk across the users converge, jointly for all receive antennas r to
an R-dimensional joint limit distribution PH(x). Then, with linear MMSE detection,

the SINR of user k converges, as N,K → ∞ but α
△
= K

N
and R fixed, conditioned on

the channel gains of user k to
hH
kAhk

σ2

where A is the deterministic unique positive definite solution of the matrix-valued
fixed–point equation

A−1 = I + α

∫
xxH

σ2n + xHAx
dPH(x),

Asymptotic performance is characterized by an R×R matrix.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



4 Low-Complexity Multiuser Detection 79

Chapter 4:

Low-Complexity Multiuser Detection
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Single–User Matched Filter

Theorem 10 Let the chips of any user be i.i.d. zero–mean random variables with
finite fourth moment and the sequences of all users jointly independent. Then, the
multi–user efficiencies of all users converge almost surely, as N,K → ∞ but α = K

N
fixed, to

ηSUMF =
1

1 + α

∫
x

σ2n
dPA2(x)

,

if the powers of the users converge weakly to the limit distribution PA2(x).

Large system approximation:

SINRk =
A2
k

σ2n +
1

N

K∑

i=1
i 6=k

A2
i
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Linear Parallel Interference Cancellation (LPIC)

This is a linear receiver in terms of Definition 5.

Goal:
Reduce effort for signal–processing at expense of performance.

Two stages for A = I:
b̂ = quant

A

(
v − (R− I)v

)

Three stages:

b̂ = quant
A

(

v − (R− I)
(
v − (R− I)v

))

D stages:

b̂ = quant
A

(
D−1∑

i=0

(I−R)iv

)
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LPIC (cont’d)

LLPIC,D =
D−1∑

i=0

(I−R)i .

If λmax(R) < 2 and λmin(R) > 0, then

LLPIC,∞ = R−1.

Theorem 11 Let the chips of any user be i.i.d. zero–mean random variables with
finite variance and the sequences of all users jointly independent. Then, the largest
and smallest eigenvalue of R converge almost surely to

(
1 +

√
α
)2

and
(
1−

√
α
)2
,

respectively, as N,K → ∞ but α = K
N fixed.

Convergence holds for random spreading if

α <
(√

2− 1
)2

≈ 0.17
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Weighted LPIC

Let R be non–singular.

Let λi denote the eigenvalues of R.

Then,

K∏

k=1

(

R− λk I
)

= 0 =⇒ −I +
K∑

k=1

αkR
k = 0

Cayley–Hamilton Theorem with appropriate αk s.

Solution to matrix inversion problem given the eigenvalues:

R−1 =
K∑

k=1

αkR
k−1
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Weighted LPIC (cont’d)

Linear MMSE filter: LMMSE =
(

R + σ2nI
)−1

Approximation by power series:

Cayley–Hamilton theorem yields:

(
R + σ2nI

)−1
=

K−1∑

i=0

w̃iR
i

≈
D−1∑

i=0

wiR
i for D < K.

For random spreading the optimum weights converge almost surely, as K,N → ∞
with α = K

N , and can be given in closed form.
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Semi-Universal Weights

Filter shall be independent from the realization of the random matrix S, but may use
its statistics.

For most large random matrices, asK = αN → ∞, many finite dimensional functions
of the eigenvalues, e.g. the filter coefficients, freeze.

The asymptotic limits depend only on parts of the statistics of the random matrix.

The weights can be calculated off-line with the help of random matrix and free proba-
bility theory.
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Weight Design

is given by Yule–Walker equations:









m1

m2

...

mD+1









=









m2 + σ2nm1 m3 + σ2nm2 . . . mD+2 + σ2nmD+1

m3 + σ2nm2 m4 + σ2nm3 . . . mD+3 + σ2nmD+2

... ... . . . ...

mD+2 + σ2nmD+1 mD+3 + σ2nmD+2 . . . m2D+2 + σ2nm2D+1

















w0

w1

...

wD









with the total moments
mn

△
= E {λn}= Tr

(
SHS

)n
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Example for Asymptotic Weight Design
Random matrix with i.i.d. entries:

mn =
1

n

n∑

i=1

(

n

i

)(

n

i− 1

)

αi.

D = 2
w0 = −σ2nw1 + 2 + 2α

w1 = −1

D = 3

w0 = −σ2nw1 + 3 + 4α + 3α2

w1 = −σ2nw2 − 3− 3α

w2 = 1

D = 4

w0 = −σ2nw1 + 4 + 6α + 6α2 + 4α3

w1 = −σ2nw2 − 6− 9α− 6α2

w2 = −σ2nw3 + 4 + 4α

w3 = −1

D = 5

w0 = −σ2nw1 + 5 + 8α + 9α2 + 8α3 + 5α4

w1 = −σ2nw2 − 10− 18α− 18α2 − 10α3

w2 = −σ2nw3 + 10 + 16α + 10α2

w3 = −σ2nw4 − 5− 5α

w4 = 1
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Rate of Convergence

Theorem 12 Let A = I and the chips of any user be i.i.d. zero–mean random vari-
ables with finite fourth moment and the sequences of all users jointly independent.
Then, the multi–user efficiencies of all users converge almost surely, as N,K → ∞
but α = K

N
fixed, to

ηWLPIC,D+1 =
1

1 +
α

σ2n + ηWLPIC,D

with η0 = 0 for optimally chosen weights.

The approximation converges to the exact MMSE performance as a continued fraction.

For optimal coefficients wi, the approximation error ǫ decreases exponentially with the
number of stages D:

ǫ < const. (1 + SNR)−D

There are even tighter bounds.
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Individual Weight Design

Allow for different weights for different users

(
R + σ2nI

)−1
=

K−1∑

i=0

w̃iR
i

≈
D−1∑

i=0

WiR
i for D < K and allWi diagonal.

Weight design by the same Yule-Walker equations, but with the k-partial moments

m(k)
n =

[(
SHS

)n
]

kk
.

For users with different powers, individual weight design is better.

Do the k-partial moments convergence asymptotically?
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Convergence of Partial Moments

Let the random matrix S fulfill the same conditions as needed for the deformed quarter
circle law. Let A be a K ×K diagonal matrix such that its singular value distribution
converges almost surely, as K → ∞ to a non-random limit distribution. Let

R = AHSHSA.

Then,
(
Rℓ
)

kk
, the kth diagonal element of Rℓ converges, conditioned on akk, the k

th

diagonal element of A, almost surely, as K = αN → ∞ to

R
(ℓ)
kk = |akk|2α

ℓ∑

q=1

R
(q−1)
kk m

(R)
ℓ−q, ℓ > 1

with

m(R)
q = Tr(Rq) = lim

K→∞

1

K

K∑

k=1

R
(q)
kk .
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Correlated Resource Pooling

Let

• S = [s1, s2, . . . , sK ] with sk = hk ⊗ s̃k where S̃ is i.i.d.

• the entries of H may be arbitrarily dependent as long as the rows have a joint
limit distribution and are finite in number.

Then, as the dimensions of S̃ grow

• the k-partial moments conditioned on hk converge and

• recursive expressions for them are known.
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Multipath Fading Channels

Let the path differences be only a few chip intervals. Approximate the linear time shift
by a cyclic shift modulo N . For large N this becomes more and more accurate.

2 paths: All odd column of the N × 2K matrix S are i.i.d. Each even column of S is a
cyclically shifted version of the adjacent column to the left.

E
{
bbH
}
= I⊗

[

1 1

1 1

]

and (A)kk are independent zero-mean and complex Gaussian.

This setting is equivalent to the full i.i.d. setting in all asymptotic aspects if the users’
powers follow the same distribution.

Equivalence holds for an arbitrary number of paths.
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Asynchronous Users

yn+1

yn

bn

bn+2

yn+2

yn+3

Sn

Sn+2

Sn+1 An

An+1

An+2

Y =SA︸︷︷︸B + N

H

Convergence of
k-partial mo-
ments proven,
recursive expres-
sions to construct
them known.
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Detector Structure for Asynchronous Users

D

D

D

D

D

D

D

DD

M-1

W0 WMW1

M-2

1st Stage M-th Stage

y(n+1)

b̂n−M

Filtering

H(n−1)H

Filtering

H(n) H(n−M+1) H(n−M)H

HHHHHY

Filtering
H

H(n)

HHY

HH(HHH)MY

MatchedMatched Matched Re-
Spreading Spreading

Re-

No truncation effects.
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Chip-Asynchronous Users

Let the delays of the users be spread out over a chip interval.

The excess bandwidth of the chip waveforms can be utilized to span signal dimensions.

Improvements in

• SINR of single user matched filter

• SINR of linear multiuser receivers

• Total capacity per chip

Fixed point equations to characterize the large-system performance are known.

Recursive expressions for partial moments are known (depend on delay distribution).

De-synchronization on the chip level improves performance.
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Chip-Asynchronous LMMSE Detection
Theorem 13 ([10]) Let the spreading sequences of any user be i.i.d. zero mean
Gaussian random variables, the users be chip-asynchronous with uniformly distributed
relative delay, the users’ powers be independent of the delays and converge to the limit
distribution PA2(x). Let the chip waveform have spectrum Ψ(ω) and unit energy and
the noise be white with spectral density N0. Then, the multiuser efficiency of the linear
MMSE detector converges in probability as K,N → ∞ with K

N
→ α to

η =
1

2π

+∞∫

−∞

η (ω) dω

where the multiuser efficiency spectral density η (ω) is the unique solution to the fixed
point equation

1

η (ω)
=

Tc
|Ψ (ω) |2 + α

∫
xdPA2(x)

N0 + ηxTc
.

This requires over-sampling to form sufficient discrete-time statistics.
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Chapter 5:

Free Probability Theory
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Classical vs. Free Probability

Random matrix is ensemble Random matrix is a sample

Multiplication is commutative Multiplication is not commutative

Non-commutative joint moments:

E
{
A2B2

}
6= E {ABAB}

Statistical independence cannot be defined without respect to the
elements of the matrix.

Independence vs. Freeness
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Freeness of Two Random Matrices
Define for any K ×K matrix X

Tr (X) = lim
K→∞

1

K
trace (X) .

Two random matrices A and B are asymptotically free, if for all integers n,m > 0,
and all αij, βij for which

Tr

(
m∑

i=0

α1iA
i

)

= · · · = Tr

(
m∑

i=1

αniA
i

)

= 0

and

Tr

(
m∑

i=0

β1iB
i

)

= · · · = Tr

(
m∑

i=1

βniB
i

)

= 0,

we have

Tr

([
m∑

i=0

α1iA
i

][
m∑

i=0

β1iB
i

]

· · ·
[

m∑

i=0

αniA
i

][
m∑

i=0

βniB
i

])

= 0.
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The Definition of Freeness

Two random matrices are asymptotically free, if the traces of all possible non-com-
mutative alternating products of matrix polynomials, whose traces are zero, are zero,
too.

Several random matrices are jointly asymptotically free, if the traces of all possible
non-commutative alternating products of matrix polynomials, whose traces are zero,
are zero, too.

It is possible and useful to define freeness of families of
random matrices.

The general definition of freeness is complicated and will
be given later on.

Free probability theory was invented by Dan-Virgil
Voiculescu around 1986. Dan-Virgil Voiculescu

born in Bucharest in 1949
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Examples for Freeness

• Two independent Haar distributed random matrices are asymptotically free.

• Two i.i.d. Gaussian distributed random matrices are asymptotically free.

• A Haar distributed or an i.i.d. Gaussian distributed random matrix is asymptot-
ically free from a constant matrix.

Caveat: There exist independent random matrices which are not
ralfsd asymptotically free and dependent random matrices which are.

Example: Let D1 and D2 be independent diagonal random matrices and let H1 and
H2 be independent and Haar distributed. Then,

• D1 and D2 are not asymptotically free,

• but H1D1H1
H and H2D1H2

H are asymptotically free.
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Independence vs. Freeness

Freeness is an asymptotic property of the eigenvectors of random matrices, but not of
their eigenvalue distributions.

If the eigenvectors of two Hermitian random matrices are identical, the random matrices
commute and classical probability theory is the appropriate tool to deal with them.

If the eigenvectors of two Hermitian random matrices differ, they do not commute, but
they are not necessarily free.

If the product of the eigenvector matrices of two Hermitian random matrices is Haar
distributed, the two random matrices are free.
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Additive Free Convolution

Let A = AH and B = BH be free and

C = A +B.

Then,
RC(w) = RA(w) + RB(w) .

The R-transform is defined as

R(w)
△
= G−1(−w)− 1

w

where G(·) denotes the Stieltjes transform and G−1(·) its inverse with respect to
composition.

The R-transform linearizes additive free convolution.
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Some R-Transforms

identity : R(w) = 1

semi-circle : R(w) = w

(quarter-circle)2 : R(w) =
1

1− w

(def. quarter circle)2 : R(w) =
α

1− w

(def. quarter circle)−2 : R(w) =
α− 1−

√

(α− 1)2 − 4w

2w

inverse semi-circle : R(w) =
−1 +

√
1 + 4w2

w

projector : R(w) =
w − 1 +

√
4αw + w2 − 2w + 1

2w
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Properties of the R-Transform

The R-transform is nonlinear:

RβX(w) = βRX(βw)

The R-transform is increasing on the real line, strictly increasing unless the distribution
is a single point mass.

The coefficients of the power series

R(w) =
∞∑

ℓ=1

βℓw
ℓ−1

are the free cumulants. The first two cumulants β1 and β2 are the mean and the
variance of the distribution, respectively.
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Effective Interference

Large system approximation for the
SINR of the LMMSE detector for a finite
number of users:

SINRk ≈
A2
k

σ2n +
1

N

K∑

i=1
i 6=k

A2
i

1 + SINRi

Effective interference from user i:

Ii =
1

N
· A2

i

1 + SINRi

Definition of R-transform:

G(s) =
1

−s + R(−G(s))

R-transform for equal power users:

REP(w) =
α

1− w

R-transform for power profile:

RPP(w) =

∫
αPdP(P )

1− wP

Effective interferences are the R-transforms of all individual users.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



5 Free Probability Theory 107

Additivity of Rank

Theorem 14 Let A = AH and B = BH be free random variables. Then, the density
of

C = A +B

has a mass point at c, if and only if c can be decomposed into c = a+ b such that A
has a mass point at a with probability α and B has a mass point at b with probability
β such that

α + β > 1.

In this case, we have
Pr(c) = α + β − 1.

When summing two free random matrices of normalized ranks r1 and r2, the normalized
rank of the sum is given by min{r1 + r2, 1}.
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Example for Additive Free Convolution
Take two free binary random variables

pA(x) = pB(x) =
1

2
δ(x− 1) +

1

2
δ(x + 1).

The Stieltjes transforms of their distributions are

GA(s) = GB(s) =
s

1− s2
.

Their R-transforms are given by

RA(w) = RB(w) =
−1 +

√
1 + 4w2

2w
.

Additive free convolution gives

RA+B(w) =
−1 +

√
1 + 4w2

w
.

which corresponds to the inverse semicircle law

pA+B(x) =

{
1
π

1√
4−x2 |x| < 2

0 elsewhere
.
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Example for Additive Free Convolution (cont’d)

Let n free binary RVs be summed and normalized

Cn
△
=

1√
n

n∑

k=1

Ak.

We have

RCn(w) =

√
n2 + 4nw2 − n

2w
.

In the Stieltjes domain, this reads

GCn(s) =
1

2

(n− 2)s−
√
n2s2 − 4n2 + 4n

s2 − n

which, for n > 1, corresponds to the density

pCn(x) =

{
1
2π

√
4n2−4n−n2x2

n−x2 |x| < 2
√

1− 1/n

0 elsewhere
.

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

p(
x)

n=2..7 

lim
n→∞

RCn(w) = w
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Free Central Limit Theorem

The R-transform is an analytic function within the neighborhood of w = 0. Thus,

RAk
(w) =

∞∑

ℓ=0

βℓ,kw
ℓ

where β0,k = 0 since we assume Tr(Ak) = 0.

lim
n→∞

RCn(w) = lim
n→∞

1√
n

n∑

k=1

RAk

(
w√
n

)

= lim
n→∞

1√
n

n∑

k=1

∞∑

ℓ=1

βℓ,k

(
w√
n

)ℓ

= lim
n→∞

1

n

n∑

k=1

β1,kw.

This is a semicircle law.
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Classical Poisson Limit Theorem

The classical Poisson limit theorem states that the density of the sum of n independent
random variables

cn =
∑

i

ai

with density

pai(x) =
(

1− α

n

)

δ(x) +
α

n
δ(x− 1)

converges, as n→ ∞, to the limit

pc∞(x) = e−α
∞∑

k=0

αk

k!
δ(x− k)

which is known as the Poisson density. Similar to the central limit theorem, there is a
free analog to this law.
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Free Poisson Limit Theorem

Consider now a family of n free random variables Ai with density pAi
(x) = pai(x) and

the sum
Cn =

∑

i

Ai.

Then, as n → ∞, the density of the sum converges to the squared deformed quarter
circle law.

Sketch of Proof: Let ai be an n/α× 1 random vector, and Ai = aia
H
i . Then, pai(x)

is the eigenvalue density of the matrix Ai. Note that the matrix sum Cn =
∑

iAi is
an n/α×n/α random covariance matrix. Thus, the singular values of [a1,a2, . . . ,an]
follow the deformed quarter circle law for large n. Using additive free convolution, the
free Poison limit theorem is shown in the R-domain, cf. effective interference.
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Support of the Density Function

The boundaries of the support of the density function are the extrema of the inverse
of the Stieltjes transform.

Since

G−1(w) = R(−w)− 1

w
,

this means
∂R(−w◦)

∂w◦
+

1

w2
◦
= 0

and G−1(w◦) is a boundary point.

Maxima correspond to left boundaries of the support, minima to right boundaries.
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Multiplicative Free Convolution

Let A = AH and B = BH be free, Tr(A) 6= 0 6= Tr(B), and

D = AB = DH.

Then,
SD(z) = SA(z) SB(z) .

The S-transform is defined as

S(z)
△
=

1 + z

z
Υ−1(z) with Υ(s)

△
= −1− G

(
1
s

)

s
.

The S-transform linearizes multiplicative free convolution.
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Some S-Transforms

identity : S(z) = 1

semi-circle : S(z) =
1√
z

(quarter-circle)2 : S(z) =
1

1 + z

(def. quarter circle)2 : S(z) =
1

α + z
(def. quarter circle)−2 : S(z) = α− 1− z

inverse semi-circle : S(z) =

√

1

4
+

1

2z

projector : S(z) =
1 + z

α + z
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Properties of the S-Transform

The functions zS(z) and zR(z) are inverses of each other with respect to composition.

Thus, we have

R(z) =
1

S(zR(z))
⇐⇒ S(z) =

1

R(zS(z))

Scaling law:
SαX(z) = αSX(z)

The S-transform is decreasing on the real line, strictly decreasing unless the distribution
is a single point mass.

Tr(X) =
1

SX(0)
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Mass Points
Theorem 15 Let A and B be free random variables with densities supported in
[0;∞). Then, the density of

C = AB

has a mass point at c > 0, if and only if c can be decomposed into c = ab such that A
has a mass point at a with probability α and B has a mass point at b with probability
β such that

α + β > 1.

In this case, we have
Pr(c) = α + β − 1.

Theorem 16 Let A and B be free random variables with densities supported in
[0;∞). Let there be mass points at 0 with probabilities α and β, respectively. Then,
the density of C = AB has a mass point at 0 with probability

max{α, β}.
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Is There a Free Log-Normal Distribution?
Consider the channel matrix

HN = MNMN−1 · · ·M 2M 1
△
=

N∏

n=1

Mn

where the matrices M 1, M 1<n<N , and MN denote the subchannels from the trans-
mitter array to the first cluster of scatterers, from the (n− 1)st cluster of scatterers to
the nth cluster, and from the (N − 1)st cluster to the receiving array, respectively. Let
all matrices Mn have size K ×K.

We ask for the asymptotic eigenvalue distribution of the matrix CN
△
= HNH

H
N .

Assume that the family
(
{MH

1M 1}, {MH
2M 2}, . . . , {MH

NMN}
)
is asymptotically

free as K tends to infinity.

Consider also the random covariance matrices

C̃N
△
=

(
N−1∏

n=1

Mn

)(
N−1∏

n=1

Mn

)H

MH
NMN
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There is No Free Log-Normal Distribution
The asymptotic eigenvalue distribution of CN is calculated recursively.

For that purpose, note that the eigenvalues of the matrices C̃N and CN are identical.
Let the entries of M1≤n≤N be independent and identically distributed with zero-mean
and variance 1/K. Then,

SCN
(z) = SC̃N

(z) = SCN−1
(z) SMH

NMN
(z) =

SCN−1
(z)

1 + z
=

1

(1 + z)N
.

Back to Stieltjes domain

s
(
ΥCN

(s) + 1
)N+1

= ΥCN
(s)

s−1
(
−sGCN

(s)
)N+1

+ sGCN
(s) = −1.

For large N , we get

lim
N→∞

GCN
(s) =

1

−s

Almost all eigenvalues converge to zero.
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Worst Case Power Distribution

Theorem 17 Let the chips of any user be i.i.d. zero–mean random variables with finite
fourth moment, the sequences of all users jointly independent, and the powers of all
users bounded from above and below by positive numbers. Moreover, let N,K → ∞
but α = K

N fixed. Then,
argmin

A:trA2/K=P

η = P I

holds for the multi–user efficiency of any linear detector that can be written as a matrix
polynomial in R.

Equal power interferers are the worst case for given total interference power.
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Free Fourier Transform

Let Q be any matrix of bounded norm and bounded rank n and let J be free of Q.
Then,

lim
K→∞

1

K
log E

J
eKtrace(JQ) =

n∑

a=1

λa(Q)∫

0

RJ(w)dw.

This implies

RJ(Q) =
∂

∂Q
lim
K→∞

1

K
log E

J
eKtrace(JQ)

= lim
K→∞

E
J
J eKtrace(JQ)

E
J
eKtrace(JQ)

The bounded rank condition can be relaxed to ranks that grow slowlier than
√
K.
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Commutative Polynomials

Let x, y be real scalar variables. The set of all nth order polynomials in two commutative
variables x and y is defined as

Pn(x, y)
△
=







(n+1)2
∑

i=1

βix
ℓiymi : ℓi,mi ∈ {0, 1, . . . , n} ∧ βi ∈ R






.

E.g. for second order, it is canonically given by a sum with only 9 terms

β1x
2y2 + β2x

2y + β3xy
2 + β4x

2 + β5xy + β6y
2 + β7x + β8y + β9.

A polynomial of order n in p commutative variables can be defined by

Pn(x1, . . . , xp)
△
=







(n+1)p
∑

i=1

βi

p
∏

k=1

x
ℓi,k
k : ℓi,k ∈ {0, 1, . . . , n} ∧ βi ∈ R






.
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Noncommutative Polynomials
LetA,B be real matrices. The set of all nth order polynomials in two non-commutative
variables A and B is defined as

Pn(A,B)
△
=

{
∑

i

βi

n∏

k=1

Aℓi,kBmi,k : ℓi,k,mi,k ∈ N0 ∧
n∑

k=1

ℓi,k,
n∑

k=1

mi,k ≤ n ∧ βi ∈ R

}

E.g. for second order, it is canonically given by a sum of 19 terms

β1A
2B2 + β2AB2A + β3ABAB + β4BABA + β5BA2B + β6B

2A2+

+ β7A
2B + β8ABA + β9AB2 + β10BA2 + β11BAB + β12B

2A+

+ β13A
2 + β14AB + β15BA + β16B

2 + β17A + β18B + β19I.

A polynomial of order n in p non-commutative variables can be defined by

Pn(A1, . . . ,Ap)
△
=







∑

i

βi

n∏

k=1

p
∏

q=1

A
ℓi,k,q
q : ℓi,k,q ∈ N0 ∧

n∑

k=1

ℓi,k,q ≤ n ∧ βi ∈ R






.

The number of terms can be considerably large even for small values of n and p.
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Freeness of Families of Random Variabes

Definition 10 The sets Q1
△
= {A1, . . . ,Aa}, Q2

△
= {B1, . . . ,Bb}, . . . ,Qr form a

free family (Q1, . . . ,Qr) if, for every sequence (s1, . . . , sk, . . . ) with sk ∈ {1, 2, . . . , r} ∀k
and

sk+1 6= sk ∀k,
and every sequence of polynomials (Q1, . . . ,Qk, . . . ) with Qk ∈ P∞(Qsk) ∀k, and
every positive integer n,

Tr (Q1) = · · · = Tr (Qn) = 0 =⇒ Tr (Q1Q2 · · ·Qn) = 0.

Note that due to the constraint on the sequences sk adjacent factors in the product
Q1Q2 · · ·Qn must be polynomials of different sets of the family. This reflects the
non-commutative nature in the definition of freeness.
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Using the Definition of Freeness

Calculate Tr(ACBD) for the free family
(
{A,B}, {C,D}

)
.

Choose the non-commutative polynomials

Q1 = A− Tr(A)I

Q2 = C − Tr(C)I

Q3 = B − Tr(B)I

Q4 = D − Tr(D)I.

Polynomials with adjacent indices are built of matrices belonging to different sets of
the family. Since

Tr(Qk) = Tr
(
X − Tr(X)I

)
= 0

the definition of freeness implies

Tr(Q1Q2Q3Q4) = 0.
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Using the Definition of Freeness (cont’d)

Plug in the polynomials and solve for

Tr(ACBD) = Tr(B)Tr(ACD) + Tr(D)Tr(ACB) + Tr(A)Tr(CBD) + Tr(C)Tr(ABD)

− Tr(B)Tr(D)Tr(AC)− Tr(A)Tr(B)Tr(CD)− Tr(A)Tr(D)Tr(CB)

− Tr(C)Tr(B)Tr(AD)− Tr(C)Tr(D)Tr(AB)− Tr(A)Tr(C)Tr(BD)

+ 3Tr(A)Tr(B)Tr(C)Tr(D).

We have broken down an expectation of four factors into sums of expectations of up
to three factors.

The expectations of three factors can be broken down into sums of expectations of two
factors. This is demonstrated at the example of Tr(ACD).
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Using the Definition of Freeness (cont’d)

We must define the non-commutative polynomials in such a way that they belong to
different sets of the free family. An appropriate definition is

Q1 = A− Tr(A)I

Q2 = CD − Tr(CD)I.

Proceeding this way for all remaining matrix products involving factors belonging to
different sets of the family

(
{A,B}, {C,D}

)
, we arrive at

Tr(ACBD) = Tr(A)Tr(B)Tr(CD) + Tr(C)Tr(D)Tr(AB)

−Tr(A)Tr(B)Tr(C)Tr(D).

The key point to succeed with this procedure is to define the non-commutative poly-
nomials in an appropriate way which simply consists of collecting all factors belonging
to identical sets of the free family and subtract its expectation.
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Free IID Random Matrices

Let the random matrices H i, ∀i, be square N × N with independent identically dis-
tributed entries with zero mean, variance 1/N , and

lim
N→∞

E
∣
∣
∣

√
N (H i)11

∣
∣
∣

2m

<∞ ∀m > 0

Moreover, let Xj, ∀j, be N × N matrices with upper bounded norm and a limit
distribution as N → ∞.

Then the family
({

X1,X
H
1 ,X2,X

H
2 , . . .

}
,
{
H1,H

H
1

}
,
{
H2,H

H
2

}
, . . .

)

is almost surely asymptotically free as N → ∞.
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Free Hermitian Random Matrices

Let the random matrices H i,∀i, be N ×K with independent identically distributed
entries with zero mean, variance 1/N , and

lim
N→∞

E
∣
∣
∣

√
N (H i)11

∣
∣
∣

2m

<∞ ∀m > 0

and let the matrices Y i, ∀i, be K ×K, Hermitian and independent of H i,∀i. Let
Si = H iY iH

H
i , ∀i.

Moreover, let Xj, ∀j, be N × N matrices with upper bounded norm and a limit
distribution as N → ∞.

Then the family
({

X1,X
H
1 ,X2,X

H
2 , . . .

}
, {S1} , {S2} , . . .

)

is almost surely asymptotically free as N,K → ∞ with α = K/N fixed.
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Free Unitary Random Matrices

Let the random matrices T i, ∀i, be N ×N Haar distributed random matrices.

Moreover, let Xj, ∀j, be an N × N matrices with upper bounded norm and a limit
distribution as N → ∞.

Then, the family
({

X1,X
H
1 ,X2,X

H
2 , . . .

}
,
{
T 1,T

H
1

}
,
{
T 2,T

H
2

}
, . . .

)

is almost surely asymptotically free as N → ∞.
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Free Similar Random Matrices

Let the N ×N matrices Xj, ∀j, be such that their inverses X−1
j ,∀j, exist and

Tr
(
X iX

−1
j

)
= 0 ∀i 6= j

holds almost surely.

Moreover, let there be an N ×N matrix H such that the family
({

X1,X
−1
1 ,X2,X

−1
2 , . . .

}
, {H}

)

is almost surely asymptotically free, as N → ∞.

Then, the family ({
X1HX−1

1

}
,
{
X2HX−1

2

}
, . . .

)

is almost surely asymptotically free, too, as N → ∞ .
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R-Diagonal Random Matrices

Definition 11 A random variable X is called R-diagonal, if it can be decomposed as

X = UY

where Y =
√
XXH and U is Haar distributed and free of Y .

Lemma 3 Asymptotically large bi-unitarily invariant matrices are R-diagonal.

Theorem 18 The distribution of R-diagonal random matrices is circularly symmetric
in the complex plane.
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R-Diagonal Additive Free Convolution
Theorem 19 Let the asymptotically free random matrices A and B be R-diagonal
and denote the respective asymptotic singular value distributions by PA(x) and PB(x).
Define the symmetrization of a density by

p̃(x) =
p(x) + p(−x)

2
.

Then, A +B is R-diagonal and we have

R̃A+B(w) = R̃A(w) + R̃B(w)

with R̃(w) denoting the R-transform of P̃(x).

This is an addition law for bi-unitarily invariant random matrices.
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Circularly Symmetric Distributions
Theorem 20 Let the random variable H be R-diagonal. Let SHHH(s) denote the
S-transform of the distribution of HHH and define the function

f(s) =
1

√
SHHH(s− 1)

.

Then, the distribution of H is circularly symmetric and given by

pH(z) =
1

2πzf ′ [f−1(z)]

with f ′(s) = df(s)/ds wherever the density is positive and continuous.

The S-transform of HH can be found from the complex-valued distribution pH(z)
solving a differential equation.
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Haagerup-Larsen Law
Theorem 21 Let the random variables An have the same distribution, be R-diagonal,
and free of each other for all n. Then, the distributions of

N∏

n=1

An

and AN
1 are identical.

Free identically distributed R-diagonal random variables behave with respect to multi-
plication as if they were identical.
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Chapter 6:

The Replica Method
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The Return of Physics

Since Boltzmann, physicists have studied the behavior of systems with interactions of
many particles.

Particular correspondences can be drawn between spin glasses (amorph magnetic ma-
terials, e.g. the magnetic surface of a hard disk drive) and communication systems.
The binary nature of the bits corresponds to the quantum-mechanical constraints of
electron spins to ±1

2.

Spin glass theory is both very rich and very complicated. Various methods have been
proposed by physicists to analyze them:

• The replica method • The TAP approach

• The cavity method • Gauge Theory

• . . .

This course will be restricted in scope to the replica method.
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Spin Glasses
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Spin Glasses
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Spin Glasses

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



6 The Replica Method 138

Spin Glasses

Energy function (Hamiltonian):

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi
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Spin Glasses

h
external magnetic field

Energy function (Hamiltonian):

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi
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Optimal Detection of Vector Channel

y = Sx + n
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Optimal Detection of Vector Channel

y = Sx + n

Best estimate for transmitted data:

x̂ = argmin
x∈{±1}K

||y − Sx||

argmin
x∈{±1}K

−1

2
xTRx− hTx + yTy with

R = −2STS

h = 2STy
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Optimal Detection of Vector Channel

y = Sx + n

Best estimate for transmitted data:

x̂ = argmin
x∈{±1}K

||y − Sx||

= argmin
x∈{±1}K

−1

2
xTRx− hTx + yTy with

R = −2STS

h = 2STy
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Optimal Detection of Vector Channel

y = Sx + n

Best estimate for transmitted data:

x̂ = argmin
x∈{±1}K

||y − Sx||

= argmin
x∈{±1}K

−1

2
xTRx− hTx + yTy with

R = −2STS

h = 2STy

= argmin
x∈{±1}K

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi −
1

2

∑

i

riix
2
i
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Optimal Detection of Vector Channel

y = Sx + n

Best estimate for transmitted data:

x̂ = argmin
x∈{±1}K

||y − Sx||

= argmin
x∈{±1}K

−1

2
xTRx− hTx + yTy with

R = −2STS

h = 2STy

= argmin
x∈{±1}K

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi −
1

2

∑

i

riix
2
i

Minimization of the energy function of a spin glass!
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A Phase Transition in Random CDMA
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optimal detection K = 2N ≫ 1
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Large Systems

?

/

C
K×K

C

C
K

O
(
K2
)
interactions

↑

O(K) microscopic objects

↓
O(1) macroscopic variables

Macroscopic variables are self-averaging.
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Boltzmann Distribution

The Thermodynamic Equilibrium maximizes the entropy

H(X) = −
∑

i

Pr(xi) log Pr(xi)

for given constant energy

E(X) =
∑

i

||xi||Pr(xi)

yielding the Boltzmann distribution

Pr(xi) =
e−

1
T ||xi||

∑

i

e−
1
T ||xi||

.

Ludwig Eduard Boltzmann
born in Vienna in 1844
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Free Energy

Since the energy is constant, we can minimize the free energy

F (X)
△
= E(X)− TH(X)

instead of maximizing entropy. This is often less complicated.

With the Boltzmann distribution, the free energy is given by

F (X) = −T log

[
∑

i

e−
1
T ||xi||

]

.

It depends only on the partition function.

The free energy is self-averaging.
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Energy vs. Entropy

The following two tasks are dual:

• Minimize the energy for fixed entropy

• Maximize the entropy for fixed energy

Consider free energy
F (X) = E(X)− TH(X)

and read the temperature (or its inverse) as Lagrange multiplier.

For the dual problem have

− 1

T
F (X) = H(X)− 1

T
E(X)
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The Meaning of the Energy Function
In physics, the energy function varies with the force causing the potential.

Theoretically speaking, the choice of the energy function is arbitrary as long as it is
uniformly bounded from below.

Nature maximizes entropy for a given energy.

In communications engineering, the energy function is the metric used by the decoder.

The decoder does the dual job of nature, to minimize the metric for a given output
entropy.

Since the decoder dictates the thermodynamics of our toy universe, the same holds
true if the decoder uses a suboptimal (wrong) or insufficient metric, perhaps due to
lack of knowledge about the channel state.

The free choice of the energy function allows to analyze mismatched receivers.
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LMMSE Detector with Mismatched Powers

Theorem 22 Let (U1, . . . , UK) be an arbitrary sequence of non-negative numbers
such that, as K → ∞, the empirical joint cdf of the pairs {(Uk, Pk) : k = 1, . . . ,K}
converges weakly to a given non-random cdf F (u, p). Moreover, let the Pks be uni-
formly bounded from above and the Uks uniformly bounded from below by a positive
number for all K. Then, the multiuser efficiency of the mismatched LMMSE detec-
tor assuming powers {Uk} instead of the true powers {Pk} in the standard random
spreading model converges as K = αN → ∞ almost surely to

η

1 + α

∫
u

(σ2n + uη)2
dF (u, p)

1 + α

∫
p

(σ2n + uη)2
dF (u, p)

where η =

(

1 + α

∫
u

σ2n + uη
dF (u, p)

)−1

is the multiuser efficiency of an LMMSE detector of a “virtual channel” having powers
given by {Uk} instead of {Pk}.
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Average Free Energy

When analyzing a random system, we evaluate the average
free energy

as Shannon analyzed the average performance of all codes.
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Free Energy for a Random Parameter

Consider a self-averaging random parameter, e.g. a spreading matrix.

F (X|yj) = E
Y
F (X|Y )

= −T E
Y
log

[
∑

i

e−
1
T ||xi||

]

The energy function depends on the random parameter yj.

The expectation of a logarithm is a hard problem.
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Replica Continuity

E
Y
log(Y ) = lim

n→0

∂

∂n
E
Y
Y n

Evalute the nth moments for integer n and assume analytic continuity for the limit.

More general, we have

E
Y
log

∫

R

f(x, Y )dx = lim
n→0

∂

∂n
E
Y





∫

R

f(x, Y )dx





n

Mark Kac introduced the replica method at the Theoretical Physics Seminar

in Trondheim in 1968.
Mark Kac
born in 1914 in Krzemieniec
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Replica Continuity (cont’d)

E
Y
log

∫

R

f(x, Y )dx = lim
n→0

∂

∂n
E
Y





∫

R

f(x, Y )dx





n

With 



∫

R

g(x)dx





n

=
n∏

a=1

∫

R

g(xa)dxa

we finally get

E
Y
log

∫

R

f(x, Y )dx = lim
n→0

∂

∂n
E
Y

n∏

a=1

∫

R

f(xa, Y )dxa
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Replica Symmetry

Throughout the calculations, we solve integrals of the form

I =
1

K
log

∫

R2

eKf(x1,x2)dx1dx2 → max
x1,x2

f(x1, x2)

for K → ∞ by saddle point integration.

If the maximization is too tedious, we assume replica symmetry:

max
x1,x2

f(x1, x2) = max
x
f(x, x)

Replica symmetry is a strong assumption and not always valid.
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Hubbard-Stratonovich Transform

When dealing with quadratic energy functions, the problem of integrating over multi-
variate Gauß (Gauss) kernels occurs.

The multivariate Gauß kernel can be reduced to a univariate one by means of the
Hubbard-Stratonovich transform

exp
(y

2

)

=

∫

exp (±√
yz) Dz ∀y ∈ R

with Dz denoting the Gaussian measure

1√
2π

exp

(

−z
2

2

)

dz

In replica calculations, y is the square of a sum of replicated variables.
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Phase Transitions

If the final equations allow for multiple solutions, the correct solution
is identified by minimizing the free energy.
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Phase Transitions and Neural Networks
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Individually Optimum ML Detector

Let A = {+1;−1}, the chips of any user be i.i.d. random variables with finite variance
and vanishing odd moments, the powers of all users identical, and N,K → ∞, but
α = K/N fixed. Then, the multiuser efficiency is a solution to the fixed point equation

1

ηIO
= 1 +

α

σ2n



1−
√

ηIO
2πσ2n

∫

R

tanh

(
ηIO
σ2n

x

)

exp

(

−ηIO(x− 1)2

2σ2n

)

dx



 .

In case the fixed point equation has multiple solutions, the correct one is that solution
for which the term

ηIO
σ2n

+
ηIO − log ηIO

2α
−
√

ηIO
2πσ2n

∫

R

log

[

cosh

(
ηIO
σ2n
x

)]

exp

(

−ηIO(x− 1)2

2σ2n

)

dx

is smallest.
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Chapter 7:

Examples for Replica Calculations
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Bit Error Rate for Large CDMA

Consider the analysis of an asymptotically large CDMA systems with arbitrary joint
distribution of the variances of the random chips. It includes multi-carrier CDMA
transmission with users of arbitrary powers in frequency-selective fading as special
case.

The vector-valued, real additive white Gaussian noise channel is characterized by the
conditional pdf

py|x,H(y,x,H) =
e
− 1

2σ20
(y−Hx)T(y−Hx)

(2πσ20)
N
2

. (1)

Moreover, let the detector be characterized by the assumed conditional probability
distribution

p̆y|x,H(y,x,H) =
e
− 1

2σ2
(y−Hx)T(y−Hx)

(2πσ2)
N
2

and the assumed prior distribution p̆x(x).
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Let the entries of H be independent zero-mean with vanishing odd order moments
and variances w2

ck/N for row c and column k.

Applying Bayes’ law, we find

p̆x|y,H(x,y,H) =
e
− 1

2σ2
(y−Hx)T(y−Hx)+log p̆x(x)

∫
e
− 1

2σ2
(y−Hx)T(y−Hx)

dP̆x(x)
.

Since the Boltzmann distribution holds for any temperature T , we set w.l.o.g. T = 1
and find the appropriate energy function to be

||x|| = 1

2σ2
(y −Hx)T (y −Hx)− log p̆x(x) . (2)

This choice of the energy function ensures that the thermodynamic equilibrium models
the detector defined by the assumed conditional and prior distributions.
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With (1) and (2), the definition of free energy, and replica continuity, we find for the
free energy per user

F(x)

K
= − 1

K
E
H

∫ ∫

RN

log

(∫

e
− 1

2σ2
(y−Hx)T(y−Hx)

dP̆x(x)

)
e
− 1

2σ20
(y−Hx)T(y−Hx)

(2πσ20)
N
2

dydPx(x)

= − 1

K
lim
n→0

∂

∂n
log E

H

∫ ∫

RN

(∫

e
− 1

2σ2
(y−Hx)T(y−Hx)

dP̆x(x)

)n

e
− 1

2σ20
(y−Hx)T(y−Hx)

(2πσ20)
N
2

dydPx(x)

= − 1

K
lim
n→0

∂

∂n
log

∫

∫

RN

E
H

n∏

a=0

e
− 1

2σ2a
(y−Hxa)

T(y−Hxa)
dy

(2πσ20)
N
2

n∏

a=0

dPa(xa)

︸ ︷︷ ︸
△
=Ξn

(3)

with σa = σ,∀a ≥ 1, P0(x) = Px(x), and Pa(x) = P̆x(x) ,∀a ≥ 1.
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The integral in (3) is given by

Ξn =

∫ N∏

c=1

∫

R

E
H

n∏

a=0

exp



− 1

2σ2a

(

yc −
K∑

k=1

hckxak

)2


 dyc

√
2πσ0

n∏

a=0

dPa(xa) , (4)

with yc, xak, and hck denoting the cth component of y, the kth component of xa, and
the (c, k)th entry of H , respectively. The integrand depends on xa only through

vac
△
=

1√
α

K∑

k=1

hckxak, a = 0, . . . , n.

These quantities vac can be regarded, in the limit K → ∞ as jointly Gaussian random
variables with zero mean and covariances

Qab[c] = E
H
vacvbc =

1

K
xa

(c)•xb (5)

where the parametric inner products are defined by xa
(c)•xb

△
=

K∑

k=1

xakxbkw
2
ck.
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In order to perform the integration in (4), the K(n+1)-dimensional space spanned by
the replicas and the vector x0 is split into subshells

S{Q[·]} △
=

{

x0, . . . ,xn

∣
∣
∣
∣
xa

(c)•xb = KQab[c]

}

where the inner product of two different vectors xa and xb is constant.
1

The splitting of the K(n+1)-dimensional space is depending on the chip time c. With
this splitting of the space, we find for K → ∞ 2

Ξn =

∫

RN(n+1)(n+2)/2

eKI{Q[·]}
N∏

c=1

eG{Q[c]}
∏

a≤b
dQab[c], (6)

with appropriate choices of the function I{Q[·]} and G {Q[c]}.

1The notation f{Q[·]} expresses the dependency of the function f(·) on all Qab[c], 0 ≤ a ≤ b ≤ n, 1 ≤ c ≤ N .
2The notation

∏

a≤b
is used as shortcut for

∏n

a=0

∏n

b=a
.
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In (6),

eKI{Q[·]} =

∫



∏

a≤b

N∏

c=1

δ




xa

(c)•xb
N

− αQab[c]









n∏

a=0

dPa(xa)

denotes the probability weight of the subshell and

eG{Q[c]} =
1√
2πσ0

∫

R

E
H

n∏

a=0

exp

[

− α

2σ2a

(
yc√
α
− vac{Q[c]}

)2
]

dyc.

This procedure is a change of integration variables in multiple dimensions where the
integration of an exponential function over the replicas has been replaced by integration
over the variables Qab[·]. In the following the blue and green terms in (6) are evaluated
separately.
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First, we calculate the measure eKI{Q[·]}. We write the Dirac measure

δ




xa

(c)•xb
N

− αQab[c]



 =
1

2πj

∫

J

exp



Q̃ab[c]




xa

(c)•xb
N

− αQab[c]







 dQ̃ab[c]

as the inverse Laplace transform of a constant with J = (t− j∞; t + j∞).

Then, the measure eKI{Q[·]} can be expressed as

eKI{Q[·]} =

∫







N∏

c=1

∏

a≤b

∫

J

e
Q̃ab[c]




xa

(c)
• xb
N −αQab[c]





dQ̃ab[c]

2πj







n∏

a=0

dPa(xa)

=

∫

JN(n+2)(n+1)/2

e
−α

N∑

c=1

∑

a≤b
Q̃ab[c]Qab[c]

(
K∏

k=1

Mk

{
Q̃[·]
}

)
N∏

c=1

∏

a≤b

dQ̃ab[c]

2πj
(7)

with

Mk

{
Q̃[·]
}
=

∫

exp




1

N

∑

a≤b

N∑

c=1

Q̃ab[c]xakxbkw
2
ck





n∏

a=0

dPa(xak).
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In the limit of K → ∞ one of the exponential terms in (6) will dominate over all
others. Only the maximum value of the correlation Qab[c] is relevant for calculation of
the integral.

We assume that the replicas within the dominant subshell are symmetric (replica sym-
metry). Thus, the maximum values of the correlations Qab[c] are identical for all
positive a 6= b. The same applies to the the correlations Qa0[c].

Hereby, we reduce the number of different correlation variables from (n+ 1)(n+ 2)/2
to four per chip time and set Q00[c] = p0c, Q0a[c] = mc,∀a 6= 0, Qaa[c] = pc,∀a 6= 0,
Qab[c] = qc, ∀0 6= a 6= b 6= 0.

We apply the same idea to the correlation variables in the Laplace domain and set
Q̃00[c] = G0c/2, Q̃aa[c] = Gc/2, ∀a 6= 0, Q̃0a[c] = Ec, ∀a 6= 0, and Q̃ab[c] = Fc, ∀0 6=
a 6= b 6= 0.

At this point the crucial benefit of the replica method becomes obvious. Assuming replica continuity,

we have managed to reduce the evaluation of a continuous function to sampling it at integer points.

Assuming replica symmetry we have reduced the task of evaluating infinitely many integer points to

calculating 8 different correlations (4 of them in the original and 4 of them in the Laplace domain).
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The assumption of replica symmetry leads to

∑

a≤b
Q̃ab[c]Qab[c] = nEcmc +

n(n− 1)

2
Fcqc +

G0cp0c
2

+
n

2
Gcpc (8)

and

Mk{E,F,G,G0} =

∫

Rn+1

e
1
N

N∑

c=1
w2
ck

(

G0c
2 x20k+

n∑

a=1
Ecx0kxak+

Gc
2 x

2
ak+

n∑

b=a+1
Fcxakxbk

)

n∏

a=0

dPa(xak)

=

∫

Rn+1

e

G̃0k
2 x20k+

n∑

a=1
Ẽkx0kxak+

G̃k
2 x

2
ak+

n∑

b=a+1
F̃kxakxbk

n∏

a=0

dPa(xak) (9)

where

Ẽk
△
=

1

N

N∑

c=1

Ecw
2
ck , F̃k

△
=

1

N

N∑

c=1

Fcw
2
ck (10)

G̃k
△
=

1

N

N∑

c=1

Gcw
2
ck , G̃0k

△
=

1

N

N∑

c=1

G0cw
2
ck. (11)
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Next, we write Mk{E,F,G,G0} with a single quadratic term in the exponential argu-
ment by completing the square. Then, we apply the Hubbard-Stratonovich transform
to linearize the exponential argument.

Mk{E,F,G,G0} =

=

∫

e

G̃0k
2 x20k+

n∑

a=1
Ẽkx0kxak+

G̃k
2 x

2
ak+

n∑

b=a+1
F̃kxakxbk

n∏

a=0

dPa(xak)

=

∫

e

G̃0k
2 x20k+

F̃k
2

(
n∑

a=1
xak

)2

+
n∑

a=1
Ẽkx0kxak+

G̃k−F̃k
2 x2ak

n∏

a=0

dPa(xak)

=

∫∫

e

G̃0k
2 x20k+

n∑

a=1
Ẽkx0kxak+

√
F̃kzxak+

G̃k−F̃k
2 x2ak

Dz
n∏

a=0

dPa(xak)

=

∫

e
G̃0k
2 x2k

∫(∫

eẼkxkx̆k+
√
F̃kzx̆k+

G̃k−F̃k
2 x̆2kdP̆x̆k(x̆k)

)n

DzdPxk(xk)

(12)

The n + 1-dimensional integral over the prior distribution has become a 3D integral.
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Second, we evaluate eG{Q[c]} in (6). We use the replica symmetry to construct the
correlated Gaussian random variables vac out of independent zero-mean, unit-variance
Gaussian random variables uc, tc, zac by

v0c = uc

√

p0c −
m2
c

qc
− tc

mc√
qc

vac = zac
√
pc − qc − tc

√
qc, a > 0.

With that substitution, we get

eG(mc,qc,pc,p0c) =
1√
2πσ0

∫

R2

∫

R

exp




−

α

2σ20



uc

√

p0c −
m2
c

qc
− tcmc√

qc
− yc√

α





2



Duc

×





∫

R

exp

[

− α

2σ2

(

zc
√
pc − qc − tc

√
qc −

yc√
α

)2
]

Dzc





n

Dtc dyc

=

√
√
√
√

(1 + α
σ2
(pc − qc))1−n

1 + α
σ2
(pc − qc) + n α

σ2

(
σ20
α
+ p0c − 2mc + qc

) (13)

with the Gaussian measure Dz = exp(−z2/2) dz/
√
2π.
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Since the integral in (6) is dominated by the maximum argument of the exponential
function, the derivatives of

1

N

N∑

c=1



G{Q[c]}−α
∑

a≤b
Q̃ab[c]Qab[c]



 (14)

with respect to mc, qc, pc and p0c must vanish as N → ∞. Taking derivatives after
plugging (8) and (13) into (14), solving for Ec, Fc, Gc, and G0c and letting n → 0
yields for all c

Ec =
1

σ2 + α(pc − qc)
(15)

Fc =
σ20 + α (p0c − 2mc + qc)

[σ2 + α(pc − qc)]2

Gc = Fc − Ec (16)

G0c = 0. (17)

In order to proceed with the calculations, we specify a prior distribution.
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Gaussian Prior Distribution

Assume the Gaussian prior

pa(xak) =
1√
2π

e−x
2
ak/2 ∀a.

The integration in (12) can be performed explicitly and we find

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
=

√
√
√
√

(
1 + F̃k − G̃k

)1−n

(
1− G̃0k

) (
1 + F̃k − G̃k − nF̃k

)
− nẼ2

k

. (18)

In the large system limit, the integral in (7) is dominated by that value of the integration
variable which maximizes the argument of the exponential function. Thus, partial
derivations of

log
K∏

k=1

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
−α

N∑

c=1

nEcmc+
n(n− 1)

2
Fcqc+

G0cp0c
2

+
n

2
Gcpc (19)

with respect to Ec, Fc, Gc, G0c must vanish for all c as N → ∞.
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An explicit calculation of these derivatives yields

mc =
1

K

K∑

k=1

w2
ck

Ẽk

1 + Ẽk

(20)

qc =
1

K

K∑

k=1

w2
ck

Ẽ2
k + F̃k

(
1 + Ẽk

)2 (21)

pc =
1

K

K∑

k=1

w2
ck

Ẽ2
k + Ẽk + F̃k + 1
(
1 + Ẽk

)2 (22)

p0c =
1

K

K∑

k=1

w2
ck (23)

in the limit n→ 0 with (16) and (17).

Surprisingly, if we let the true prior to be binary and only the replicas to be Gaussian
we also find (20) to (23). Note from Chapter 1 that this setting corresponds to linear
MMSE detection.
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Collecting our previous results to evaluate the free energy, we find

− 1

K

∂

∂n
log Ξn =

1

K

∂

∂n

N∑

c=1

[

−G(mc, qc, pc, p0c) + αnEcmc +
αn(n− 1)

2
Fcqc +

αn

2
Gcpc

]

−
K∑

k=1

logMk

(
Ẽk, F̃k, G̃k, 0

)

=
1

2K

[
N∑

c=1

log
(

1 +
α

σ2
(pc − qc)

)

+ 2αEcmc + α(2n− 1)Fcqc + αGcpc

+
σ20 + α(p0c − 2mc + qc)

σ2 + α(pc − qc) + nσ20 + nα(p0c − 2mc + qc)

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk − nẼ2
k − nF̃k

n→0−→ 1

2K

[
N∑

c=1

log
(

1 +
α

σ2
(pc − qc)

)

+
Fc
Ec

+ 2αEcmc − αFcqc + αGcpc

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk

=
F(x)

K
.
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This is the final result for the mismatched detector. The six macroscopic parameters
Ec, Fc, Gc, mc, qc, pc are implicitly given by the simultaneous solution of the system of
equations (15) to (16) and (20) to (22) with the definitions (10) to (11) for all chip
times c. This system of equations can only be solved numerically.

Specializing our result to the matched detector by letting σ → σ0, we have Fc → Ec,
Gc → G0c, qc → mc, pc → p0c. This makes the free energy simplify to

F(x)

K
=

1

2K

[
N∑

c=1

log

(

1 +
α

σ20
(p0c −mc)

)

+ 1 + αEcmc

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽk

=
1

2K

[
N∑

c=1

σ20Ec − log
(
σ20Ec

)

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)

with

Ec =
1

σ20 +
α
K

K∑

k=1

w2
ck

1+Ẽk

. (24)

This result is more compact and it requires only to solve (24) numerically which is
conveniently done by fixed-point iteration.
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Comparing (24) to Girko’s law, Ẽk is recognized as the signal-to-interference and noise
ratio of user k.

Using the similarity of free energy and the entropy of the channel output allows for the
simple relationship

I(x,y)

K
=

F(x)

K
− 1

2α
(25)

between the (normalized) free energy and the (normalized) mutual information between
channel input signal x and channel output signal y given the channel matrix H .
Assuming that the channel is perfectly known to the receiver, but totally unknown to
the transmitter, (25) gives the channel capacity per user.
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Binary Prior Distribution

Consider a non-uniform binary prior

pa(xak) =
1 + tk
2

δ(xak − 1) +
1− tk
2

δ(xak + 1). (26)

Plugging the prior distribution into (12), we find

Mk(Ẽk, F̃k, G̃k, G̃0k) =

=

∫ 1+tk
2

coshn
(

z
√

F̃k + Ẽk +
λk
2

)

+ 1−tk
2

coshn
(

z
√

F̃k + Ẽk − λk
2

)

Dz

coshn
(
λk
2

)

exp
(
nF̃k−G̃0k−nG̃k

2

)

with tk = tanh(λk/2).
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In the large system limit, the integral in (7) is dominated by that value of the integration
variable which maximizes the argument of the exponential function. Thus, partial
derivations of

log
K∏

k=1

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
− α

N∑

c=1

nEcmc +
n(n− 1)

2
Fcqc +

G0cp0c
2

+
n

2
Gcpc

with respect to Ec, Fc, Gc, G0c must vanish for all c as N → ∞.

An explicit calculation of these derivatives gives

mc =
1

K

K∑

k=1

w2
ck

∫

1+tk
2

tanh
(

z
√

F̃k + Ẽk +
λk
2

)

+ 1−tk
2

tanh
(

z
√

F̃k + Ẽk − λk
2

)

Dz (27)

qc =
1

K

K∑

k=1

w2
ck

∫

1+tk
2 tanh2

(

z
√

F̃k + Ẽk +
λk
2

)

+ 1−tk
2 tanh2

(

z
√

F̃k + Ẽk − λk
2

)

Dz (28)

pc = p0c =
1

K

K∑

k=1

w2
ck (29)

in the limit n→ 0.
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Collecting our previous results to evaluate the free energy, we find

− 1

K

∂

∂n
log Ξn =

1

K

∂

∂n

N∑

c=1

[

−G(mc, qc, pc, p0c) + αnEcmc +
αn(n− 1)

2
Fcqc +

αn

2
Gcpc

]

−
K∑

k=1

logMk

(
Ẽk, F̃k, G̃k, 0

)

n→0−→ 1

2K

N∑

c=1

[

log
(

1 +
α

σ2
(pc − qc)

)

+
Fc
Ec

+ 2αEcmc − αFcqc + αGcpc

]

− 1

K

K∑

k=1

∫
1 + tk
2

log cosh

(

z

√

F̃k + Ẽk +
λk
2

)

+
1− tk
2

log cosh

(

z

√

F̃k + Ẽk −
λk
2

)

Dz +
1

2
log
(
1− t2k

)
− F̃k + G̃k

2

=
F(x)

K
.

This is the final result for the free energy of the mismatched detector. The six macro-
scopic parameters Ec, Fc, Gc,mc, qc, pc are implicitly given by the simultaneous solution
of the system of equations (15) to (16) and (27) to (29) with the definitions (10) to
(11) for all chip times c. This system of equations can only be solved numerically.

In case of multiple solutions, the correct solution is that one which minimizes the free energy.
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Specializing our result to the matched detector by letting σ → σ0, we have Fc → Ec,
Gc → G0c, qc → mc. This makes the free energy simplify to

F(x)

K
=

1

2K

N∑

c=1

[

log

(

1 +
α

σ20
(p0c −mc)

)

+ 1 + αEcmc

]

− 1

K

K∑

k=1

log
√

1− t2k −
Ẽk

2

+

∫

1+tk
2 log cosh

(

z
√

Ẽk + Ẽk +
λk
2

)

+ 1−tk
2 log cosh

(

z
√

Ẽk + Ẽk − λk
2

)

Dz

=
1

2K

N∑

c=1

[
σ20Ec − log

(
σ20Ec

)]
− 1

K

K∑

k=1

log
√

1− t2k

+

∫

1+tk
2

log cosh
(

z
√

Ẽk + Ẽk +
λk
2

)

+ 1−tk
2

log cosh
(

z
√

Ẽk + Ẽk − λk
2

)

Dz

where the macroscopic parameters Ec are given by

1

Ec
= σ20 +

α

K

K∑

k=1

w2
ck

[

1−
∫

1 + tk
2

tanh

(

z

√

Ẽk + Ẽk +
λk
2

)

+
1− tk
2

tanh

(

z

√

Ẽk + Ẽk −
λk
2

)

Dz

]

= σ20 +
α

K

K∑

k=1

w2
ck

(
1− t2k

)
∫ 1− tanh

(

z
√

Ẽk + Ẽk

)

1− t2k tanh
2
(

z
√

Ẽk + Ẽk

) Dz.
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Similar to the case of Gaussian priors, Ẽk can be shown to be a kind of signal-to-
interference and noise ratio, in the sense that the bit error probability of user k is given
by

Pr(x̂k 6= xk) =

∞∫

√
Ẽk

Dz.

An equivalent additive white Gaussian noise channel can be defined to model the
multiuser interference for any prior.

For any input alphabet to the channel mutual information is given by (25) with the
free energy corresponding to that input alphabet.
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MC-CDMA in Multipath Fading

Equivalent baseband vector channel in frequency domain:

y =
(

W ⊙ S
)

x + n

N × 1 N ×K N ×K K × 1 N × 1

frequency channel Hadamard spreading users’ noise
chips matrix product matrix data vector

• The noise n has i.i.d. Gaussian entries with zero-mean and unit variance.

• The columns of S are the random spreading sequences of the users.

• The columns of W are the random frequency responses of the users.
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Minimum Probability of Error for MAP Detector

Maximum a-posteriori detector:

x̂k = argmax
xk

Pr(xk|y,W )

In the large system limit, there is an equivalent AWGN channel with SINR Ẽk such
that

Pr(x̂k 6= xk|W ) =

∞∫

√
Ẽk

Dz = Q

(√

Ẽk

)

and

Pr(x̂k 6= xk) = E
W

Pr(x̂k 6= xk|W ) = E
W

Q

(√

Ẽk

)
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SINR of Equivalent AWGN Channel

For N,K large, solve the fixed-point system of equations

Ẽk =
1

N

N∑

c=1

Ecw
2
ck

Ec =
1

σ2n +
α

K

K∑

k=1

(1− tk)
2w2

ck

∫ 1− tanh
(

z
√

Ẽk + Ẽk

)

1− t2k tanh
2
(

z
√

Ẽk + Ẽk

)Dz

In practice, the fading statistics obey some structure:

• Asymptotic frequency-invariance on the uplink (reverse link)

• Rank-1 statistics on the downlink (forward link)
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Asymptotic Frequency Invariance (Uplink)

Ec = E ∀c
The fading is ergodic across the user population for each frequency c.

Ẽk =
Pk

σ2n +
α

K

K∑

k′=1

(1− tk′)
2Pk′

∫ 1− tanh
(

z
√

Ẽk′ + Ẽk′

)

1− t2k′ tanh
2
(

z
√

Ẽk′ + Ẽk′

)Dz

with

Pk =
1

N

N∑

c=1

w2
ck

The spectrum of the received signal is white (frequency-invariant).
Full diversity is achieved.
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Rank 1 Statistics (Downlink)

W = fuT ⇐⇒ wck = fcuk

All users experience the same fading channel except for a scalar factor uk.

Ẽk =
u2k
N

N∑

c=1

1

σ2n
f 2c

+
α

K

K∑

n=1

(1− tn)
2u2n

∫ 1− tanh
(

z
√

Ẽn + Ẽn

)

1− t2n tanh
2
(

z
√

Ẽn + Ẽn

)Dz

Full diversity is achieved.
The spectrum of the received signal is colored =⇒ degradation.
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Uplink vs. Downlink
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Uplink vs. Downlink
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Minimization of a Quadratic Form
Let

E :=
1

K
min
x∈X

xHJx

with x ∈ CK and J ∈ CK×K.

Example 1:
X = {x : xHx = K} =⇒ E = minλ(J )

for Wishart matrix −→ [1−√
α]

2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1−
√
πα
2

]2
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Minimization of a Quadratic Form
Let

E :=
1

K
min
x∈X

xHJx

with x ∈ CK and J ∈ CK×K.

Example 1:
X = {x : xHx = K} =⇒ E = minλ(J )

for Wishart matrix −→ [1−√
α]

2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1−
√
πα
2

]2
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Minimization of a Quadratic Form
Let

E :=
1

K
min
x∈X

xHJx

with x ∈ CK and J ∈ CK×K.

Example 1:
X = {x : xHx = K} =⇒ E = minλ(J )

for Wishart matrix −→ [1−√
α]

2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1−
√
πα
2

]2
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Minimization of a Quadratic Form
Let

E :=
1

K
min
x∈X

xHJx

with x ∈ CK and J ∈ CK×K.

Example 1:
X = {x : xHx = K} =⇒ E = minλ(J )

for Wishart matrix −→ [1−√
α]

2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

Example 3:
X = {x : |x|2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1−
√
πα
2

]2
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Minimization of a Quadratic Form
Let

E :=
1

K
min
x∈X

xHJx

with x ∈ CK and J ∈ CK×K.

Example 1:
X = {x : xHx = K} =⇒ E = minλ(J )

for Wishart matrix −→ [1−√
α]

2
+

Example 2:
X = {x : x2 = 1}K =⇒ ???

for Wishart matrix −→≈
[

1− α√
π

]2

+

General product set:

X = {x1 ∈ B1} × · · · × {xK ∈ BK} =⇒ ???
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for Wishart matrix −→≈
[

1−
√
πα
2

]2

+

Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground
state energy) of a quadratic Hamiltonian.

The quadratic form is written as a zero temperature limit

E = − lim
β→∞

1

βK
log
∑

x∈X
e−βK Tr(JxxH)

−→ − lim
β→∞

lim
K→∞

E
J

1

βK
log
∑

x∈X
e−βK Tr(JxxH)

with 1
β denoting temperature.
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Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground
state energy) of a quadratic Hamiltonian.

The quadratic form is written as a zero temperature limit

E = − lim
β→∞

1

βK
log
∑

x∈X
e−βK Tr(JxxH)

−→ − lim
β→∞

lim
K→∞

E
J

1

βK
log
∑

x∈X
e−βK Tr(JxxH)

with 1
β
denoting temperature and assumed to be self-averaging.
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Replica Continuity
We want

lim
K→∞

1

K
E
J
log
∑

x∈X
e−βK Tr(JxxH) = lim

K→∞
lim
n→0

1

nK
log E

J

(
∑

x∈X
e−βK Tr(JxxH)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n∏

a=1

∑

xa∈X
e−βK Tr(JxaxH

a )

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
−K Tr

(

Jβ
n∑

a=1
xax

H
a

)

= − lim
n→0

1

n

n∑

a=1

E
Q

βλa(Q)∫

0

RJ(−w)dw

with

Q :=
n∑

a=1

xax
H
a .
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Replica Continuity
We want

lim
K→∞

1

K
E
J
log
∑

x∈X
e−βK Tr(JxxH) = lim

K→∞
lim
n→0

1

nK
log E

J

(
∑

x∈X
e−βK Tr(JxxH)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n∏

a=1

∑

xa∈X
e−βK Tr(JxaxH

a )

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
−K Tr

(

Jβ
n∑

a=1
xax

H
a

)

= − lim
n→0

1

n

n∑

a=1

E
Q

βλa(Q)∫

0

RJ(−w)dw

with

Q :=
n∑

a=1

xax
H
a .
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Replica Continuity
We want

lim
K→∞

1

K
E
J
log
∑

x∈X
e−βK Tr(JxxH) = lim

K→∞
lim
n→0

1

nK
log E

J

(
∑

x∈X
e−βK Tr(JxxH)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n∏

a=1

∑

xa∈X
e−βK Tr(JxaxH

a )

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
−K Tr

(

Jβ
n∑

a=1
xax

H
a

)

= − lim
n→0

1

n

n∑

a=1

E
Q

βλa(Q)∫

0

RJ(−w)dw

with

Q :=
n∑

a=1

xax
H
a .
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Replica Continuity
We want

lim
K→∞

1

K
E
J
log
∑

x∈X
e−βK Tr(JxxH) = lim

K→∞
lim
n→0

1

nK
log E

J

(
∑

x∈X
e−βK Tr(JxxH)

)n

= lim
K→∞

lim
n→0

1

nK
log E

J

n∏

a=1

∑

xa∈X
e−βK Tr(JxaxH

a )

= lim
K→∞

lim
n→0

1

nK
log E

J

∑

x1∈X
· · ·
∑

xn∈X
e
−K Tr

(

Jβ
n∑

a=1
xax

H
a

)

= lim
K→∞

lim
n→0

1

nK
log E

Q
exp




−K

n∑

a=1

λa(βQ)∫

0

RJ(−w)dw






with
Qab :=

1

K
xH
axb =

1

K

K∑

k=1

x∗akxbk.
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Let

Ξn = lim
K→∞

1

K
log
∑

{xa∈X}
exp



−K
n∑

a=1

λa∫

0

R(−w)dw



 (30)

with λ1, . . . , λn denoting the eigenvalues of the n× n dimensional matrix βQ,

In order to perform the summation in (30), the Kn-dimensional space spanned by the
replicas is split into subshells

S(Q)
△
=
{
x1, . . . ,xn

∣
∣xH

axb = KQab

}
(31)

where the inner product of two replicated vectors xa and xb is constant in each subshell.
Noting that xH

axb is Hermitian, we can express Ξn as

Ξn = lim
K→∞

1

K
log

∫

eKI(Q)e−KG(Q)DQ, (32)

where

DQ =
n∏

a=1

dQaa

n∏

b=a+1

dℜQab dℑQab (33)
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is the appropriate integration measure (note that QH = Q),

G(Q) =
n∑

a=1

λa(βQ)∫

0

R(−w) dw (34)

and

eKI(Q) =
∑

{xa∈Bs}

n∏

a=1

δ
(
xH
axa −KQaa

)
× (35)

n∏

b=a+1

δ
(
ℜ
[
xH
axb −KQab

])
δ
(
ℑ
[
xH
axb −KQab

])

denotes the probability weight of the subshell. There are two reasons of following this
procedure and introducing the new variables Qab. First, this allows us to explicitly
sum over {xa} as will be seen below. Secondly, we expect that for large K a single
subshell will dominate Ξn, which will also be observed below. In the following the two
exponential terms in (32) are evaluated separately.
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We start with the evaluation of the measure eKI(Q).

For future convenience, we introduce the complex variables

Q̃
(I)
ab 1 ≤ a ≤ b ≤ n

Q̃
(Q)
ab 1 ≤ a < b ≤ n.

We also define the matrix Q̃ with elements

Q̃aa = Q̃(I)
aa (36)

Q̃ab =
Q̃

(I)
ab − jQ̃

(Q)
ab

2
(37)

Q̃ba =
Q̃

(I)
ab + jQ̃

(Q)
ab

2
(38)

where a < b.
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We may now write the Dirac measure of the elements of the Hermitian matrix

Pab = xH
axb −KQab

in terms of its inverse Laplace transform

δ (Paa) =

∫

J

exp
[
Q̃aaPaa

] dQ̃
(I)
aa

2πj
(39)

δ (ℜPab) δ (ℑPab) =
∫

J 2

eQ̃
(I)
abℜPab−Q̃

(Q)
ab ℑPabdQ̃

(I)
abdQ̃

(Q)
ab

(2πj)2
(40)

=

∫

J 2

eQ̃abPba+Q̃baPab
dQ̃

(I)
abdQ̃

(Q)
ab

(2πj)2
. (41)

with J = (t− j∞; t + j∞) for some t ∈ R and Pab = P ∗
ba.
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We may now express (35) as

eKI(Q)=
∑

{xa∈Bs}

∫

J n2

e

∑

a,b
Q̃ab(xH

a xb−KQab)
D̃Q̃ (42)

=

∫

J n2

e
−Ktr[Q̃Q]+

K∑

k=1
logMk(Q̃)D̃Q̃ (43)

where the integration measure is given by

D̃Q̃ =
n∏

a=1

(

dQ̃
(I)
aa

2πj

n∏

b=a+1

dQ̃
(I)
ab dQ̃

(Q)
ab

(2πj)2

)

(44)

and

Mk

(

Q̃
)

=
∑

{xa∈Bk}
e

∑

a,b
x∗axbQ̃ab

. (45)

In the limit of K → ∞ one of the exponential terms in (32) will dominate over all
others. Thus, only that extremal value of the correlation Qab is relevant for calculation
of the integral.
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To make further progress, we need to identify the saddle-point which dominates the
integrals. We invoke an important assumption on the structure of the matrices (Qab)
and (Q̃ab) at the saddle-point:

Assumption 1 (replica symmetry) When applying the replica method to solve the
saddle-point equations, we will assume that the extremal point is invariant to permu-
tations of the replica indexes.

The assumption of replica symmetry translates to searching over a subset of possible
saddle-points with specific symmetry properties of the matrix Q = (Qab). Indeed, we
require that

Qab = q ∀a 6= b

Qaa = q + χ/β ∀a
for some q and χ with χ ≥ 0 since Q has to be positive semidefinite. Thus we
distinguish the correlation between different replicas and autocorrelation of an individual
replica.
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Replica Symmetry

Q :=











q + χ
β q · · · q q

q q + χ
β

. . . q q
... . . . . . . . . . ...

q q . . . q + χ
β q

q q · · · q q + χ
β











with some macroscopic parameters q and χ.
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We apply the same idea to the correlation variables in the transform domain and set
with a modest amount of foresight

Q̃ab = β2f 2 ∀a 6= b

Q̃aa = β2f 2 − βe ∀a.
Note that despite the fact that Q is complex-valued in general, its values at the saddle-
point are in fact real-valued.

For the evaluation of G(Q) in (32), we can use replica symmetry to explicitly calculate
the eigenvalues λi. Considerations of linear algebra lead to the conclusion that the
eigenvalues χ and χ + βnq occur with multiplicities n − 1 and 1, respectively. Thus
we get

G(q, χ) = (n− 1)

χ∫

0

R(−w) dw +

χ+βnq∫

0

R(−w) dw. (46)
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Since the integral in (32) is dominated by the maximum argument of the exponential
function, the derivatives of

G(q, χ) + tr(Q̃Q) (47)

with respect to q and χ must vanish asK → ∞.3 The assumption of replica symmetry
leads to

tr(Q̃Q) = n(n− 1)β2f 2q + n
(
βf 2 − e

)
(βq + χ) . (48)

Taking derivatives after plugging (46) and (48) into (47) yields

nR(−χ− βnq) + n(n− 1)βf 2 + n
(
βf 2 − e

)
= 0 (49)

(n− 1)R(−χ) +R(−χ− βnq) + n
(
βf 2 − e

)
= 0 (50)

and solving for e and f gives

e = R(−χ) (51)

f =

√

R(−χ)−R(−χ− βnq)

βn

n→0−→
√

qR′(−χ). (52)

3It turns out that when limn→0 ∂nΞn is expressed in terms of e, f, q, χ, the relevant extremum is in fact a maximum and not a minimum. This is due to the
fact that when n drops below unity, the minima of a function become maxima and vice-versa. For a detailed analysis of this technicality, see [11].
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In addition, the replica symmetry assumption simplifies (45)

Mk(e, f) =
∑

{xa∈Bk}
e
β

n∑

a=1

[
(βf2−e)|xa|2+2

n∑

b=a+1
βf2ℜ{x∗axb}

]

(53)

=
∑

{xa∈Bk}
e
β2f2

∣
∣
∣
∣

n∑

a=1
xa

∣
∣
∣
∣

2

−
n∑

a=1
βe|xa|2

(54)

Note that the sets Bk enter the transmitted energy only via (54). Now, we apply the
complex Hubbard-Stratonovich transform

e|x|
2
=

∫

C

e2ℜ{xz
∗} e−|z|2dz

π︸ ︷︷ ︸
△
=Dz

(55)

to (54).
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With Hubbard-Stratonovich, we find

Mk(e, f) =
∑

{xa∈Bk}

∫

e
β

n∑

a=1
2fℜ{xaz∗}−e|xa|2

Dz (56)

=

∫



∑

x∈Bk

e2βfℜ{xz
∗}−βe|x|2





n

Dz. (57)

Moreover, for K → ∞, we have by the law of large numbers

logM(e, f) =
1

K

K∑

k=1

logMk(e, f) (58)

→
∫

log

∫
(
∑

x∈B
e2βfℜ{z

∗x}−βe|x|2
)n

DzdP(B). (59)
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In the large-system limit, the integral in (43) is dominated by that value of the inte-
gration variable which maximizes the exponent. Thus, partial derivatives of

logM(e, f)− tr(Q̃Q) (60)

with respect to f and e must vanish as K → ∞. An explicit calculation of the two
derivatives gives the following expressions for the macroscopic parameters q and χ

χ =
1

√

qR′(−χ)

∫∫ ∑

x∈Bℜ{z∗x}eβ2
√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

∑

x∈B e
β2
√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

Dz dP(B) (61)

q =

∫∫ ∑

x∈B |x|2eβ2
√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

∑

x∈B e
β2
√
qR′(−χ)ℜ{z∗x}−βR(−χ)|x|2

Dz dP(B)− χ

β
. (62)
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Finally, the fixed-point equations (61) and (62) simplify via the saddle point integration
rule to

χ =
1

√

qR′(−χ)

∫∫

ℜ argmin
x∈B

∣
∣
∣
∣
∣
z − R(−χ) x

√

qR′(−χ)

∣
∣
∣
∣
∣
z∗Dz dP(B) (63)

q =

∫∫
∣
∣
∣
∣
∣
argmin
x∈B

∣
∣
∣
∣
∣
z − R(−χ) x

√

qR′(−χ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

Dz dP(B) (64)

in the limit β → ∞. Note that the minimization with respect to the symbol x splits
the integration space of z into the Voronoi regions defined by the (appropriately scaled)
signal constellation B.

Random Matrix Theory for Wireless Communications c© Ralf R. Müller 2002-2013



7 Examples for Replica Calculations 201

Returning to the initial goal of the minization of the quadratic form, and collecting
previous results, we find with replica continuity that

E = lim
β→∞

1

β
lim
n→0

∂

∂n

[

(n− 1)

χ∫

0

R(−w) dw +

χ+βnq∫

0

R(−w) dw − logM(e, f)

+ n(n− 1)f 2β2q + n(f 2β − e)(χ + βq)

]

(65)

= lim
β→∞

1

β

χ∫

0

R(−w) dw − χ

β
R(−χ) + qχR′(−χ)

− 1

β

∫∫

log
∑

x∈B
e β2fℜ{z

∗x}−βe|x|2Dz dP(B). (66)
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We use l’Hospital’s rule, re-substitute χ and q, assume 0 < χ <∞ and finally obtain

E = q [R(−χ)− χR′(−χ)] .

Note that for any bound on the amplitude of the signal set B, the parameter q is finite.
Even without bound, q will remain finite for a well-defined minimization problem. The
parameter χ behaves in a more complicated manner. It can be both zero, finite, and
infinite as β → ∞ depending on the particular R-transform and the signal sets Bs.
For χ 6∈ (0,∞), the saddle-point limits have to be reconsidered.
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1st Order Replica Symmetry Breaking (1RSB)

Q :=

ai

µ
β columns

︷ ︸︸ ︷
aaaaaaaaaaaaaa














q + p + χ
β q + p q q · · · q q

q + p q + p + χ
β q q · · · q q

q q q + p + χ
β q + p . . . q q

q q q + p q + p + χ
β

... ...
... ... . . . . . . q q

q q q · · · q q + p + χ
β q + p

q q q · · · q q + p q + p + χ
β
















with the macroscopic parameters q, p and χ and the blocksize µ
β .
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1RSB Calculations

Redo, the same procedure as for RS, but now with more macroscopic parameters. The
parameter µ is chosen as to extremize the free energy.

Replica symmetry breaking was introduced and solved for the semicircle

law by Parisi in 1980.

Giorgio Parisi
born in Rome in 1948
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Higher order RSB Calculations

2RSB:
Recursively split the diagonal blocks of size µ

β
× µ

β
into subblocks of size µ2

β
× µ2

β
and

off-diagonal blocks. Generalize p into the pair (p1, p2).

General RSB:
Recursively, continue this procedure until infinite order. For infinite order you get the
exact result. Note that at infinite order you have to solve an infinite number of couple
fixed-point equations. Sometimes, they can be written as a functional equation.
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