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To maneuver, a satellite in orbit must use rocket engines (thrusters) to change
the magnitude or direction of its velocity. Because the orbital speed of satel-
lites is so large, the velocity changes required for maneuvering may also be
large, requiring the thrusters to use large amounts of propellant. 

How much and how quickly a satellite can maneuver depends on the
amount and type of propellant it carries. There are practical limits to the
amount of propellant a satellite can carry since it increases the total mass that
must be launched into orbit. These constraints on maneuvering in space have
important consequences for satellite operations. 

This section discusses the different types of satellite maneuvers and the
changes in satellite velocity required for each. Section 7 outlines the amount
of propellant required for these maneuvers.

B A S I C  S A T E L L I T E  M A N E U V E R S

When a satellite maneuvers, it changes orbit. Since the speed of a satellite is
related to its orbit, maneuvering can be complicated. 

Three basic maneuvers are used to change orbits: (1) changing the shape
or size of an orbit within the orbital plane; (2) changing the orbital plane by
changing the inclination of the orbit; and (3) changing the orbital plane by
rotating the plane around the Earth’s axis at constant inclination. (Recall that
all satellite orbits lie in a plane that passes through the center of the Earth.)

We discuss each of these in more detail below, as well as several common
orbital changes that use these basic maneuvers. Maneuvers within the orbital
plane allow the user to change the altitude of a satellite in a circular orbit,
change the shape of the orbit, change the orbital period, change the relative
location of two satellites in the same orbit, and de-orbit a satellite to allow it
to return to Earth. To indicate the scale of velocity changes required for some
common orbital maneuvers, Table 6.1 lists such maneuvers along with a char-
acteristic value of the velocity change needed in each case (see the Appendix
to Section 6 for more details).1

A velocity change is typically referred to as delta-V, or ∆V, since the term
“delta” is commonly used in technical discussions to indicate a change in
some quantity. To get a feel for what these numbers mean, it is helpful to
keep in mind that a speed of 1 km/s is roughly four times faster than a passen-
ger jet. In addition, as Section 7 shows, generating a velocity change of 2 km/s
with conventional propulsion technologies would require a satellite to carry
its own mass in propellant—thus doubling the mass of the satellite. 

Section 6: Maneuvering in Space

1. A general maneuver will be combination of these basic maneuvers. Designing a maneuver
that changes the altitude and orbital plane at the same time, rather than through sequential
maneuvers, can reduce the velocity change required.



Maneuvers that change the orbital plane of a satellite can require very large
changes in the satellite’s velocity, especially for satellites in low earth orbit (see
Table 6.1). This has important implications for the feasibility and utility of
space-based systems that require such maneuvers. 

M A N E U V E R S  W I T H I N  T H E  O R B I T A L P L A N E

Maneuvers that change the shape or size of a satellite’s orbit without changing
its orbital plane can be made by changing the magnitude but not the direction
of the velocity. These kinds of maneuvers can require significantly less ∆V than
maneuvers that change the direction of the velocity.

Changing the Shape of the Orbit

Consider a satellite that is initially in a circular orbit with altitude h. As dis-
cussed in Section 4, the laws of physics require it to have a particular speed
for that altitude, which is given by Figure 4.1 and Equation 4.2. If the speed
of the satellite is suddenly increased by ∆V at some point on the orbit (with-
out changing the direction of the velocity), the satellite does not go faster
around the same orbit; instead, the orbit becomes an ellipse in the same
orbital plane (see Figure 6.1). The perigee of the new orbit (where the satellite
is closest to Earth) lies at the point where the speed was increased, and this
point will remain at an altitude h. As is always the case for elliptical orbits, the
major axis passes through the center of the Earth, with the perigee and
apogee of the new orbit at opposite ends. The orbital altitude at apogee is
greater than h and depends on the value of ∆V, as discussed in the Appendix
to Section 6.

50 THE PHYSICS OF SPACE SECURITY

Table 6.1. This table shows the change in satellite velocity (∆V ) required for

various types of maneuvers and activities in space, where ∆θ is the change in

inclination. 

Type of Satellite Maneuver Required ∆V (km/s)

Changing orbital altitude within LEO (from 400 to 1,000 km) 0.3

Stationkeeping in GEO over 10 years 0.5–1

De-orbiting from LEO to Earth 0.5–2

Changing inclination of orbital plane in GEO

by ∆θ = 30° 2

by ∆θ = 90° 4

Changing orbital altitude from LEO to GEO (from 400 to 36,000 km) 4

Changing inclination of orbital plane in LEO

by ∆θ = 30° 4

by ∆θ = 90° 11

These numbers are calculated in the Appendix to Section 6. (LEO = low earth orbit, GEO =

geosynchronous orbit)



If the speed of a satellite on a circular orbit is reduced at some point on
the orbit by thrusting in the direction opposite to the satellite motion, that
point becomes the apogee of an elliptical orbit, with an altitude of h at
apogee. The perigee then lies at an altitude less than h.

As shown in the Appendix to Section 6, a relatively small value of ∆V
results in a significant change in altitude at apogee. As an example, for a satel-
lite in orbit at an altitude of 400 km, a ∆V of 0.1 km/s would lead to a change
in altitude at apogee of 350 km, so that apogee lies at an altitude of 750 km. 

In the more general case of an elliptical orbit, changing the speed but not
the direction of the velocity of the satellite results in another elliptical orbit,
but of a different shape and orientation within the plane. The resulting orbit
depends on both the value of ∆V and the point at which the velocity changed.
However, in two specific cases, an elliptical orbit can be changed into a circular
orbit, with one of two altitudes. Increasing the speed at apogee by the required
amount results in a circular orbit with an altitude equal to that at the apogee of
the ellipse. Decreasing the speed at perigee by a specific amount results in a cir-
cular orbit with an altitude equal to that at the perigee of the ellipse.

Changing the Altitude of a Satellite in a Circular Orbit

The strategy described above to change the shape of the orbit, can also be
used to increase the altitude of a circular orbit from h1 to h2, through a two-
step process (see Figure 6.2). The first step is to increase the speed of the
satellite by ∆V1 so that the resulting elliptical orbit has an altitude at apogee of
h2. Recall that the perigee of the new orbit lies at the point where the velocity
increase (∆V1) is applied and has an altitude of h1. Once this is done, the
speed of the satellite at apogee is less than its speed would be if it were on a
circular orbit with altitude h2. The second step is to change the elliptical orbit
the satellite is on to a circular one at altitude h2 by increasing the speed at
apogee by the appropriate amount (∆V2). By choosing ∆V1 to make the
apogee of the elliptical orbit at h2, the satellite’s velocity will be tangent to the
larger circular orbit (at point P2 in Figure 6.2), and ∆V2 needs to change only
the satellite’s speed and not its direction. 
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Figure 6.1. The speed of a satellite in a circular orbit with altitude h is increased

by ∆ V at the point shown. This point becomes the perigee of the new elliptical

orbit that the satellite will follow. 



The total ∆V required to make the orbital change described above is the
sum of the velocity changes applied in each of these two steps: ∆V = ∆V1 +
∆V2. These velocity changes are calculated in the Appendix to Section 6.

The elliptical orbit used to move between these two circular orbits, which
is tangent to both orbits, is called a Hohmann transfer orbit (see Figure 6.2).
This method is fuel-efficient since it requires the minimum ∆V needed to
transfer between two orbits. The time required for such a transfer is half the
period of the elliptical transfer orbit. 

This time can be shortened and the transfer done more quickly by apply-
ing a larger ∆V1 in the first step of the process than that described above. In
this case, the velocity of the satellite will not be tangent to the larger circular
orbit when it reaches that orbit, so ∆V2 will need to adjust the speed of the
satellite as well as rotate its direction to put it on the circular orbit. Since both
∆V1 and ∆V2 will be larger in this case, it is clear that using the Hohmann
transfer orbit requires the minimum energy for this transfer.

Satellites placed in geostationary orbits are frequently placed in a low earth
orbit initially, and then moved to geostationary orbit using a Hohmann trans-
fer orbit. 

The calculations in the Appendix to Section 6 show that for a satellite in
low earth orbit, a significant change in altitude requires a relatively small ∆V.
For example, maneuvering from a circular orbit at 400 km to a circular orbit
at 1,000 km requires a total ∆V of only 0.32 km/s. On the other hand, if the
satellite were transferred from a 400 km orbit to a geosynchronous orbit at
36,000 km altitude, this maneuver would require a total ∆V of 3.9 km/s. 

Not surprisingly, the ∆V required to change from one circular orbit to
another is related to the difference in orbital speeds of the two orbits. Since
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Figure 6.2. This figure shows the elliptical Hohmann transfer orbit between two

circular orbits, the initial one with altitude h1 and the final one with altitude h2.

∆V1 is applied at point P1 and ∆V2 at P1. The satellite travels only half an orbit

on the transfer orbit; it does not travel the half of the ellipse indicated by the

dashed line.



the orbital speed of circular orbits changes relatively slowly with altitude,
orbital changes do not require large values of ∆V unless the change in altitude
is very large. This is because the orbital speed is related not to the altitude of
the satellite (its distance above the Earth), but to the satellite’s distance from
the center of the Earth. A relatively large fractional change in altitude, say
from 500 to 1,000 km (a 100% change), represents only a small fractional
change in the distance to the center of the Earth, in this case from 6,870 to
7,370 km, a 7% change; as a result, the orbital speed changes by less than 4%.

Changing the Orbital Period

Since the orbital period of a satellite depends on the altitude and shape of the
orbit, maneuvers to change the shape and altitude of the orbit can be used to
change the period. Such maneuvers may be useful, for example, to vary the
revisit time of a reconnaissance satellite, making it less predictable. 

The equation for the change in period produced by a change in velocity is
given in the Appendix to Section 6. As an example, a satellite in a circular
orbit with an altitude of 400 km has an orbital speed of 7.67 km/s and a
period of 92.2 minutes. Increasing the orbital speed by 0.1 km/sec would
increase the period by about 3.6 minutes, while an increase of 0.3 km/sec
would increase the period by 10.8 minutes. As discussed above, these velocity
changes would cause the orbit to become elliptical: the resulting apogees
would have altitudes of 750 km and 1,460 km, respectively, while the perigee
would remain at 400 km.

Changing the Relative Location of Satellites in the Same Orbit

Changing the period of one satellite can change its position relative to other
satellites in the same orbit through a multi-step process. Consider, for exam-
ple, two satellites in the same circular orbit. Since they must have the same
speed, the distance between them will stay the same as they move around the
orbit. To change the distance between them, simply increasing the speed of
one of the satellites will not work, since that would change its orbit. 

Instead, one satellite can be moved relative to the other by putting it tem-
porarily into a higher or lower orbit to change its period, and then moving it
back into the original orbit after enough time has passed to put the satellites
in the desired relative positions. The amount of propellant required for this
process depends on how quickly the change must be made: a small ∆V leads
to a small change in period, and the satellites require a long time to reach the
desired relative position. 

For example, consider two satellites that are near one another in a circular
orbit at an altitude of 400 km. Giving one satellite a ∆V of 0.1 km/s to place it
on an elliptical orbit changes its period by 3.6 minutes, requiring about 13
orbits, or 20 hours, to move it halfway around the orbit relative to the second
satellite, which remains on the original orbit. Moving the first satellite back
onto the original circular orbit requires another ∆V of 0.1 km/s, for a total ∆V
of 0.2 km/s. Doubling the amount of ∆V cuts the transition time roughly in
half since it changes the period of the satellite by twice as much (7.2 minutes)
as in the previous example.
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This type of maneuvering can be used to rendezvous one satellite with
another. It can also be used to position multiple satellites around an orbit, as
discussed below, to increase the ground coverage of a satellite constellation.
These satellites can be placed in the same orbit by a single launcher, then
shifted around the orbit by this kind of maneuver. 

M A N E U V E R S  T H A T C H A N G E  T H E  O R B I T A L P L A N E

Maneuvers that change the plane of the orbit require changing the direction
of the velocity of the satellite. Since the orbital velocity of a satellite is very
large (it varies from roughly 3 to 8 km/sec for typical orbits—see Table 4.1),
changing its direction by a significant amount requires adding a large velocity
component perpendicular to the orbital velocity. Such large changes in veloc-
ity require large amounts of propellant.

Figure 6.3 shows an example for a satellite in a 500 km-altitude orbit, with
an orbital velocity of 7.6 km/sec. The figure illustrates that a ∆V of 2 km/s
rotates the orbital velocity by only 15 degrees.

Figure 6.3 shows that the larger the satellite’s velocity, the larger the value
of ∆V required to rotate the velocity by a given angle. As a result, changing
the plane of a satellite in a low altitude circular orbit will require more ∆V
than the same change at higher altitudes, because satellites travel at a slower
velocity at higher altitudes.

It is convenient to look at two different types of plane-changing maneu-
vers: those that change the inclination of the plane, and those that rotate the
plane at constant inclination. Recall that the orbital plane is partly described
by its inclination angle θ, which is measured with respect to the Earth’s equa-
torial plane (see Fig 4.3).

Maneuvers to Change Inclination

The simplest type of plane change to conceptualize is one that changes the
inclination of the orbital plane by an angle ∆θ. Such a maneuver requires rotat-
ing the velocity vector of the satellite by the same angle ∆θ (see Figure 6.4).2
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Figure 6.3. This figure shows a ∆V of 2 km/s being added to a speed of 7.6

km/s, which is the orbital speed of a satellite in a 500 km-altitude orbit. Even this

large ∆V will lead to only a relatively small change, rotating the orbital plane by

an angle of only 15°.

2. This can be thought of as rotating the plane about the line formed by the intersection of the
orbital plane and the equatorial plane.



Table 6.2 shows the ∆V required for several values of ∆θ for a satellite at an
altitude of 500 km; these values are calculated using Equation 6.13 in the
Appendix to Section 6.

Since the orbital speed decreases with altitude, the ∆V required for a given
change of ∆θ also decreases with orbital altitude, but the decrease is relatively
slow. For example, for orbits at 1,000-km altitude, the required ∆V is only 3%
lower than for orbits at 500 km (Table 6.2). On the other hand, the required
∆V at geosynchronous altitude (36,000 km) is about 40% of the value of ∆V
at 500 km. 

For this reason, rotations are made at high altitudes when possible. For,
example, consider a satellite that is intended for an equatorial orbit (zero
inclination) at geosynchronous altitude, but is launched into a plane with a
nonzero inclination due to the location of the launch site. The satellite is
placed in an orbit at geosynchronous altitude with nonzero inclination before
the orbit is rotated to have zero inclination.
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Table 6.2. This table shows values of ∆V required to change the inclination

angle θ by an amount ∆θ for a satellite at an altitude of 500 km.

∆θ (degrees) ∆V (km/s)

15 2.0

30 3.9

45 5.8

90 11

Figure 6.4. This figure shows two orbits with different inclinations. The velocity

vector for a satellite in each orbit is denoted by the arrows labeled V1 and V2.

For the satellite to change its orbit from one plane to the other, the satellite’s

thrusters must produce a ∆V large enough to rotate its velocity from V1 to V2.



Since the ∆V required for a given ∆θ decreases when the satellite’s speed
decreases, large rotations of the orbital plane can be made somewhat more
economically using a three-step process. First the satellite is given a ∆V to
increase its altitude at apogee. Since the satellite’s speed is slower at apogee, it
is rotated at that altitude, then given a final ∆V to reduce the altitude at
apogee to its original value. As discussed above, maneuvers that change the
altitude require relatively small values of ∆V; consequently, this three-step
procedure can, in some cases, require a lower overall ∆V than simply rotating
the plane of the original orbit. However, this procedure can take much longer
than a simple inclination change because it takes time for the satellite to move
into a higher orbit and then return.

As an example, consider a satellite in a circular orbit at an altitude of 500
km. For inclination changes of ∆θ less than about 40°, changing altitudes
before rotating requires more ∆V than rotating at the original altitude.
However, for rotations through larger angles, changing altitude first requires
less energy. For example, if ∆θ is 90°, performing the rotation at an altitude
of 10,000 km reduces the total required ∆V to 8.2 km/s, or 76% of the 10.8
km/s required for such a rotation at the original 500 km altitude. In this case,
the total transit time to and from the higher altitude is about 3.5 hours.
Rotating instead at an altitude of 100,000 km reduces the required ∆V by
nearly 40% to 6.6 km/s and increases the transit time to 37 hours. Going to
even higher altitudes reduces the required ∆V only marginally while further
increasing transit time. 

Rotating the Orbital Plane at Constant Inclination

Another maneuver that can require a large velocity change is rotating the orbital
plane around the Earth’s axis while keeping the inclination fixed.3 Such a
maneuver might be used if multiple satellites were put into orbit by a single
launch vehicle and then moved into different orbital planes—all with the same
inclination—to increase the ground coverage of the constellation. A set of three
satellites, for example, might be maneuvered to place each in a plane rotated
120° with respect to the others. The energy requirements of such maneuvers are
an important consideration when planning to orbit a constellation of satellites.

The ∆V required for this maneuver depends on the angle ∆Ω through
which the orbital plane is rotated around the Earth’s axis, as well as the incli-
nation angle θ of the orbit and the altitude (and therefore the speed) of the
satellite when the maneuver is carried out. 

Table 6.3 shows the ∆V required for a satellite in a circular orbit at an alti-
tude of 500 km for several rotation angles ∆Ω and two inclination angles θ.
For practical applications the rotation angle can be large, resulting in very
large values of ∆V. As above, the required ∆V decreases slowly with the alti-
tude of the orbit; values for a 1,000 km-altitude orbit are about 3% lower than
those for a 500 km orbit. 

56 THE PHYSICS OF SPACE SECURITY

3. This can be thought of as rotating the line formed by the intersection of the orbital plane
and the equatorial plane about the Earth’s axis, while keeping the inclination fixed. 



D E - O R B I T I N G  M A N E U V E R S

For some missions, an object in orbit will use its thrusters to accelerate out of
orbit and back toward the Earth. The Space Shuttle must do this to return to
Earth; similarly, an orbiting weapon intended to strike the Earth would need
to carry propellant to kick it out of orbit. The ∆V required for this maneuver
will depend on how fast the return to Earth must be. The dynamics of the de-
orbiting are complicated because once the satellite moves to low enough alti-
tudes, the increasing density of the atmosphere affects its trajectory.4

Figure 6.5 illustrates the de-orbiting process for three values of ∆V. This
example assumes a relatively high circular orbit—3,000 km—to show the de-
orbiting trajectories more clearly. At this altitude, the satellite has an orbital
velocity of 6.5 km/s. In this illustration, a thrust is applied instantaneously at
point P in a direction opposite to the satellite’s velocity, so that it reduces the
velocity by ∆V. This reduction in speed causes the satellite to follow an ellipti-
cal orbit with a perigee below its original altitude. If the perigee is low
enough, the orbit will intersect the Earth.

Making the satellite fall vertically to Earth under the influence of gravity
requires reducing its orbital speed to zero—a ∆V of 6.5 km/s. In this case, it
would take the satellite 19 minutes to fall to Earth and it would strike the
Earth at point O in Figure 6.5, directly below the point at which the velocity
change occurred (point P).5
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Table 6.3. This table shows the ∆V required for rotations of ∆Ω degrees of an

orbital plane around the Earth’s axis, for inclinations θ of 45 and 90 degrees.

These values assume the satellite is in a circular orbit at an altitude of 500 km.

θ = 45° θ = 90°

∆Ω (degrees) ∆V (km/s) ∆V (km/s)

45 4.1 5.8

90 7.6 10.8

120 9.3 13.2

4. These effects include drag forces, which slow the object, and lift forces, which are sideways
forces and pull the object off its trajectory. At high speeds, both effects can be important. 

5. Of course, due to the rotation of the Earth, the point on the Earth that was under the satel-
lite when the ∆V was applied would in general move during the time it took the satellite to
reach the Earth; the motion would range from zero at the poles to 500 km at the equator. 



Figure 6.5 also shows the reentry trajectory if the satellite’s orbital speed
were reduced by 2 km/s. In this case, it would take 26 minutes for the satellite
to fall to Earth, and it would hit the Earth at a point 6,200 km along the
Earth’s surface from point O. If the orbital speed were reduced by only 0.65
km/s, so that the satellite takes 60 minutes to de-orbit, it would hit the Earth
halfway around the world from point O—at a ground range of roughly
20,000 km. 

If ∆V were much less than 0.65 km/s, the satellite would not hit the Earth,
but would pass by the Earth at low altitude and follow an elliptical orbit to
return to point P. However, the drag of passing so low through the atmos-
phere on its near encounter with the Earth would reduce the satellite’s speed,
so that it would reach an altitude somewhat less than 3,000 km when it
returns to P and would slowly spiral downward on subsequent orbits until it
hit the Earth.6

A case more relevant to space security issues is a satellite in an orbit with
an altitude of 500 to 1,000 km, since this is where missile defense or ground-
attack satellites might be stationed. In calculating the de-orbit time and ∆V
required in this case, assume that the thrust given to the satellite is oriented
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Figure 6.5. This figure shows a satellite in an initial orbit at an altitude of 3,000

km, and the paths the satellite would follow if its speed were decreased at the

point P by the values of ∆V shown. Applying ∆V = 6.5 km/s gives the satellite

zero speed, and it falls vertically to the point O on Earth in a time t of 19

minutes. For smaller values of ∆V, the de-orbiting time t is longer. In each case,

the range r along the Earth’s surface is given for the impact point relative to the

point O.

6. The object may also be able to use lift forces to assist in de-orbiting, so that the trajectory
need not simply be determined by the object’s speed.



vertically downward toward the Earth. Applying thrust in this direction
results in somewhat shorter de-orbit times than simply reducing the orbital
speed as done for the cases illustrated in Figure 6.5.

For a satellite in a circular orbit at an altitude of 500 km (with an orbital
speed of 7.6 km/s), a ∆V of 0.7 km/s results in a de-orbit time of about 15 min-
utes, and 1 km/s in a de-orbit time of 10 minutes (see the Appendix to Section 6
for calculations). (The precise time required for the satellite to de-orbit depends
in part on its drag coefficient, which is partially determined by its shape.)

For a satellite in a circular orbit at an altitude of 1,000 km (with an orbital
speed of 7.4 km/s), a ∆V of 1.4 km/sec results in a de-orbit time of roughly 15
minutes, and a ∆V of 2 km/sec gives a time of 9 to 10 minutes. 

Higher values of ∆V can lead to shorter de-orbit times. Though the satel-
lite would need to carry a large amount of propellant, high ∆Vs have been dis-
cussed for kinetic energy weapons intended to attack ground targets, which
must hit their targets at high speeds. A ∆V of 4 km/s gives de-orbit times of 2
to 3 minutes from an altitude of 500 km, 4 to 5 minutes from 1,000 km, and
14 to 15 minutes from 3,000 km. A ∆V of 6 km/s results in de-orbit times of
1.5 to 2 minutes from an altitude of 500 km, 3 to 3.5 minutes from 1,000 km,
and 8.5 to 9.5 minutes from 3,000 km. Section 7 discusses the amount of pro-
pellant required for producing these values of ∆V.

Reentry Heating

An important issue in de-orbiting is that as the atmosphere slows the satellite
large amounts of heat build up in the layers of air around the satellite. (This
occurs as the kinetic energy of the satellite is converted to thermal energy of
the air, largely through compression of the air in front of the satellite.) 

If the object is not to burn up during re-entry, it must carry a heat shield
to withstand this intense heat. The heating rate increases rapidly with the
speed of the object moving through it and with the density of the atmos-
phere. If de-orbiting occurs too fast, the satellite will be moving at high
speeds low in the atmosphere where the atmospheric density is high, and this
can lead to extreme heating.

Atmospheric heating is important when considering the possibility of
delivering kinetic energy weapons either from space or by ballistic missile.
The motivation for such weapons is that their destructive power would come
from the kinetic energy resulting from their high speed rather than from an
explosive charge. To be effective, such weapons must hit the ground with very
high speed. For example, a mass must be moving at about 3 km/s for its
kinetic energy to be equal to the energy released in the explosion of an equal
mass of high explosive.7 The heat load on an object traveling faster than 3
km/s at atmospheric densities near the ground is very large. For comparison,
a modern U.S. nuclear reentry vehicle, which is designed to pass through the
atmosphere quickly to improve its accuracy, has a speed of about 2.5 km/s
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7. The energy released by TNT is roughly 1,000 calories per gram, which equals 4.2 × 106 J/kg.
The kinetic energy of a one kilogram mass moving at 3 km/s is V 2/2 = 4.5 × 106 J/kg. 



when it reaches the ground: designing the warhead to travel faster is limited
by its ability to withstand the heating. A penetrator made of a tungsten rod
would be more heat tolerant than a nuclear warhead, but the intense heating
at the tip of the rod could reduce its structural strength. Since an object trav-
eling at 5 km/s would have a heating rate eight times as high as an object trav-
eling at 2.5 km/s, a kinetic energy weapon traveling at 5 km/s would have to
withstand eight times the heating rate that a modern U.S. nuclear warhead is
designed to tolerate. 

Not only do atmospheric forces cause drag, which leads to heating, they
can also produce strong lateral forces—called lift forces—that change the
object’s trajectory. The reentering body can be designed to use the significant
lift forces resulting from its high speed in the atmosphere to maneuver in
directions perpendicular to its trajectory. Documents describing the goals for
ground-attack weapons state that these weapons should be able to travel
thousands of kilometers in these directions using only lift forces.

S T A T I O N K E E P I N G

A number of forces act on a satellite to change its orbit over time. These
include the slight asymmetries in the Earth’s gravitational field due to the fact
that the Earth is not completely spherically symmetric; the gravitational pull
of the Sun and Moon; solar radiation pressure; and, for satellites in low earth
orbit, atmospheric drag.

As a result, the satellite must periodically maneuver to maintain its pre-
scribed orbit. Thus, it must carry sufficient propellant for this task. While satel-
lite lifetimes used to be limited by the lifetime of the electronics in the satellite,
the quality of electronics has improved to the point that lifetimes are now typi-
cally limited by the amount of propellant carried for stationkeeping.8

How much propellant is needed for stationkeeping depends on several
factors. First, satellites that travel for all or part of their orbit at low altitudes
(up to several hundred kilometers) must compensate for more atmospheric
drag than those at high altitudes. This is especially necessary during high solar
activity when the outer parts of the Earth’s atmosphere expand, resulting in
increased drag at a given altitude. Second, the orbits of some satellites must
be strictly maintained, either to fulfill their missions or because their orbital
locations are governed by international agreements. For example, the loca-
tions of satellites in geosynchronous orbits are tightly controlled by interna-
tional rules to prevent satellites from interfering with one another. Third, the
propellant required depends on the type of thrusters used for stationkeeping,
and their efficiency. Until recently, conventional chemical thrusters were used
for stationkeeping, but other options that reduce propellant requirements are
now available. For example, ion thrusters, which provide lower thrust over
longer times, are discussed in Section 7.
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8. Bruno Pattan, Satellite Systems: Principles and Technologies (New York: Van Nostrand
Reinhold, 1993), 36.



To get a rough sense of how much maneuvering is required for station-
keeping in geostationary orbits, consider the Intelsat communication satel-
lites. Each year, these use an amount of propellant equal to roughly 2 to 2.5%
of their total initial mass (when placed in orbit) for stationkeeping. Thus, for
a ten-year satellite lifespan, a propellant mass of 20% to 25% of the satellite’s
initial mass is required for stationkeeping, which corresponds to a total ∆V
over ten years of roughly 0.5–1.0 km/s (see the Appendix to Section 6).

MANEUVERING IN SPACE 61



Section 6 Appendix: Technical Details of
Maneuvering

C H A N G I N G  T H E  S H A P E  O F T H E  O R B I T

A satellite in a circular orbit at altitude h will have a velocity ,
where G is the gravitational constant, Me is the mass of the Earth (GMe = 3.99
× 1014 m3/s2), and Re is the average radius of the Earth (6,370 km) (see the
Appendix to Section 4). If the speed of the satellite is suddenly increased by
∆V at some point on the orbit (without changing the direction of the veloc-
ity), the orbit becomes an ellipse. The perigee of the new orbit remains at alti-
tude h. The altitude at apogee depends on the value of ∆V. For small ∆V (i.e.,
∆V/V << 1), the change in altitude h at apogee is given approximately by9

(6.1)

This equation can be rewritten using r (h + Re) as

(6.2)

which shows that the fractional change in r at apogee is just four times the
fractional change in the velocity at perigee. 

Similarly, if the speed of a satellite on a circular orbit is reduced at some
point on the orbit, that point becomes the apogee of an elliptical orbit, and
the altitude at perigee is less than the altitude of the original orbit by an
amount given by Equations 6.1 and 6.2. 

Equation 6.1 shows why maneuvers that change altitudes take relatively lit-
tle ∆V: since the change in velocity is multiplied by the radius of the Earth,
even a relatively small change in velocity will lead to a significant change in h.
This is especially true for satellites maneuvering between low earth orbits,
since the altitude band of interest—about 1,000 km—is small compared to Re.
For a satellite orbiting at an altitude of 400 km, a ∆V of 0.1 km/s would lead
to a change in altitude at apogee of 350 km. 

If the original orbit is not circular, but elliptical with eccentricity e, the
approximate equations for the change in the altitude of the orbit at apogee
(∆ha) and perigee (∆hp) that result from a velocity change applied at perigee
(∆Vp) and at apogee (∆Va) are, respectively10
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10. Bate et al., 163.



(6.3)

and 

(6.4)

Note that these equations are only valid for ∆V/V << 1. For larger values of
∆V, the exact equations given below are required.

M A N E U V E R I N G  B E T W E E N  C I R C U L A R O R B I T S

Here we calculate the minimum ∆V required to increase the altitude of a cir-
cular orbit from h1 to h2, through a two-step process using a Hohmann trans-
fer orbit. The transfer orbit is an ellipse with its perigee at h1 and apogee at h2
and eccentricity e = (r2 – r1)/(r2 + r1), where ri hi + Re.

The first step is to move the satellite from the initial circular orbit onto the
transfer orbit by increasing the speed of the satellite from its initial circular
velocity to , where e is the eccentricity of the
transfer ellipse. This gives 

(6.5)

The speed of the satellite at apogee of the transfer orbit is ,
where is the velocity of a circular orbit at altitude h2. The second
step is to make the satellite’s orbit circular by increasing the speed at apogee
to V c

2. This gives 

(6.6)

The total ∆V required for this orbit change is just the sum of these two: 

(6.7)

For relatively small altitude changes, so that e << 1, this becomes 

(6.8)

Equation 6.8 shows that maneuvering from a circular orbit at 400 km to a
circular orbit at 1,000 km requires ∆Vtot = 0.32 km/s (in this case, e = 0.041
for the transfer orbit). Moving the satellite from a 400 km orbit to a geosyn-
chronous orbit at 36,000 km altitude requires using a transfer orbit with e =
0.71, so Equation 6.8 cannot be used; Equation 6.7 gives ∆Vtot = 3.9 km/s. 

Two other useful approximate expressions are those for the speed of a
satellite at perigee and apogee after a small change of a circular orbit with
radius r to an elliptical orbit with semi-major axis of length r + ∆r:
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(6.9)

where Vc is the speed of the satellite on the original circular orbit.11

C H A N G I N G  T H E  P E R I O D  O F A S A T E L L I T E

From Equation 4.5 for the period of an elliptical orbit with major axis a

(6.10)

and from Equation 4.4 for the speed of a satellite on an elliptical orbit

(6.11)

Combining these expressions, the change in period ∆P, for small eccentric-
ities, is given approximately by 

(6.12)

for ∆V/V << 1.

C H A N G I N G  T H E  I N C L I N A T I O N  O F T H E  O R B I T

Changing the inclination angle of an orbit by an angle ∆θ requires rotating
the velocity vector of the satellite by ∆θ. Vector addition shows that the
required ∆V is 

(6.13)

where V is the speed of the satellite when the maneuver occurs.
For circular orbits, the required ∆V decreases with orbital altitude, since

the orbital speed decreases with altitude; in this case, ∆V is proportional
to .

R O TA T I N G  T H E  O R B I TA L P L A N E  A T C O N S TA N T I N C L I N A T I O N

For circular orbits, the ∆V required to rotate an orbital plane with an inclina-
tion angle θ by an angle ∆Ω around the Earth’s axis is 

(6.14)
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where V is the speed of the satellite when the maneuver occurs.12 As with the
previous maneuver, the required ∆V decreases with the altitude of the orbit,
since V does.

This process is also known as changing the right ascension of the ascend-
ing node.

G E N E R A L R O T A T I O N S

For circular orbits, the ∆V required for a maneuver that both changes the
inclination by ∆θ and rotates the orbital plane by an angle ∆Ω around the
Earth’s axis is given by13

(6.15)

where V is the speed of the satellite when the maneuver occurs, θ1 and θ2 are
the initial and final values of the inclination, and ∆θ θ1 – θ2. Notice that
this equation reduces to Equations 6.13 and 6.14 for ∆Ω = 0 and ∆θ = 0,
respectively. As with the previous maneuvers, the required ∆V decreases with
the altitude of the orbit.

D E - O R B I T I N G

De-orbiting times and trajectories were calculated using a computer program
that integrates the equations of motion for an object, assuming a round Earth
with an atmosphere. We assumed the satellite was initially in a circular orbit
at altitude h. A velocity change vector of magnitude ∆V was added to the
orbital velocity vector, with the change pointing either opposite to the veloc-
ity vector or in a vertical direction pointing toward the Earth. We repeated
the calculation using a range of drag coefficients for the object, but assumed
no lift forces. The drag coefficient enters the calculations through the combi-
nation mg/(Cd A) called the ballistic coefficient, where m is the mass of the
object, g is the acceleration of gravity at the altitude of the object, Cd is the
drag coefficient, and A is the cross-sectional area of the object perpendicular
to its motion.

In particular, we varied the ballistic coefficient by a factor of 10 from a
value comparable to a modern strategic warhead (150,000 Newtons/m2

(N/m2), or 3,000 lb/ft2), to a value for an object with much higher drag
(15,000 N/m2, or 300 lb/ft2). As an illustration, consider the case in which the
velocity change vector is oriented in the vertical direction. Results are given in
Table 6.4.
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The heating rate for an object moving through the atmosphere is roughly
proportional to ρV 3, where ρ is the atmospheric density.14 This expression
shows that the heating rate increases rapidly with velocity and with decreasing
altitude, since the atmospheric density increases roughly exponentially with
decreasing altitude. 

S T A T I O N K E E P I N G

Data from the Intelsat communication satellites suggest the scale of the ∆V
required for stationkeeping in geosynchronous orbit using conventional
thrusters.15 The Intelsat V satellite has a mass of 1,005 kg when placed in orbit,
of which 175 kg is propellant (with a specific impulse of 290 to 300 s),
intended for a lifetime of 7 years. The propellant mass is 17.4% of this initial
mass; assuming all the propellant is used for stationkeeping, this corresponds
to 2.5% of the initial mass used per year. The Intelsat VII has a mass of 2,100
kg when placed in orbit, of which 650 kg is propellant (with a specific
impulse of 235 s) and a planned lifetime of 17 years. The propellant is 31% of
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Table 6.4. This table lists the de-orbiting time for a satellite in a circular orbit at

the given altitude when a velocity change ∆V is applied in the vertical direction.

The results are given for two different values of the ballistic coefficient, which

is inversely proportional to the drag coefficient of the object; the larger value is

comparable to that of a modern strategic ballistic missile warhead.

Altitude (km) ∆V (km/s) De-orbiting Time (min)

Ballistic coefficient Ballistic coefficient

150,000 N/m2 15,000 N/m2

(3,000 lb/ft2) (300 lb/ft2)

500 0.7 14.6 15.2

1 9.4 10.3

2 4.4 5.5

4 2.1 2.9

1,000 1.4 14.4 15.3

2 9.1 10.2

4 4.3 5.1

6 2.8 3.4

3,000 4 14.0 15.1

6 8.7 9.4

14. For a more detailed discussion of heating at hypersonic speeds, see John Anderson,
Hypersonic and High Temperature Gas Dynamics (New York: McGraw-Hill, 1989), 291.

15. Robert A. Nelson, “Rocket Science: Technology Trends in Propulsion,” Via Satellite, June
1999, http://www.aticourses.com/rocket_tutorial.htm, accessed January 20, 2005.



the initial mass, and 1.8% is used each year. This indicates that these satellites
use roughly 2 to 2.5% of their initial mass per year for stationkeeping. Over a
10-year lifespan, this would require that 20 to 25% of the initial mass be pro-
pellant reserved for stationkeeping. Using the rocket equation (see Section 7),
these masses can be shown to correspond to a total ∆V over 10 years of
roughly 0.5–1.0 km/s. 
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