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Chapter 1

Density Estimation

1.1 Introduction

1.1.1 The probability density function

The probability distribution of a continuous–valued random variable X is conventionally
described in terms of its probability density function (pdf), f(x), from which probabilities
associated with X can be determined using the relationship

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx .

The objective of many investigations is to estimate f(x) from a sample of observations
x1, x2, ..., xn . In what follows we will assume that the observations can be regarded as
independent realizations of X.

The parametric approach for estimating f(x) is to assume that f(x) is a member of some
parametric family of distributions, e.g. N(µ, σ2), and then to estimate the parameters of
the assumed distribution from the data. For example, fitting a normal distribution leads
to the estimator

f̂(x) =
1√
2πσ̂

e(x−µ̂)/2σ̂2

, x ∈ IR ,

where µ̂ = 1
n

∑n
i=1 xi and σ̂2 = 1

n−1

∑n
i=1(xi − µ̂)2.

This approach has advantages as long as the distributional assumption is correct, or at
least is not seriously wrong. It is easy to apply and it yields (relatively) stable estimates.

The main disadvantage of the parametric approach is lack of flexibility. Each parametric
family of distributions imposes restrictions on the shapes that f(x) can have. For exam-
ple the density function of the normal distribution is symmetrical and bell–shaped, and
therefore is unsuitable for representing skewed densities or bimodal densities.

2
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1.1.2 Non–parametric estimation of f(x) — histograms

The idea of the non–parametric approach is to avoid restrictive assumptions about the
form of f(x) and to estimate this directly from the data. A well–known non–parametric
estimator of the pdf is the histogram. It has the advantage of simplicity but it also has
disadvantages, such as lack of continuity. Secondly, in terms of various mathematical
measures of accuracy there exist alternative non–parametric estimators that are superior
to histograms.

To construct a histogram one needs to select a left bound, or starting point, x0, and the
bin width, b. The bins are of the form [x0 +(i−1)b, x0 + ib), i = 1, 2, ..., m. The estimator
of f(x) is then given by

f̂(x) =
1

n

Number of observations in the same bin as x

b

More generally one can also use bins of different widths, in which case

f̂(x) =
1

n

Number of observations in the same bin as x

Width of bin containing x

The choice of bins, especially the bin widths, has a substantial effect on the shape and
other properties of f̂(x). This is illustrated in the example that follows.

Example 1
We consider a population of 689 of a certain model of new cars. Of interest here is the
amount (in DM) paid by the customers for “optional extras”, such as radio, hubcaps,
special upholstery, etc. . The top histogram in Figure 1.1 relates to the entire population;
the bottom histogram is for a random sample of size 10 from the population.

Figure 1.2 shows three histogram estimates of f(x) for the sample, for different bin widths.
Note that the estimates are piecewise constant and that they are strongly influenced by
the choice of bin width. The bottom right hand graph is an example of a so–called kernel
estimator of f(x). We will be examining such estimations in more detail.

1.2 Kernel density estimation

1.2.1 Weighting functions

From the definition of the pdf, f(x), of a random variable, X, one has that

P (x− h < X < x + h) =

x+h∫

x−h

f(t)dt ≈ 2hf(x)
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Figure 1.1: Histogram for all cars in the population and for a random sample of size n = 10.
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Figure 1.2: Histograms with different bin widths and a kernel estimate of f(x) for the same
sample.
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and hence

f(x) ≈ 1

2h
P (x− h < X < x + h) (1.1)

The above probability can be estimated by a relative frequency in the sample, hence

f̂(x) =
1

2h

number of observations in (x− h, x + h)

n
(1.2)

An alternative way to represent f̂(x) is

f̂(x) =
1

n

n∑
i=1

w(x− xi, h) , (1.3)

where x1, x2, ..., xn are the observed values and

w(t, h) =

{
1
2h

for |t| < h ,
0 otherwise .

It is left to the reader as an exercise to show that f̂(x) defined in (1.3) has the properties
of a pdf, that is f̂(x) is non–negative for all x, and the area between f̂(x) and the x–axis
is equal to one.

One way to think about (1.3) is to imagine that a rectangle (height 1
2h

and width 2h) is
placed over each observed point on the x–axis. The estimate of the pdf at a given point
is 1/n times the sum of the heights of all the rectangles that cover the point. Figure 1.3
shows f̂(x) for such rectangular “weighting functions” and for different values of h.

We note that the estimates of f̂(x) in Figure 1.3 fluctuate less as the value of h is increased.
By increasing h one increases the width of each rectangle and thereby increases the degree
of “smoothing”.

Instead of using rectangles in (1.3) one could use other weighting functions, for example
triangles:

w(t, h) =

{
1
h
(1− |t|/h) for |t| < h ,

0 otherwise .

Again it is left to the reader to check that the resulting f̂(x) is indeed a pdf. Examples of
f̂(x) based on the triangular weighting function and four different values of h are shown
in Figure 1.4. Note that here too larger values of h lead to smoother estimates f̂(x).

Another alternative weighting function is the Gaussian:

w(t, h) =
1√
2πh

e−t2/2h2

, −∞ < t < ∞ .

Figure 1.5 shows f̂(x) based on this weighting function for different values of h. Again the
fluctuations in f̂(x) decrease with increasing h.
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Figure 1.3: Estimates of f(x) for different values of h. The abbreviation bw (short for
bandwidth) is used here instead of h.
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Figure 1.4: Estimates of f(x) based on triangular weighting functions.
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Figure 1.5: Estimates of f(x) based on Gaussian weighting functions.

1.2.2 Kernels

The above weighting functions, w(t, h), are all of the form

w(t, h) =
1

h
K

(
t

h

)
, (1.4)

where K is a function of a single variable called the kernel.

A kernel is a standardized weighting function, namely the weighting function with h = 1.
The kernel determines the shape of the weighting function. The parameter h is called
the bandwidth or smoothing constant. It determines the amount of smoothing applied in
estimating f(x). Six examples of kernels are given in Table 1.
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Efficiency (exact
Kernel K(t) and to 4 d.p.)

Epanechnikov
3
4
(1− 1

5
t2)/

√
5 for |t| < √

5
0 otherwise

1

Biweight
15
16

(1− t2)2 for |t| < 1
0 otherwise

(
3087
3125

)1/2 ≈ 0.9939

Triangular 1− |t| for |t| < 1, 0 otherwise
(

243
250

)1/2 ≈ 0.9859

Gaussian 1√
2π

e−(1/2)t2
(

36π
125

)1/2 ≈ 0.9512

Rectangular 1
2

for |t| < 1, 0 otherwise
(

108
125

)1/2 ≈ 0.9295

Table 1.1: Six kernels and their efficiencies (that will be discussed in section 1.3.4).

In general any function having the following properties can be used as a kernel:

(a)

∫
K(z)dz = 1 (b)

∫
zK(z)dz = 0 (c)

∫
z2K(z)dz := k2 < ∞ (1.5)

It follows that any symmetric pdf is a kernel. However, non–pdf kernels can also be used,
e.g. kernels for which K(z) < 0 for some values of z. The latter type of kernels have the
disadvantage that f̂(x) may be negative for some values of x.

Kernel estimation of pdfs is charactized by the kernel, K, which determines the shape
of the weighting function, and the bandwidth, h, which determines the “width” of the
weighting function and hence the amount of smoothing. The two components determine
the properties of f̂(x). Considerable research has been carried out (and continues to be
carried out) on the question of how one should select K and h in order to optimize the
properties of f̂(x). This issue will be discussed in the sections that follow.

1.2.3 Densities with bounded support

In many situations the values that a random variable, X, can take on is restricted, for
example to the interval [0, ∞), that is f(x) = 0 for x < 0. We say that the support of
f(x) is [0, ∞). Similarly if X can only take on values in the interval (a, b) then f(x) = 0
for x 6∈ (a, b); the support of f(x) is (a, b).

In such situations it is clearly desirable that the estimator f̂(x) has the same support as
f(x). Direct application of kernel smoothing methods does not guarantee this property
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and so they need to be modified when f(x) has bounded support. The simplest method
of solving this problem is use a transformation. The idea is to estimate the pdf of a
transformed random variable Y = t(X) which has unbounded support. Suppose that the
pdf of Y is given by g(y). Then the relationship between f and g is given by

f(x) = g(t(x))t′(x) . (1.6)

One carries out the following steps:

(a) Transform the observations yi = t(xi), i = 1, 2, ..., n.

(b) Apply the kernel method to estimate the pdf g(y).

(c) Estimate f(x) using f̂(x) = ĝ(t(x))t′(x).

Example 2
Suppose that f(x) has support [0, ∞).
A simple transformation t : [0, ∞) → (−∞, ∞) is the log–transformation, i.e. f(x) =

log(x). Here t′(x) = d log(x)
dx

= 1
x

and so

t̂(x) = ĝ(log(x))
1

x
(1.7)

The resulting estimator has support [0, ∞). Figure 1.6 provides an illustration for this
case for the sample considered in Example 1.

(a) The graph on the top left gives the estimated density f̂(x) obtained without restric-
tions on the support. Note that f̂(x) ≥ 0 for some x < 0.

(b) The graph on the top right shows a modified version of f̂(x) obtained in (a), namely

f̂c(x) =





f̂(x)
∞R
0

f̂(x)dx
for x ≥ 0

0 for x < 0

(1.8)

Here f̂c(x) is set equal to zero for x < 0 and the f̂(x) is rescaled so that the area
under the estimated density equals one.

(c) The bottom graph shows a kernel estimator of g(y), that is the density of Y = log(X).

(d) The bottom right graph shows the transformed estimator f̂(x) obtained via ĝ(y).

Example 3
Suppose that the support of f(x) is (a, b). Then a simple transformation t : (a, b) →
(−∞, ∞) is f(x) = log

(
x−a
b−x

)
. Here t′(x) = 1

x−a
+ 1

b−x
and so

t̂(x) = ĝ

(
log

(
x− a

b− x

))(
1

x− a
+

1

b− x

)
(1.9)
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Figure 1.6: Kernel estimates of pdf with support [0,∞).
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Figure 1.7: Kernel estimates of a pdf with support (0,25).
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Figure 1.8: Application of the normit transformation for f̂(x) with support (0,25).

Figure 1.7 provides an illustration of this case with a = 0 and b = 25.

The four figures shown are analogous to those in Example 2 but with

f̂c(x) =





f̂(x)
bR

a
f̂(x)dx

for a < x < b

0 otherwise

(1.10)

for the graph on the top right.

Example 4
As an alternative to the transformation in Example 2 one can use the inverse of some
probability distribution function, such as the normal; e.g. f(x) = Φ−1

(
x−a
b−a

)
, where Φ is

the distribution function of the standard normal. Here too t : (a, b) → (−∞, ∞) and the
estimator is

f̂(x) =

{
ĝ

(
Φ−1

(
x−a
b−a

))
b−a

ϕ(x−a
b−a )

for a < x < b ,

0 otherwise ,
(1.11)

where ϕ(x) is the pdf of a standard normal distribution.

The application of this transformation is illustrated in Figure 1.8 in which the four figures
are analogous to those in the previous two examples.
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The above three examples illustrate that the transformation procedure can lead to a con-
siderable change in the appearance of the estimate f̂(x). By applying kernel smoothing
to the transformed values one is, in effect, applying a different kernel at each point in the
estimation of f(x).

1.3 Properties of kernel estimators

1.3.1 Quantifying the accuracy of kernel estimators

There are various ways to quantify the accuracy of a density estimator. We will focus here
on the mean squared error (MSE) and its two components, namely bias and standard error
(or variance). We note that the MSE of f̂(x) is a function of the argument x:

MSE(f̂(x)) = E(f̂(x)− f(x))2 (1.12)

= (E f̂(x)− f(x))2 + E(f̂(x)− Ef̂(x))2

= Bias2(f̂(x)) + V ar(f̂(x))

A measure of the global accuracy of f̂(x) is the mean integrated squared error (MISE)

MISE(f̂) = E

∞∫

−∞

(f̂(x)− f(x))2dx (1.13)

=

∞∫

−∞

MSE(f̂(x))dx

=

∞∫

−∞

Bias2(f̂(x))dx +

∞∫

−∞

V ar(f̂(x))dx

We consider each of these components in term.

1.3.2 The bias, variance and mean squared error of f̂(x)

E(f̂(x)) =
1

n

n∑
i=1

1

h
E K

(
x− xi

h

)
(1.14)

=
1

n

n∑
i=1

1

h

∞∫

−∞

K

(
x− t

h

)
f(t)dt

=
1

h

∞∫

−∞

K

(
x− t

h

)
f(t)dt
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The transformation z = x−t
h

, i.e. t = hz + x, |dz
dt
| = 1

h
yields

E(f̂(x)) =

∞∫

−∞

K(z)f(x− hz)dz

Expanding f(x− hz) in a Taylor series yields

f(x− hz) = f(x)− hzf ′(x) +
1

2
(hz)2f ′′(x) + o(h2) ,

where o(h2) represents terms that converge to zero faster than h2 as h approaches zero.
Thus

E(f̂(x)) =

∞∫

−∞

K(z)f(x)dz −
∞∫

−∞

K(z)hzf ′(x)dz (1.15)

+

∞∫

−∞

K(z)
(hz)2

2
f ′′(z)dz + o(h2)

= f(x)

∞∫

−∞

K(z)dz − hf ′(x)

∞∫

−∞

zK(z)dz

+
h2

2
f ′′(x)

∞∫

−∞

z2K(z)dz + o(h2)

= f(x) +
h2

2
k2f

′′(x) + o(h2) (1.16)

Bias(f̂(x)) ≈ h2

2
k2f

′′(x) (1.17)

This depends on





h Bias (f̂(x))
h−→
0

0 ,

k2 the “variance” of the kernel ,
f ′′(x) the curvature of the density at the point x .

The variance of f̂(x) is given by

V ar(f̂(x)) = V ar

(
1

nh

n∑
i=1

K

(
x− xi

h

))

=
1

n2h2

n∑
i=1

V ar

(
K

(
x− xi

h

))
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because the xi, i = 1, 2, ..., n, are independently distributed. Now

V ar

(
K

(
x− xi

h

))
= E

(
K

(
x− xi

h

)2
)
−

(
EK

(
x− xi

h

))2

=

∫
K

(
x− t

h

)2

f(t)dt−
(∫

K

(
x− t

h

)
f(t)dt

)2

V ar(f̂(x)) =
1

n

∫
1

h2
K

(
x− t

h

)2

f(t)dt− 1

n

(
1

h

∫
K

(
x− t

h

)
f(t)dt

)2

=
1

n

∫
1

h2
K

(
x− t

h

)2

f(t)dt− 1

n

(
f(x) + Bias(f̂(x))

)2

Substituting z = x−t
h

one obtains

V ar(f̂(x)) =
1

nh

∫
K(z)2f(x− hz)dz − 1

n

(
f(x) + o(h2)

)2

Applying a Taylor approximation yields

V ar(f̂(x)) =
1

nh

∫
K(z)2(f(x)− hzf ′(x) + o(h))dz − 1

n

(
f(x) + o(h2)

)2

Note that if n becomes large and h becomes small then the above expression becomes
approximately:

V ar(f̂(x)) ≈ 1

nh
f(x)

∫
K2(z)dz (1.18)

We note that the variance decreases as h increases.

The above approximations for the bias and variance of f̂(x) lead to

MSE(f̂(x)) = Bias2(f̂(x)) + V ar(f̂(x)) (1.19)

≈ 1

4
h4k2

2f
′′(x)2 +

1

nh
f(x)j2

where k2 :=
∫

z2K(z)dz and j2 :=
∫

K(z)2dz.

Integrating (1.19) with respect to x yields

MISE(f̂) ≈ 1

4
h4k2

2β(f) +
1

nh
j2 , (1.20)

where β(f) :=
∫

f ′′(x)2dx.

Of central importance is the way in which MISE(f̂) changes as a function of the bandwidth
h. For very small values of h the second term in (1.20) becomes large but as h gets larger so
the first term in (1.20) increases. There is an optimal value of h which minimizes MISE(f̂).
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1.3.3 Optimal bandwidth

Expression (1.20) is the measure that we use to quantify the performance of the estimator.
We can find the optimal bandwidth by minimizing (1.20) with respect to h. The first
derivative is given by

d MISE(f̂)

dh
= h3k2

2β(f)− 1

nh2
j2 .

Setting this equal to zero yields the optimal bandwidth, hopt, for the given pdf and kernel:

hopt =

(
1

n

γ(K)

β(f)

)1/5

, (1.21)

where γ(K) := j2k
−2
2 . Substituting (1.21) for h in (1.20) gives the minimal MISE for the

given pdf and kernel. After some manipulation this can be shown to be

MISEopt(f̂) =
5

4

(
β(f)j4

2k
2
2

n4

)1/5

. (1.22)

We note that hopt depends on the sample size, n, and the kernel, K. However, it also
depends on the unknown pdf, f , through the functional β(f). Thus as it stands expres-
sion (1.21) is not applicable in practice. However, the “plug–in” estimator of hopt, to be
discussed later, is simply expression (1.21) with β(f) replaced by an estimator.

1.3.4 Optimal kernels

The MISE(f̂) can also be minimized with respect to the kernel used. It can be shown (see,
e.g., Wand and Jones, 1995) that Epanechnikov kernel is optimal in this respect.

K(z) =

{
3

4
√

5
(1− 1

5
z2) for |z| < √

5

0 otherwise .

This result together with (1.22) enables one to examine the impact of kernel choice on
MISEopt(f̂). The efficiency of a kernel, K, relative to the optimal Epanechnikov kernel,
KEP , is defined as

Eff(K) =

(
MISEopt(f̂) using KEP

MISEopt(f) using K

)5/4

=

(
k2

2j
4
2 using KEP

k2
2j

4
2 using K

)5/4

(1.23)

The efficiencies for a number of well–known kernels are given in Table 1. It is clear that
the selection of kernel has rather limited impact on the efficiency.

The rectangular kernel, for example, has an efficiency of approximately 93%. This can
be interpreted as follows: The MISEopt(f̂) obtained using an Epanechnikov kernel with

n = 93 is approximately equal to the MISEopt(f̂) obtained using a rectangular kernel with
n = 100.
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Figure 1.9: The pdf for the car example and a histogram for a sample of size 20.

1.4 Selection of the bandwidth

Selection of the bandwidth of kernel estimator is a subject of considerable research. We
will outline four popular methods.

1.4.1 Subjective selection

One can experiment by using different bandwidths and simply select one that “looks right”
for the type of data under investigation. Figure 1.9 shows the pdf (for the car example) and
a histogram for random sample of size n = 20. Figure 1.10 shows kernel density estimation
(based on a Gaussian kernel) of f(x) using 4 different bandwidths.

Also shown is the density of the population. The latter is usually unknown in practice
(otherwise we wouldn’t need to estimate it using a sample). Clearly h = 0.5 is too small,
and h = 3 is too large. Appropriate here is a bandwidth greater than 1 but less than 3.

1.4.2 Selection with reference to some given distribution

Here one selects the bandwidth that would be optimal for a particular pdf. Convenient
here is the normal. We note that one is not assuming that f(x) is normal; rather one is
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Figure 1.10: The pdf for the car example and kernel density estimates using a Gaussian
kernel and different bandwidths.

selecting h which would be optimal if the pdf were normal. In this case it can be shown
that

β(f) =

∫
f ′′(x)2dx =

3σ−5

8
√

π

and using a Gaussian kernel leads to

hopt =

(
4

3n

)1/5

σ ≈ 1.06σ

n5
. (1.24)

The normal distribution is not a “wiggly” distribution; it is unimodal and bell–shaped.
It is therefore to be expected that (1.24) will be too large for multimodal distributions.
Secondly to apply (1.24) one has to estimate σ. The usual estimator, the sample variance,
is not robust; it overestimates σ if some outliers (extreme observations) are present and
thereby increases ĥopt even more. To overcome these problems Silverman (1986) proposed
the following estimator

ĥopt =
0.9σ̂

n5
, (1.25)

where σ̂ = min(s,R/1.34), where s2 = 1
n−1

∑n
i=1(xi − x)2 and R is the interquartile range

of the data. The constant 1.34 is derived from the fact that for a N(µ, σ2) random variable,
X, one has P{|X − µ| < 1.34 σ} = 0.5.
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Figure 1.11: The cross-validation criterion (top left) and the estimated pdf using three
different bandwidth selectors, namely cross-validation (bottom left), normal-based (top
right) and plug-in (bottom right).

The expression (1.25) is used as the default option in the R function “density”. It is also
used as a starting value in some more sophisticated iterative estimators for the optimal
bandwidth. The top right graph in Figure 1.11 shows the estimated density, with this
method of estimating hopt.

1.4.3 Cross–validation

The technique of cross–validation will be discussed in more detail in the chapter on model
selection. At this point we will only outline its application to the problem of estimating
optimal bandwidths. By definition

MISE(f̂) =

∫
(f̂(x)− f(x))2dx

=

∫
f̂(x)2dx− 2

∫
f̂(x)f(x)dx +

∫
f(x)2dx
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The third term does not depend on the sample or on the bandwidth. An approximately
unbiased estimator of the first two terms is given by

M̂CV (f̂) =
1

n

n∑
i=1

∫
f̂i(x)2dx− 2

n

n∑
i=1

f̂−i(xi) , (1.26)

where f̂−i(x) is the estimated density at the argument x using the original sample apart

from observation xi. One computes M̂CV (f̂) for different values of h and estimates the

optimal value, hopt, using the h which minimizes M̂CV (f̂). The top left hand graph

in Figure 1.11 shows the curve M̂CV (f̂) for the sample of car data. The bottom left
hand graph shows the corresponding estimated density. In this example cross-validation
has selected a bandwidth that is too small and the resulting estimated f̂ has not been
sufficiently smoothed.

1.4.4 ”Plug–in” estimator

The idea developed by Sheather and Jones (1991) is to estimate h from (1.21) by applying
a separate smoothing technique to estimate f ′′(x) and hence β(f ′′). For details see, e.g.
Wand and Jones (1995), section 3.6. An R function to carry out the computations is
available in the R library “sm” of Bowman and Azzalini (1997).

Figure 1.11 shows that for the car example considered here the plug–in estimator yields
the most sensible estimator of f̂ .

1.4.5 Summary and extensions

The above bandwidth selectors represent only a sample of the many suggestions that have
been offered in the recent literature. Some alternatives are described in Wand and Jones
(1995) in which the theory is given in more detail. These authors also offer recommenda-
tions regarding which estimators should be used. The plug–in estimator outlined above is
one of their recommendations.

The above methodology can be extended to bivariate (and multivariate) pdfs. it is also
possible to provide approximate confidence bands for the estimated pdfs. These subjects
will be covered in the presentations by the participants of the course.


