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Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin
filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These
remarkable molecular machines are able to take hundreds of successive steps at speeds of up to
several microns per second, allowing them to effectively move vesicles and organelles throughout
the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their
wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional
fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data
can be used to measure biophysical parameters of motors such as coordination, stepping
mechanism, gating, and processivity. We also outline some remaining challenges in the field and
suggest future directions.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

A eukaryotic cell depends on a multitude of molecular motors,
protein machines that convert chemical energy into mechanical
work, to actively maintain the spatial organization and material
flux required for the cell’s survival. Molecular motors span several
protein superfamilies, exhibiting remarkable diversity in structure
and function to fulfill their wide variety of biological roles. The
motors of the cytoskeleton are divided into three protein super-
families. Kinesin and dynein motors bind to and translocate along
the microtubule network, whereas myosin motors function on
actin (Fig. 1A). These motors share several principal characteristics:
they all use adenosine triphosphate (ATP) as the source of chemical
energy and perform mechanical work by walking along their
respective track. The study of motors through biochemical
methods is complicated by the fact that many of the fundamental
properties of their motility cannot be readily measured in bulk
assays. One such property is the motor’s velocity, which deter-
mines how rapidly it can deliver cargo to its destination. Another
is processivity, a measurement of how many successive steps a
motor can take before dissociating from its track, which is critically
important for understanding how teams of motors work together
to power long-distance transport while avoiding gridlock and
overcrowding. For a more detailed understanding of the motor’s
mechanism, it is invaluable to know its stepping pattern – the
manner in which the heads move with respect to one another as
the motor walks down its track. These properties are all readily
amenable to study with single-molecule fluorescence techniques.

2. Diffraction-limited single motor imaging

Motors that function in muscle contraction (myosin II) and cil-
iary beating (inner and outer arm dyneins) work in large groups to
generate force on macroscopic scales. While these motors can be
studied collectively with filament gliding assays [1], individual
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http://dx.doi.org/10.1016/j.febslet.2014.05.040
mailto:yildiz@berkeley.edu
http://dx.doi.org/10.1016/j.febslet.2014.05.040
http://www.FEBSLetters.org
http://dx.doi.org/10.1016/j.febslet.2014.05.040


Fig. 1. Processive cytoskeletal motors and fundamentals of sub-diffraction TIRF imaging. (A) Three classes of processive cytoskeletal motors: myosin V (left) walks towards
the plus end of actin filaments, kinesin-1 (center) walks towards the plus end of microtubules, and cytoplasmic dynein (right), walks towards the minus end of microtubules.
(B) Schematic depiction of a TIRF motility assay (not to scale). A fluorescently labeled motor (kinesin-1 is shown) walks on a surface-immobilized track. The fluorophore is
excited by the evanescent field of a collimated laser beam (green) reflecting off the glass/water interface. (C) The point-spread function (PSF) of a single fluorophore is well
approximated by a 2-dimensional Gaussian. By collecting a sufficiently large number of photons per frame, the center of the PSF can be localized with nanometer precision.
(D) By localizing a fluorophore attached to a walking motor protein over many consecutive frames and plotting the position of its center as a function of time, one can obtain
stepping traces similar to the simulated trace shown here. Such traces can then be processed with a step-finding algorithm and used to extract biophysical parameters such as
dwell times, stepping rates, and step sizes.
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motors need not be processive and their motility may not be
immediately apparent on a single-molecule level. However, it
was soon discovered that many other cytoskeletal motors trans-
port cargos in small teams or alone [2,3], a function requiring the
molecules to be able to take many successive steps without diffus-
ing away from the track. In order to achieve processive motion, a
molecular motor must remain tethered to the track throughout
its entire mechanochemical cycle, a requirement that potentially
explains why the vast majority of processive motors discovered
to date possess two or more track binding sites.

The first direct confirmation of motor processivity was achieved
by imaging individual kinesin molecules walking along microtu-
bules [4], and was soon followed by similar observations on myosin
[3] and dynein [5]. Single-motor motility assays are performed
under total internal reflection fluorescence (TIRF) [6] illumination,
in which the evanescent field of a laser beam reflected off the
water/glass interface excites fluorescently tagged motors moving
along surface-immobilized tracks (Fig. 1B). The intensity of the eva-
nescent field falls off exponentially with distance from the cover-
slip, limiting the depth of the excitation region to a few hundred
nanometers and greatly reducing background fluorescence from
the bulk solution. Observing the motors directly in real time allows
for measurement of a number of fundamental properties. Kinesin-1
was shown to travel on average 600 nm before dissociating from
the track, demonstrating that a typical run consisted of �100
mechanical cycles [4] assuming the previously measured 8 nm step
size [7]. Repeating the experiment with kinesin constructs lacking
their dimerization domain showed that kinesin-1 requires both
heads to remain processive. It has furthermore been shown that
Unc104 [8] and myosin VI [9] motors transition from diffusional
to directional processive motion upon dimerization at high concen-
trations. The requirement for dimerization for processive motility
was also demonstrated in yeast cytoplasmic dynein by designing
monomers with chemically inducible dimerization domains [5].
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3. Regulation of motors

A cell employs regulatory mechanisms to control the attach-
ment of motors to cargos, to modulate their velocity or force pro-
duction depending on the specific task they’re performing, or to
prevent them from undergoing futile cycles of ATP hydrolysis
when not engaged with the track [10]. Such mechanisms can be
grouped into two general categories: autoinhibition and inhibition
by small molecules or regulatory proteins. Motility experiments on
kinesin-1 mutants with the tail domain either truncated or made
less flexible at a prominent hinge showed that both mutants
moved 2 to 3-fold faster than wild-type kinesin and exhibited
greatly enhanced processivity. This points towards an autoinhibi-
tion mechanism wherein kinesin’s tail acts as a repressor of the
motor domain in the absence of bound cargo [11]. Crystallographic
work later showed that this inhibition occurs via a tail-mediated
crosslinking of the two motor domains, preventing the separation
of the two heads required for neck linker undocking [12]. Similar
autoinhibitory mechanisms appear to be present in kinesin-2
[13], kinesin-3 [14], and myosin V [15–17] motors.

For cytoplasmic dynein, several distinct regulatory proteins
were identified. Lis1 impacts dynein motility on a single-molecule
level [18], effectively anchoring dynein to its track. Interestingly,
this mechanism does not prevent futile cycles of ATP hydrolysis,
suggesting that dynein may also have an autoinhibitory mecha-
nism yet to be discovered. Lis1-based anchoring potentially config-
ures dynein for low-speed, high-force cellular tasks such as
anchoring spindle microtubules during mitosis. Another dynein
regulator, She1, diffuses along microtubules until it encounters a
walking dynein. She1 binds and pauses the motor, prolonging its
attachment to the microtubule [19]. A small-molecule inhibitor,
monastrol, was used to target homotetrameric kinesin Eg5, which
slides apart microtubules and contributes to the assembly of the
mitotic spindle [20]. The effect of monastrol in Eg5 motility was
l motors studied with single-molecule fluorescence techniques. FEBS Lett.
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tested using single molecule fluorescence assays. Eg5 is a proces-
sive plus end-directed motor that occasionally switches into diffu-
sive mode. The addition of the drug monastrol significantly
enriches the diffusive state while effectively abolishing directional
motion [21]. Similarly, ciliobrevin D specifically inhibits dynein
motors in vivo [22]. Targeting specific motors may serve as alterna-
tives to tubulin-targeting antimitotic agents used in cancer ther-
apy, with potentially fewer side effects due to their highly
specialized roles in mitosis [23].

4. Sub-diffraction imaging

Processive motors were found to generally require two head
domains to remain motile, which immediately opened the ques-
tion of how they coordinate their motions to generate successive
steps without simultaneously releasing from the track. One may
picture the motor walking much like a human would, taking regu-
lar alternating steps of equal sizes with its two ‘‘feet’’. This mech-
anism, which is referred to as ‘‘hand over hand’’ (HoH), requires a
large degree of coordination between the two heads, as each head
takes a step in the trailing position and remains firmly attached in
the lead [24]. Another proposed possibility is the ‘‘inchworm’’
model, wherein the full cycle consists of two nearly simultaneous
steps by the heads and results in a translation of the motor without
changing the relative orientation of the two heads [25]. Such a
mechanism requires more strict coordination than HoH due to
the added timing constraint between the steps of the trailing and
leading head. The stochastic stepping model abolishes coordina-
tion altogether and allows the heads to move forward indepen-
dently of their partner. In this case, spontaneous release from the
track is prevented by the low probability of simultaneously finding
both heads in the unbound state.

The spatiotemporal resolution required to distinguish between
these possibilities and investigate the kinetics of stepping resulted
in early adoption of sub-diffraction imaging techniques. The dif-
fraction-limited image of a single fluorescent molecule (termed
point spread function, or PSF) has a width of approximately
k/(2 N.A.), where k is the wavelength of light and N.A. is the numer-
ical aperture of the objective lens. Using the highest N.A. (1.49–
1.65) objectives available, the image of a point-like object emitting
visible photons has a width of �250 nm. This width is an order of
magnitude larger than the step size of the motors (8–37 nm).
Resolving the stepping pattern requires a significant improvement
in resolution, which prompted the use of sub-diffraction fluoro-
phore localization. While the width of a single fluorophore’s image
cannot be readily decreased beyond the fundamental limit, its peak
position can be determined with high precision by collecting a suf-
ficient number of photons (on the order of 20000 photons for 1 nm
localization accuracy) [26] (Fig. 1C). With the important limitation
that individual molecules must be well-separated on the camera’s
detector, a 2-dimensional Gaussian fit can localize their positions
to �1 nm at sub-second frame rates using organic dyes [27,28]
(Fig. 1D).

Because the precision with which a fluorophore can be localized
within a frame generally scales as the square root of the number of
collected photons [27], the photostability of the probe is of para-
mount importance for the acquisition of high-resolution videos
of walking molecules. The most critical parameter is the average
total number of photons emitted by the fluorophore before it
undergoes photobleaching. Photobleaching generally occurs when
a fluorophore in an excited state chemically reacts with a singlet
oxygen. This effect can be greatly reduced by removing oxygen
from the system, using oxygen scavenging enzymes. Since oxygen
enhances fluorescence by acting as an effective triplet state
quencher, imaging buffers typically include a separate triplet state
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quencher to compensate for the absence of oxygen and prevent
dye blinking [29]. As a result, efforts to increase fluorophore life-
times have centered on triplet state quenchers and enzymatic sys-
tems for removal of free oxygen. Recent work showed that while
thiol-containing compounds such as b-mercaptoethanol and L-glu-
tathione are efficient triplet state quenchers, they can cause slow
blinking of cyanine dyes, a problem that can be overcome by using
Trolox as a quencher instead [30]. To remove free oxygen, one
commonly used system is the glucose oxidase/catalase enzyme
pair [31]. More recently, an enzymatic system based on protoca-
techuate dioxygenase gained popularity because the byproduct of
its reaction does not alter the pH of the buffer [32]. However,
despite these improvements, photostability varies greatly between
fluorophores [33] and the majority of fluorophores are not suffi-
ciently stable for high-resolution tracking. Multi-frame localization
with nanometer-scale precision has only been achieved to date
using the best small organic probes (such as Cy3, Cy5, TMR and
Atto647N) [28,34,35] and quantum dots [5,36,37].

5. Motor stepping studied with sub-diffraction imaging

Single-molecule tracking methods provided sufficient spatio-
temporal accuracy to detect individual steps taken by cytoskeletal
motors. Using optical traps, it had previously been shown that
myosin V’s cargo binding domain moves on average in 37 nm steps
[38,39], equivalent to the half helical pitch of the actin. To deter-
mine whether these steps resulted from an inchworm or HoH
mechanism, myosin V motors were fluorescently labeled on one
head and tracked with 1 nm precision as they walked on surface-
immobilized actin filaments [28]. Had myosin been an inchworm
motor, one would expect to see the heads step in 37 nm incre-
ments just like the cargo-binding domain. However, in practice
each molecule exhibited a distinctly bimodal step size distribution,
moving in 74 nm steps alternating with invisible ‘‘0 nm’’ steps [28].
The presence of the ‘‘0 nm’’ steps is revealed by the characteristic
shape of the dwell time histogram, which changes from a single
exponential decay into a convolution of two exponentials as the
step of a single head consists of two consecutive events (Fig. 2A).
Later, kinesin-1 and myosin VI were demonstrated to be HoH step-
pers in a similar manner [35,40,41], while more recent work sug-
gested that the two modes of stepping are not necessarily
mutually exclusive as myosin VI motors are able to switch between
HoH and inchworm-like steps [36].

The finding that a motor such as kinesin walks in strictly alter-
nating steps necessitates some form of ‘‘gating’’ mechanism
between the two heads that would prevent the leading head to
release from the track until the trailing head completes its step.
Several theories have been proposed for motor protein gating.
The tubulin binding gate model postulates that the stepping head
cannot bind to the next site on the track until its partner head
binds a new ATP molecule [42]. Tension gating proposes that
mechanical strain generated between the two heads plays a role
in keeping the two heads out of phase. In this model, rear-head
gated scenario suggests that the trailing head is mechanically
pulled off the track by strain produced in the front head. The front
head-gated scenario suggests that ATP binding to the front head is
suppressed by rearward strain from the trailing head [43]. The
importance of mechanical strain between the two heads was dem-
onstrated by inserting flexible linkers of varying length between
the heads and the dimerization domain. When examined in sin-
gle-molecule fluorescence, these extended constructs exhibited
reduced velocity and a highly variable stepping pattern, suggesting
that the loss of intramolecular strain led to a substantial decrease
in gating efficiency [44]. A later optical trapping study established
that kinesin spends the majority of its time in a one head-bound
l motors studied with single-molecule fluorescence techniques. FEBS Lett.
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Fig. 2. Extracting information from high-resolution stepping traces. (A) If a single head of a dimeric motor protein is labeled with a fluorophore, the degree of coordination
between the two heads can be measured by analyzing the dwell time distribution. If the heads take strictly alternating steps, as is the case in kinesin-1 (shown here), every
other step will be taken by an unlabeled head and thus invisible to the observer (the simulated stepping trace is colored according to which head is in the leading position).
The dwell time distribution of such a stepper will follow the functional form of a convolution of two identical exponentials. (B) Cytoplasmic dynein is distinct from kinesin-1
and myosin V in that its two heads are nearly uncoordinated. If the heads are labeled with fluorophores of different color and imaged simultaneously, one will expect to see
traces similar to the simulated data shown here. The heads do not strictly alternate, take occasional backward steps, and swap leading and trailing positions at random times.
At limiting ATP concentrations, the dwell time distribution for a single head of such an uncoordinated walker will follow a single exponential decay because the head does not
need to wait for its partner to take a step before it can step again.
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state and the intramolecular strain makes the off-pathway two-
head bound states more unfavorable, rather than triggering release
in a two head-bound state [45].

The stepping pattern of cytoplasmic dynein labeled with a sin-
gle fluorophore was somewhat inconclusive about the way dynein
walks along microtubules. Unlike kinesin, which takes regular
8 nm steps in a HoH fashion, dynein displays a large variability
in step size, as well as frequent movement in sideways and back-
ward directions [5]. To visualize how dynein’s heads move with
respect to one another, two groups simultaneously pursued the
goal of labeling dynein’s two heads with fluorophores of different
color and obtaining stepping traces for them. An important chal-
lenge in dual-color super-resolution tracking is overlaying the
images from both channels with sub-pixel accuracy. This can be
achieved, for example, by scanning a fiducial marker (such as a
broad-spectrum fluorescent bead) in small increments across the
field of view, localizing it with a 2D Gaussian fit in each channel,
and using the resulting position pairs to generate a map between
the two channels [46]. Provided that the fiducial markers fluoresce
at the same wavelengths as the actual fluorophores used in the
experiment, mapping can correct for optical aberrations, CCD
pixel-to-pixel variation, and physical differences between the
two imaging paths, resulting in an overall mapping accuracy of
up to 1 nm [46–48]. In the two-color dynein experiments, while
Qiu et al. used organic dyes and DeWitt et al. opted for the larger
Please cite this article in press as: Belyy, V. and Yildiz, A. Processive cytoskeleta
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but more photostable quantum dots, both reached the same
conclusion that cytoplasmic dynein displays a large variability in
stepping pattern compared to myosin and kinesin [34,47]. Both
the size and timing of a dynein head’s step are only weakly affected
by the position of the partner head (Fig. 2B). Dynein’s case clearly
illustrates that gating is not necessary for processive motility and
that long-range movement can be achieved by two mechanically
linked heads, provided each spends the majority of its time bound
to the track and only releases briefly to take the next step.

6. Imaging teams of motors

Intracellular cargoes such as lipid droplets, organelles, and
endoplasmic reticulum vesicles are commonly transported by
small teams of motors rather than individual proteins. Time-lapse
observation of mitochondrial transport in axons and dendrites of
cultured neurons exhibited diverse motility, ranging from slow
unidirectional movement to rapid switching between bursts of fast
retrograde and anterograde runs [49]. Similar bidirectional behav-
ior was observed using a variety of techniques for phagosomes
[50], endosomes [51], lipid droplets [52], neurofilaments [53],
intraflagellar transport (IFT) trains [54], and other cargos. The cell
may control the overall distribution of cargos in the cytoplasm by
affecting either motor recruitment to cargos or the engagement of
cargo-bound motors with the track [55]. Two commonly proposed
l motors studied with single-molecule fluorescence techniques. FEBS Lett.
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and not mutually exclusive models for how bidirectional transport
may be achieved and regulated are stochastic tug-of-war between
competing teams of opposite-polarity motors bound to the same
cargo [56] and regulated directional switching [52]. Such switching
can be carried out through different pathways, such as inactiva-
tion/unbinding of motors of one polarity or specific inhibition of
a particular class of motors.

An important challenge for understanding the mechanism of
cargo transport is the difficulty of measuring the number of motors
of each polarity that are attached to the cargo and engaged with
the track at any given point in time. The total number of motors
attached to a cargo can be measured by several methods, such as
fluorescence bleaching counting assays or quantitative blotting
[56]. However, not all of the cargo-bound motors may be active
at a time. The number of actively engaged motors pulling the cargo
was estimated to be relatively low (1–5 motors of each polarity) by
in vivo and in vitro optical trapping assays, with an important
underlying assumption that motor stall forces are additive at low
copy numbers [51,56–59]. High-resolution imaging of reconsti-
tuted neuronal transport vesicles revealed that even at such small
motor numbers vesicles moved bidirectionally and exhibited rapid
direction switching similarly to their in vivo counterparts, just as
predicted by the mechanical tug-of-war model [56]. On the other
hand, IFT trains in Chlamydomonas reinhardtii were found to move
in a clearly coordinated manner, with motors of only one polarity
active at a time [60], illustrating that regulation of transport
in vivo is in no way limited to tug-of-war. An artificial DNA origami
scaffold helps overcome the limitation of the motor number per
cargo variability, by assembling well-defined groups of motors
in vitro [61]. The presence of mechanical tug-of-war between
multiple dyneins and kinesins were demonstrated by changing
the relative numbers of the opposing motors on a scaffold. Cargoes
with 2.5 times more kinesins than dyneins still moved in the
retrograde direction despite dynein’s lower stall force, suggesting
that parameters other than stall force (such as tenacity of microtu-
bule attachment) may be more relevant for a motor’s tug-of-war
performance.
7. Conclusion

The relatively non-invasive nature of fluorescence imaging,
together with the high resolution tracking ability, enables direct
observation of actively translocating motors under physiological
conditions. Trajectories of single motors are used to measure
parameters such as processivity, velocity, stepping pattern, inter-
head coordination, and regulation, which are critical for under-
standing how motors work alone or in teams. Even though much
has been learned about how cytoskeletal motors operate, many
more questions remain unanswered. Only a handful of motors have
been studied in detail, and the evolutionary diversity of the myo-
sin, kinesin, and dynein families suggests that novel properties
and peculiarities will be revealed as new family members are iso-
lated and subjected to scrutiny. Technical advances in the field,
perhaps smaller and more photostable fluorescent probes or
improved image analysis algorithms, will enable more detailed
mechanistic studies and help resolve small-scale motions that lie
below the current detection limit. As the individual stepping mech-
anisms of isolated motors become increasingly well understood,
the field’s focus will likely continue to shift towards interactions
between motors and proteins that modulate their behavior, such
as other motors or dedicated regulatory proteins. The ultimate goal
of this field, a comprehensive understanding of how powered
intracellular transport is organized and regulated, will require a
large concerted effort spanning several length scales in both living
cells and artificial reconstituted systems.
Please cite this article in press as: Belyy, V. and Yildiz, A. Processive cytoskeleta
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