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THE ASSOCIATED FAMILY

J.-H. Eschenburg

Abstract

Minimal surfaces in euclidean 3-space, i.e. conformal harmonic maps,
enjoy two important properties: They allow a circle of isometric deforma-
tions rotating the principal curvature directions, the so called associated
family, and they are obtained as the real part of holomorphic functions
into C

3. These properties are shared by arbitrary (pluri-)harmonic maps
into euclidean n-space. Replacing R

n with an arbitrary symmetric space
leads to similar results, but the rôle of C

n is played by an infinite dimen-
sional complex homogeneous space acted on by a twisted loop group. We
give a survey of the development of this theory from our view point, and
we discuss applications to the construction of (pluri-)harmonic maps into
symmetric spaces and their rank restrictions.

1. Introduction: Associated families in R
n

Associated families are certain isometric deformations of surfaces in euclidean

space. The best known example is the deformation of the catenoid into the

helicoid by cutting the catenoid along a vertical meridian and move the two

ends of the cut upwards and downwords, respectively, apart from each other.1

Starting with a surface f , the associated family is an isometric deformation fθ

preserving the principal curvatures with three additional properties (visible in

the pictures):

• At every point, the tangent plane and the Gauss map remain the same

during the deformation,
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• principal curvature lines rotate,

• the deformation is periodic, fθ+2π = fθ, and after a half period π we see

the same object in opposite orientation.

In fact, denoting by Rθ the rotation by the angle θ in the tangent plane of

the surface, we have the equation

df ◦ Rθ = dfθ. (1)

For which (other) surfaces f : M → R
n does there exist an associated family

with (1)? It is enough to consider the 90o rotation J = Rπ/2 since Rθ =

(cos θ)I + (sin θ)J . We need to find a map g : M → R
n with

df ◦ J = dg.

If M is simply connected (which we will always assume), this is equivalent to

d(df ◦ J) = 0.

From df = fxdx + fydy we see df ◦ J = fydx − fxdy and hence

d(df ◦ J) = fyydx ∧ dy − fxxdy ∧ dx = ∆f dx ∧ dy

where ∆f = trace ddf = fxx + fyy is the Laplacian. Hence (1) is equivalent to

f being harmonic, i.e. ∆f = 0. In particular this applies to minimal surfaces

which are conformal harmonic maps.

Harmonic maps of surfaces are easy to describe in terms of holomorphic

maps (convergent complex power series) h: We have

f = 2Re h (2)
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for some holomorphic map h. This is easy to see: Since ∆f = 4fzz̄ (where

z = x + iy), a harmonic map f satisfies fzz̄ = 0, hence fz is holomorphic and

thus it has a holomorphic principal function h, i.e. hz = fz, hz̄ = 0. Now

(f − (h + h̄))z = 0,

and therefore f −(h+ h̄) is antiholomorphic and real which is impossible unless

f − (h + h̄) = const. This shows (2).

Property (1) is beautiful, Property (2) is useful. In harmonic maps, both

beauty and use come together.

Everything can be generalized immediately to several variables: The surface

M (a complex curve) can be replaced with a complex manifold M of arbitrary

dimension when f is not only harmonic but pluriharmonic: i.e. f |C is harmonic

for each complex 1-dimensional submanifold (complex curve) C ⊂ M .

Question: Does (1) and (2) remain true when R
n is replaced with a (suitable)

Riemannian manifold S?

The answer to this question is a main part of my joined work with Renato.

2. An integrability theorem

Our first common paper [EGT] (joined with I.V. Guadalupe) was a result of

the lectures of Prof. S.S. Chern at Berkeley in the fall of 1981. The subject

was the theory of differential forms and moving frames with an application to

minimal surfaces in CPn. As an application of these ideas, we worked out the

local invariants and their differential equations for minimal surfaces in CP 2.

These displayed a close similarity to minimal surfaces in the 4-sphere which

had been investigated before by my co-authors [GT]. The methods we used
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were moving frames and the Frobenius integrability theorem. A consequence

was the existence of associated families for minimal surfaces not only in space

forms, but also in CP 2.

How much farther could this method be applied? In some sense, we had ex-

tended the classical existence and uniqueness theorem for surfaces in euclidean

space to CP 2 as ambient space. Later [ET1] we investigated this question more

systematically. Existence and uniqueness theorems for submanifolds, more gen-

erally for maps, exist precisely on homogeneous spaces. As long as we want to

use only torsion free affine connections we must restrict our attention even to

a subclass of homogeneous spaces, the symmetric ones.

Let S = G/K be a symmetric space with parallel curvature tensor (Lie

triple product) RS and let f : M → S be any smooth map. Its differential,

the 1-form ω = df : TM → f∗TS =: E is easily seen to satisfy the following

equations (Cartan structure equations):

d∇ω = 0, ω∗RS = RE , (C)

where d∇ω(X,Y ) = (∇Xω)Y − (∇Y ω)X and RE the curvature tensor of the

vector bundle E = f∗TS with its induced connection. The main result of [ET1]

is the converse statement:

Theorem 1. Given any vector bundle E with a metric connection ∇ and a

parallel Lie triple product RS on each fibre, isomorphic to the one on S, and a

bundle map ω : TM → E with (C), there exists a map f : M → S, unique up

to composition with some g ∈ G, and a parallel Lie triple bundle isomorphism

Φ : E → f∗TS such that

df = Φ ◦ ω. (3)
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The proof was again by moving frames and Frobenius, but in the statement

moving frames had disappeared.

3. Generalizing the associated family

Now we were able to find associated families for pluriharmonic maps with values

in any symmetric space, f : M → S (cf. [ET3]). We just applied Theorem 1

to the 1-form ω = ωθ = df ◦ Rθ : TM → E = f∗TS. In fact, pluriharmonicity

of f is equivalent to (C) for all ωθ, θ ∈ (0, 2π], and then by (3) there exists a

map fθ : M → S and a parallel isomorphism Φθ : f∗TS → f∗
θ TS with

dfθ = Φθ ◦ df ◦ Rθ. (1′)

This is what we call an associated family for f . Thus we have seen:

Theorem 2. Let M be a complex manifold, S a symmetric space2 and f : M →

S a smooth map. Then f is pluriharmonic if and only if it has an associated

family in the sense of (1′).

4. Extended frames

So much on generalizations of the associated family (1). But what about (2),

the relation to holomorphic maps? In [ET3] we could only do a special case, the

so called isotropic pluriharmonic maps where the associated family happens to

be trivial; these are projection of certain (so called superhorizontal) holomor-

phic maps (“twistor lifts”) with values in a finite dimensional flag manifold Z

fibering over S, the twistor space. The general case remained unsolved. How-

ever for surfaces (dim M = 2), a complete answer was given by Dorfmeister

2We need a little restriction on S: the curvature operator of S needs to be semi-definite
which means that the irreducible factors are either all of compact or euclidean type or they
are all of noncompact or euclidean type.
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et al. in [DPW], extending previous work by Uhlenbeck [U] and others. In

a joined work with Dorfmeister, combining both methods, we got a complete

answer [DE].

We came back to moving frames. A moving frame along f : M → S = G/K

is just a map F into the group G which projects onto f , i.e. π ◦ F = f for the

canonical projection π : G → G/K. However, since π is a nontrivial fibration,

the lift F can be defined only locally, on any contractible open subset Mo ⊂ M .

Having chosen a frame for f , we define another frame for the associated fθ as

Fθ = ΦθF (4)

where Φθ(x) as defined in (1′) is now is considered as an element of G for any

x ∈ Mo.
3 The family of these frames (Fθ)θ∈[0,2π] is considered as a new object,

a map F from Mo into the set of smooth maps from the circle S1 = R/(2πZ)

into G. Using our freedom in the choice of Φθ and the equality (1′) for θ + π

(remind Rθ+π = −Rθ) we may assume that the map F = (Fθ) takes values in

the twisted loop group

Λ = ΛσG = {γ : S1 → G; γ(θ + π) = σ(γ(θ))} (5)

where σ : G → G is the involution with K = Fix(σ).4 We call F : Mo → Λ the

extended frame of f . It is unique only up to right multiplication by elements

of K which do not depend on θ. In order to make it unique and hence globally

defined (by patching the local frames together) we work modulo K and define

ĥ := F mod K : M → Λ/K.

3Note that Φθ(x) : Tf(x)S → Tfθ(x)S is a linear isometry preserving RS and hence it is
the differential at the point f(x) of a unique isometry gθ(x) ∈ G sending f(x) onto fθ(x);
whenever possible we will use the same symbol Φθ(x) for gθ(x).

4In general we only know that K lies between Fix(σ) and its identity component. But we
will assume K = Fix(σ) which is no restriction up to finite coverings.
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where K ⊂ Λ is considered as the subgroup of constant loops. Clearly,

f = e ◦ ĥ (2′)

where e : Λ/K → G/K = S is the evaluation map

e : Λ/K ∋ γK 7→ γ(0)K ∈ G/K.

Theorem 3. Let M be a complex manifold and S = G/K a symmetric space.

Then the pluriharmonic maps f : M → S are precisely given by (2′) where

ĥ : M → Λ/K is any holomorphic and superhorizontal map.

We have to explain these terms. To define holomorphicity we need a com-

plex structure on Λ/K. Let us assume that G is a matrix group, G ⊂ R
n×n,

with Lie algebra g ⊂ R
n×n. Let Gc ⊂ C

n×n the complex matrix group contain-

ing G with Lie algebra gc = g⊗C, the complexification of G, and let Λc = ΛσGc

like in (5) where σ is extended to a holomorphic involution of Gc.5 Any γ ∈ Λc

can be decomposed into a matrix valued Fourier series:

γ(λ) =
∑

j∈Z

ajλ
j

with aj ∈ C
n×n and λ = e−iθ ∈ S1. Let Λ+ be the subgroup of Λc which

consists of those Fourier series in Λc with aj = 0 for j < 0. It is known that

each γc ∈ Λc allows an (almost unique) decomposition

γc = γγ+ (6)

with γ ∈ Λ and γ+ ∈ Λ+, the so called Iwasawa decomposition of the loop group

Λc (cf. [PS]). In particular, Λ ⊂ Λc acts transitively on the homogeneous space

5Often the involution σ on G extends to an involution of the full matrix algebra Rn×n;
in this case σ is complex linearly extended to Cn×n.
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Λc/Λ+, and the stabilizer subgroup of this action is Λ∩Λ+ which is the set of

constant loops K.6 Hence

Λ/K = Λc/Λ+

which explains the complex structure of Λ/K since both Λc and Λ+ are complex

groups.

To show holomorphicity of ĥ we have to prove that dĥ is complex linear.

Recall that ĥ = F mod K. Hence the differential of ĥ is determined by the

g-valued 1-form αθ = F−1
θ dfθ. Due to the choice (4) of the frame Fθ, the

associated family property (1′) is equivalent to a simple dependence of αθ on

e−iθ = λ:

αθ = λ−1α′
p + αk + λα′′

p (7)

where αk and αp are the components of α = α0 = F−1dF with respect to the

Cartan decompostion g = k + p corresponding to the symmetric space G/K

and where α′ and α′′ denote the restrictions of the (complexified) 1-form α to

T ′M and T ′′M respectively.7 Considering α̂ = (αθ)θ∈[0,2π] as a single 1-form

with values in the Lie algebra L of Λ, we have

α̂ ≡ λ−1α′
p mod L+

where L+ denotes the Lie algebra of Λ+; note that by (6) we have to work

modulo Λ+ in order to compute dĥ. Since α′
p is complex linear (it is the

complex linear part of αp), the holomorphicity of ĥ is shown.

Superhorizontality just means that αθ has the form (7), in particular its

Fourier decomposition has lowest λ-power λ−1; clearly this property is well

6Note that the Fourier coefficients aj of a real loop γ (i.e. γ = γ) satisfy a−j = aj , hence
γ ∈ Λ ∩ Λ+ implies γ = a0 with σ(a0) = a0.

7Recall that T ′M, T ′′M ⊂ TM ⊗ C are the ±i-eigenbundles of the complex structure J

on M , i.e. J = i on T ′M and J = −i on T ′′M .
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defined even modulo L+. In other words, the space of such Fourier series,

{
∑

j≥−1 ajλ
j ; aj ∈ gc} ⊂ Lc, is invariant under conjugation by Λ+ and thus

it determines a left invariant distribution on Λc/Λ+, the superhorizontal dis-

tribution H1, and dĥ takes values in H1.

Our general theory is completely analogous to the isotropic case mentioned

above, but now the space Ẑ = Λ/K = Λc/Λ+ is infinite dimensional; it is

called the universal twistor space. The finite dimensional twistor spaces allow

a canonical embedding into Ẑ which preserves the superhorizontal distributions

(cf [E]).

When S is euclidean space, S = R
n, the transvection group G is just the

translation group, G = R
n, and α′

p = d′f =
∑

j fzj
dzj takes values in gc = C

n.

We find ĥ : M → Λc/Λ+ by solving dĥ = λ−1α′
p, which yields ĥ = λ−1h

where h : M → C
n is holomorphic with dh = α′

p. Hence modulo Λ+ we

have ĥ = λ−1h + λh̄ = 2Re (λ−1h). Evaluation at λ = 1 (i.e. θ = 0) yields

f = e ◦ ĥ = 2Re h as we have seen in (2).

5. Applications

1. On the homogeneous space Ẑ = Λc/Λ+, the group Λc acts holomorphically

by left translations, preserving the left invariant superhorizontal distribution

H1. Therefore, if h is the twistor lift of a pluriharmonic map f : M → S,

then γ ◦ h for any γ ∈ Λc is the twistor lift of another pluriharmonic map

f̃ : M → S. This is called the dressing action on the space of pluriharmonic

maps. Thus from one single pluriharmonic map we obtain infinitely many

others by applying the dressing action.

2. For loops γc belonging to some open dense subset Λc
o ⊂ Λc (the “big cell”),
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there is another decomposition, the Birkhoff decomposition [PS]:

γc = γ−γ+ (8)

with γ± ∈ Λ± where Λ− = {
∑

j<0 ajλ
j}∩Λc. Thus we may split the extended

frame F as F = F−F+, and it turns out that F− is meromorphic on M . Since

F− ≡ F mod Λ+, the Fourier series of F
−1
− dF− has lowest power λ−1 and takes

values in L−, hence only the λ−1-term remains, i.e. F
−1
− dF− = ηλ−1 for some

closed meromorphic 1-form η on M with values in pc.8 Vice versa, given any

such 1-form η we find F− and hence F as the Λ-component in the Iwasawa

splitting F− = FF
−1
+ (cf (6)). Thus we obtain pluriharmonic maps f from

certain closed meromorphic pc-valued 1-forms η, called normalized potential of

f (see [DPW], [DE]). If M is a surface, no further restriction on η is needed,

but in higher dimensions η must be a curved flat, i.e. for any x ∈ M the linear

map ηx : T ′
xM → pc takes values in a flat (abelian) subspace of pc which may

depend on x.

3. The curved flat property can be rephrased by saying that for any pluri-

harmonic map f : M → S and any x ∈ M , the curvature tensor RS vanishes

on the subspace dfx(T ′
xM) ⊂ T c

f(x)S. This property was observed by Ohnita

and Valli ([OV], see also [ET3]). It gives a restriction for the rank of a (non-

holomorphic) pluriharmonic map f : M → S which cannot be bigger than the

dimension of the largest flat subspace of pc (other than p′ and p′′). In [ET2] we

found examples of maximal rank in complex Grassmannians. In a recent joint

paper with P. Kobak [EK] (dedicated to Renato Tribuzy), we have classified all

isotropic pluriharmonic maps of maximal rank into complex Grassmannians.

8From the twisting condition γ(−λ) = σ(γ(λ)) for all γ ∈ L we get σ(aj) = (−1)jaj for
the Fourier coefficients, hence aj ∈ kc for even j and aj ∈ pc for odd j.
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