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Geometrical and Graphical Solutions of 

Quadratic Equations 
E. John Hornsby, Jr. 

John Hornsby is an instructor in the mathematics department 
at the University of New Orleans. He taught for seven years at 
the high school level, and has been at U.N.O. since 1979. He 
has just completed a four year presidency of the Greater New 
Orleans Mathematics Teachers. His teaching interests include 
the history of mathematics, developmental algebra, and survey 
courses for liberal arts students. His other interests are video, 
the music of Frankie Valli and the 4 Seasons, and baseball (the 
major leagues in general, and the Cleveland Indians in particu? 
lar). 

One of the unfortunate consequences of the rapid technological advances in recent 

years is that some time-honored methods of calculation and approximation now 
exist only in textbooks of the past. Many of the topics studied by our parents and 

grandparents will soon be only memories (if they are not now), and with them goes 
our appreciation of the difficulties experienced before the days of calculators and 

computers. A classic example of a topic no longer studied is that of geometrical 
and graphical solutions of higher degree equations. For example, how many of 

today's students know that imaginary roots of real quadratic equations can be 
found from real graphs? This article will present several geometrical and graphical 
methods of solving quadratic equations. While definitely old-fashioned, these 
methods are nonetheless quite interesting, and illustrate the power and beauty of 
coordinate geometry. 

Greek Origins 

The geometric solution of quadratic equations goes back to the ancient Greeks, 

long before the rectangular coordinate system of Rene Descartes. Methods for the 

equivalent of finding the positive real roots of quadratic equations can be found in 
Euclid's Elements as early as Proposition 11, Book II [2]. Propositions VI 28 and 
VI 29 considered such methods for equations of the form 

x2-ax + b2 = 0 and x2-ax-b2 = 0, 

where a and b represent lengths of given line segments. After negative roots had 
been recognized, later developments included additional methods that yielded all 
real roots. 

Figure 1 illustrates simple Euclidean constructions for the following cases: 

1) x2-bx + c = 0 2) Jt2 + foc + c = 0 

3) x2 - bx - c = 0 4) x2 + bx - c = 0. 

Each can be verified by simple geometry and algebra. For example, to verify that 

JCj =AC and x2 = CB are the roots of x2 - bx + c = 0, note that AC/ Vc = 4c /CB 
and thus c =AC ? CB. It follows that c = x^b -xx) or x\ - bxx + c = 0. 
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Roots 

1. xx = AC, x2 = CB 

2. xx = -AC, x2= -CB 

Roots 

3. xx =AB, x2= -AC 

4. xx = -AB, x2=AC 

Figure 1 

The verification for x2 = CB is done in the same way. (This proof is not from 

Euclid; it is suggested by a problem in Howard Eves' An Introduction to the History 

of Mathematics [3, p. 70].) 

Carlyle's Method 

The Scottish writer Thomas Carlyle (1795-1881) developed a geometrical solution 
of quadratic equations based upon coordinate geometry. In his early years Carlyle 
was a mathematics teacher, and among his accomplishments was the translation of 

Legendre's 1794 revision of Elements into English. This translation, as later 
revised by Charles Davies in 1851 and J. H. van Amringe in 1885, went through 33 
American editions [3, p. 338]. Thus the Legendre revision rather than the original 
Euclid became the pedagogical basis for the study of Elements in the United 
States. 

Carlyle's method, according to Eves [3, p. 61], appeared in the popular Elements 

of Geometry of Sir John Leslie (1766-1832). Leslie remarked: "The solution of this 

important problem... was suggested to me by Mr. Thomas Carlyle, an ingenious 
young mathematician, and formerly my pupil." 

Carlyle's method, as described by Eves, provides the solutions to the equation 
x2 + bx + c = 0 by considering the points of intersection of a particular circle with 
the x-axis. Graph the circle that has a diameter with endpoints (0,1) and ( ? 6, c). 
If there are two real solutions, the circle will intersect the x-axis at two points. The 
abscissas of these two points are the solutions. Figure 2 illustrates this method for 
the general case. If only one real solution (a double solution) exists, the circle will 
be tangent to the x-axis, and the double solution is the abscissa of the point of 

tangency. If there are no real solutions, the circle will not intersect the x-axis. 
The verification of Carlyle's method is based upon the fact that the equation of 

the circle is x2 +y2 + bx - (1 + c)y + c = 0. Setting y = 0, we find that the abscis? 
sas of the intersections of the circle with the x-axis are given by x2 + bx + c = 0, 
and so are the roots of the given equation. 

Figure 3 illustrates Carlyle's method applied to the equation x2 + 2x - 8 = 0. 
The abscissas of the points of intersection of the circle and the x-axis are - 4 and 

2, the solutions of the equation. 
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(~b,c) 

b c+1 

Figure 2 
Carlyle's Method: xx and x2 are 
solutions of x2 + bx + c = 0. 

2 ' 
2 

(-4,0) 

Figure 3 
The solutions of x2 + 2x - 8 = 0 are 
-4 and 2. 

von Staudt's Method 

The German geometer Karl Georg Christian von Staudt (1798-1867) was one of 
the many eminent mathematicians who made noteworthy contributions to elemen? 

tary fields of mathematics. He held the chair of mathematics at Erlangen for a 

time, and is known for his Geometrie der lage (1847) in which he built up projective 
geometry without any reference to magnitude or number. His method of solving 
quadratic equations geometrically is described in Eves' History [3, pp. 69-70] as 
follows: 

The quadratic equation x2 ? gx + h = 0 is given. On a rectangular Cartesian frame 
of reference, plot the points (h/g,0) and (4/g,2), and let the join of these two 

points cut the unit circle of center (0,1) in points R and S. Project R and S from 
the point (0,2) onto the points (r, 0) and (s, 0) on the x-axis... r and s are the 
roots of the given equation. 

The verification of the method is also given by Eves. If we let A be the point 
(0,2), L be the point (h/g,0) where RS* crosses the x-axis, and T be the point 

(4/g,2) where '^crosses the tangent to the circle at A, we obtain the following 

equations: 
circle: x2 + y(y - 2) = 0 

line AR: 2* + r(y-2) = 0 

line AS: 2x + s(y-2) = 0. 

It follows that the graph of 

[2x + r(y-2)][2x + s(y-2)] 
- 

4[x2 + y(y 
- 

2)] =0 

passes through the points A, R, and S. But this equation simplifies to 

(y - 2) [2x(r + s) + rs(y - 2) - 
4y] = 0, 

which represents the pair of straight lines 

y-2 = 0 and 2x(r + 5) + rs(y 
- 2) - 4y = 0. 

Since neither R nor S lie on the first line, it follows that the second line must be 
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the line RS. Setting y = 0 and y = 2, in turn, in the equation of line RS then yields 

rs h 

8 
OL 

and 

AT = 

r + s 

4 4 

r + s 8 

It follows that r + s =g and rs = h. Thus r and s are the roots of x2 - gx + h = 

x2 ? (r + 5")x + rs = (x - r)(x - 5") = 0. 
The method of von Staudt is applied to the equation x2-2x ? 8 = 0 

in Figure 4. 

A: (0,2) T:(2,2) 

L: (-4,0) 

Figure 4 
r = - 2 and 5 = 4 are the two solutions of x2 - 2x - 

*? x 

8 = 0, by the method of von Staudt. 

= V2 Solving x2 +bx +c =0 Using the Fixed Graph y=x 

The usual method of solving x2 + fox + c = 0 by coordinate geometry is to graph 
the parabola y =x2 -\-bx-\- c and locate the points where the parabola intersects 
the x-axis. However, another procedure [9, p. 32], which simplifies the process 
considerably, involves the use of the standard parabola y =x2. If we have a supply 
of graph paper, with each sheet containing the graph of y=x2, we can solve 
x2 + fax + c = 0 by simply graphing the line y = ?bx ? c on one such sheet, and 
then finding the abscissas of the points of intersection of the parabola and the line. 

Figure 5 illustrates this method for the equation x2 -x - 6 = 0. Of course, if the 

y = x + 6 

Figure 5 
The solutions of x2 ?x - 6 = 0 are 3 and -2, the abscissas of the points of intersection of 
the line and the fixed parabola. 
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parabola and the line do not intersect, the roots are imaginary. A technique for 

finding imaginary roots will be described later. 
The method above generalizes. For example, the solution of the quadratic 

equation x2 + fet + c = 0 can be found by graphing a line and the standard cubic 

y =x3 on the same set of axes [9]. The solutions of 

0 = (x-fo)(x2 + fet + c) 

= x3 + (c-b2)x-bc 

are b and the solutions of x2 + bx + c = 0. Graphically, they are the abscissas of 
the points of intersection of the graph of y = x3 and the line y + (c ? b2)x ? bc = 0. 

Solving Quadratics Using xy = 1 

In 1908 there appeared a small text by Arthur Schultze titled Graphic Algebra [9]. 
This remarkable little book contains numerous methods of solving higher degree 
equations geometrically. One of the more interesting methods is a variation on the 
one just described. Rather than using the standard parabola, this method employs 
the rectangular hyperbola xy = 1. 

In the equation ax2 + bx + c = 0, we make a partial substitution, using x = 1/y: 
ax/y + b/y + c = 0or ax-\- cy = ?b. 

Now consider the system 

ax-\-cy=? b, y=\/x. 

The solution of the above system yields the desired root(s) of ax2 + bx + c = 0. 

Figure 6 provides an illustration of this method, applied tox2-x-6 = 0. 

Figure 6 
The abscissas of the points of intersection of xy = 1 and x - 
x2 -x - 6 = 0. They are -2 and 3. 

6y = 1 are the solutions of 

Imaginary Solutions of x2 +bx +c =0 

Earlier we considered the method of finding the real solutions of x2 + fet + c = 0 

using the fixed graph y=x2 and the line y= ?bx ? c. If there is no point of 

intersection, the equation has two imaginary solutions which are, of course, 
complex conjugates. A graphical method that yields the real part and the absolute 
value of the imaginary parts is also described in the Schultze text [9, pp. 37-38]. 

For x2 + bx + c = 0 to have imaginary solutions, the discriminant b2 - Ac must 
be negative. The two solutions are 

-b iylAc - b2 
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Figure 7 illustrates the method in the case when b < 0. Below the parabola 
y=x2, graph the line L given by y = -bx-c. Let AB be any chord of the 

parabola parallel to L. From the midpoint M of AB drop a perpendicular to the 
x-axis intersecting L at N and the parabola at P. Locate Q on^V^above P such 
that PN = PQ. Construct a chord of the parabola through Q parallel to L, 

intersecting the parabola at S and T. 
Now let V and W be the feet of the perpendiculars to the x-axis from Q and T, 

respectively. The abscissa of V is the real part of each solution, and the length of 
VW is the absolute value of each imaginary part. 

To verify that the abscissa of V is -b/2, we need only show that such is the 
case for M. If A and B are denoted by (xl9 x2) and (x2, x\) then 

2 2 
X2 ~X1 

2 1 

Xn ~~T" Xa 

X9 ~T~ ai 

= -b (the slope of L), 

= -b, 

-b 

Since M is the midpoint of AB, its abscissa is (x2+xx)/2 = -b/2, the real part of 
each solution. 

We next determine the abscissa of W, which is the same as that of T. Since 
PN = PQ, the ordinate of Q is c. Thus an equation of IST^is y - c = -b(x + b/2). 
Solving this simultaneously with y=x2 gives the quadratic equation x2 + bx + 

(-c + b2/2) = 0. 

N: (1, - 3) 

f)V: (1,0) 
l/L: >> = 2jc - 5 

Figure 8 

The abscissa of V: (1,0) is the real part of 
the complex conjugate solutions, and VW = 
3 ? 1 = 2 is the absolute value of the imagi - 

nary parts. The solutions ofx2-2x + 5 = 0 
are 1 ? li. 
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An application of the quadratic formula yields 

-b ylAc-b 2 
x= ?? + 

2 
~ 

2 

Choosing the + sign to get the abscissa of point T, we obtain 

-b \/4c - b2 \ ( -b\ }/4c-b2 
VW= I-+ 

2 2 J \ 2 

which is the absolute value of the imaginary parts of the solutions. 

Figure 8 illustrates this method for the equation x2-2x + 5 = 0, whose solu? 
tions are 1 + 2/. 

(Incidentally, the Schultze text [9, p. 41] also contains an analogous method for 

finding imaginary roots of a quadratic equation using the rectangular hyperbola 
xy=l.) 

In Conclusion 

While this article has addressed methods of solving quadratic equations, methods 
are also known for graphically determining the real and imaginary roots of cubic 
and quartic polynomial equations with real coefficients. For example, the incom? 

plete cubic equation ax3 + bx + c = 0 can be solved geometrically by drawing the 
line ay + bx + c = 0 and the standard cubic y =x3 on the same set of coordinate 
axes. (The well-known substitution for reducing a complete cubic polynomial 
equation to one that lacks a second degree term allows this method to be extended 
to any cubic equation.) The Schultze text [9] even contains methods to locate 

imaginary roots of cubics. It concludes with methods of solving fourth degree 
equations geometrically. 

Several articles [4], [5], [8] dealing with graphical methods of solving polynomial 
equations appeared in the American Mathematical Monthly four decades ago. 
More recently, similar articles have appeared in The Mathematics Teacher [1], [6], 
and the College Mathematics Journal [7], [10]. 

In the preface of his Graphic Algebra, Arthur Schultze wrote: 

It is now generally conceded that graphic methods are not only of great impor? 
tance for practical work and scientific investigation, but also that their educational 
value for secondary instruction is very considerable. 

In a letter to this writer, Howard Eves points out that "though the material... has 

little practical value... it is beautiful and interesting." While after nearly a century 
one may argue that graphical methods of equation-solving are no longer "of great 

importance," we should be aware that these methods do indeed exist and were 

once studied in the classroom. And what was beautiful and interesting then is still 
so today. 

Acknowledgment. The author is deeply indebted to Howard Eves for his invaluable contributions to 
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