
PRAMs

A PRAM (parallel random access machine) consists of p many
identical processors M1, . . . , Mp (RAMs).

Processors can read from/write to a shared (global) memory.

Processors work synchronously.

M1 M2 Mp

globaler Speicher



PRAMs

Different variants:

CRCW (Concurrent Read Concurrent Write)

CREW (Concurrent Read Exclusive Write)

EREW (Exclusive Read Exclusive Write)

ERCW (Exclusive Read Concurrent Write)

randomized PRAMs: Processors may toss coins.



The Class NC

Problems which are “efficiently parallelizable”.

NC is called Nick’s Class (after Nick Pippenger).

Definition: A problem belongs to the class NC, if it can be solved
on a PRAM such that for an input of length n, we:

use only nd many processors (for a constant d), and

spend time (log n)c (for a constant c).

The class is robust to minor changes of the machine model: for
instance, it doesn’t matter, whether we use the
CRCW/CREW/EREW/ERCW PRAM-model.

The question NC
?
= P is still open.



Luby’s Algorithm

Recall that an independent set of an undirected graph G = (V , E )
is a subset I ⊆ V such that (u, v) 6∈ E for all u, v ∈ I .

Goal: For a given undirected graph G = (V , E ), find an
independent set I ⊆ V of G , which is maximal under inclusion,
i.e., if I ⊆ J for an independent set J then I = J.

We want to do this in NC, i.e., in polylogarithmic time using
polynomially many processors.

Our first solution will be a randomized NC-algorithm.

For a set U ⊆ V of nodes let
N(U) = {v ∈ V | ∃u ∈ U : (u, v) ∈ E} be the set of neighbors of
U.



Luby’s Algorithm

Luby’s algorithm works in rounds. In every round we calculate an
independent set I in the current graph G and remove I ∪N(I ) (and
all edges that are incident with a node from I ∪ N(I )) from G .

We repeat this until the graph is empty. The calculated
independent set is the union of the independent sets calculated in
the rounds.

A single round, where d(v) = |N(v)| for v ∈ V :

In parallel: for every node v ∈ V , put v with probability 1
2d(v)

into a set S (isolated nodes can be put into S into a
preprocessing step), independently from the other nodes (i.e.,
Pr(
∧k

i=1 vi ∈ S) =
∏k

i=1 Pr(vi ∈ S)).

In parallel: For every (u, v) ∈ E with u, v ∈ S , remove from S
the node with the smaller degree (break ties arbitrarily). Call
the remaining set I ; it is an independent set.



Luby’s Algorithm

A single round can be done in constant time using O(|V |2)
processors.

We will show that the expected value of the number of rounds
is in O(log |E |).

First step: We show that the expected number of edges that
are deleted in every round is at least 1

72 of the total number of
edges.



Luby’s Algorithm

Lemma

For every node v: Pr(v ∈ I ) ≥ 1
4d(v)

Proof: We will show that

Pr(v 6∈ I | v ∈ S) ≤
1

2

Then we obtain:

Pr(v ∈ I ) = Pr(v ∈ I | v ∈ S) · Pr(v ∈ S)

≥
1

2
· Pr(v ∈ S) =

1

4d(v)
.



Luby’s Algorithm

We have

Pr(v 6∈ I | v ∈ S) ≤ Pr(∃u ∈ L(v) : u ∈ S | v ∈ S)

where L(v) = {u ∈ N(v) | d(u) ≥ d(v)} .

Thus:

Pr(v 6∈ I | v ∈ S) ≤
∑

u∈L(v)

Pr(u ∈ S | v ∈ S)

=
∑

u∈L(v)

Pr(u ∈ S) (independence)

=
∑

u∈L(v)

1

2d(u)

≤
∑

u∈L(v)

1

2d(v)
≤

1

2
, since L(v) ⊆ N(v).



Luby’s Algorithm

Definition: A node v ∈ V is good, if
∑

u∈N(v)

1

2d(u)
≥

1

6

(intuition: many neighbors with small degree), otherwise v is bad.
An edge (u, v) ∈ E is good, if u or v is good, otherwise it is bad.

Lemma

For a good node v ∈ V we have Pr(v ∈ N(I )) ≥ 1
36 .

Proof:
Case 1: ∃u ∈ N(v) : 1

2d(u) > 1
6 .

Then, by the previous lemma,

Pr(v ∈ N(I )) ≥ Pr(u ∈ I ) ≥
1

4d(u)
>

1

12
>

1

36
.



Luby’s Algorithm

Case 2: ∀u ∈ N(v) : 1
2d(u) ≤ 1

6 .

Then there exists M(v) ⊆ N(v) with 1
6 ≤

∑

u∈M(v)
1

2d(u) ≤ 1
3 .

Thus

Pr(v ∈ N(I )) ≥ Pr(∃u ∈ M(v) : u ∈ I )

≥
∑

u∈M(v)

Pr(u ∈ I ) −
∑

u,w∈M(v),u 6=w

Pr(u ∈ I ∧ w ∈ I )

≥
∑

u∈M(v)

1

4d(u)
−

∑

u,w∈M(v),u 6=w

Pr(u ∈ S ∧ w ∈ S)

(independence)

≥
∑

u∈M(v)

1

4d(u)
−

∑

u,w∈M(v)

1

2d(u)
·

1

2d(w)

=
∑

u∈M(v)

1

2d(u)





1

2
−

∑

w∈M(v)

1

2d(w)



 ≥
1

6
·
1

6
=

1

36



Luby’s Algorithm

By the previous lemma, a good edge will be deleted with
probability at least 1/36.

Lemma

At least half of all edges are good.

Proof: Direct every edge towards its endpoint of higher degree,
breaking ties arbitrarily.

Claim: For every bad node v ∈ V , there are at least twice as many
outgoing edges than incoming edges.

Proof of the claim: Let N1 be the set of predecessors of v after
directing the edges. If |N1|

d(v) ≥
1
3 , then

∑

u∈N(v)

1

2d(u)
≥

∑

u∈N1

1

2d(v)
=

1

2
·
|N1|

d(v)
≥

1

6
,

i.e., v would be good — a contradiction.



Luby’s Algorithm

Thus, |N1|
d(v) < 1

3 , i.e., |N1| < 1
2(d(v) − |N1|), which proves the

claim.

Hence, to every bad edge e (for which both endpoints are bad) we
can assign a set P(e) = {e1, e2} of two edges e1 6= e2 such that
e 6= f ⇒ P(e) ∩ P(f ) = ∅.

This proves the lemma.



Luby’s Algorithm

Theorem

Let X be the number of edges that are deleted (in a certain
round). Then for the expected value E(X ) of X we have

E(X ) ≥
|E |

72
.

Proof: Let Xe = 1, if e is deleted, otherwise Xe = 0. Then we
have:

E(X ) =
∑

e∈E

E(Xe) ≥
∑

e good

E(Xe)

≥
∑

e good

1

36
≥

|E |

2
·

1

36



Luby’s Algorithm

Let m be the total number of edges in our graph. For i ≥ 0 we
define

Si = number of edges that were removed in round 1 · · · i .

Xi = number of edges that are removed in round i .

Thus, S0 = 0, Si ≤ m, and Si+1 = Si + Xi+1.

The statement of the previous theorem can be restated as follows,
where ε = 1

72 :

E(Xi+1 | Si = `) =
∑

k∈N

k · Pr(Xi+1 = k | Si = `) ≥ ε(m − `)

Lemma

E(Xi+1) ≥ ε · m − ε · E(Si )



Luby’s Algorithm

Proof:

E(Xi+1) =
∑

k∈N

k · Pr(Xi+1 = k)

=
∑

k,`∈N

k · Pr(Xi+1 = k ∧ Si = `)

=
∑

k,`∈N

k · Pr(Xi+1 = k | Si = `) · Pr(Si = `)

=
∑

`∈N

Pr(Si = `)
∑

k∈N

k · Pr(Xi+1 = k | Si = `)

=
∑

`∈N

Pr(Si = `) · E(Xi+1 | Si = `)

≥
∑

`∈N

Pr(Si = `) · ε(m − `)

= ε · m − ε ·
∑

`∈N

` · Pr(Si = `) = ε · m − ε · E(Si )



Luby’s Algorithm

Lemma

E(Si ) ≥ m(1 − (1 − ε)i ).

Proof: Induction on i .

The case i = 0 is clear.

For i + 1 we obtain:

E(Si+1) = E(Si ) + E(Xi+1)

≥ E(Si ) + εm − ε · E(Si )

= εm + (1 − ε)E(Si )

≥ εm + m(1 − ε)(1 − (1 − ε)i )

= m(1 − (1 − ε)i+1)



Luby’s Algorithm

Lemma

E(Si ) ≤ m − 1 + Pr(Si = m)

Proof:

E(Si ) =

m
∑

j=0

j · Pr(Si = j)

≤
m−1
∑

j=0

(m − 1) · Pr(Si = j) + m · Pr(Si = m)

= m · Pr(Si = m) + (m − 1)(1 − Pr(Si = m))

= m − 1 + Pr(Si = m)



Luby’s Algorithm

By the two previous lemmas we have Pr(Si = m) ≥ 1 − m(1 − ε)i .

Thus, Pr(Si < m) ≤ m(1 − ε)i .

Choose k ∈ O(log m) such that m(1 − ε)k ≤ 1.

Then, for i ≥ k we have Pr(Si < m) ≤ m(1 − ε)i ≤ (1 − ε)i−k .

Define f : N → {0, 1} by

f (x) =

{

1 if x < m

0 otherwise.

Thus, E(f (Si )) = Pr(Si < m) ≤ (1 − ε)i−k for i ≥ k.



Luby’s Algorithm

The random variable R = f (S0) + f (S1) + f (S2) + · · · counts the
number of rounds in Luby’s algorithm.

We have

E(R) =
∑

i≥0

E(f (Si )) ≤ k +
∑

i≥k

E(f (Si ))

≤ k +
∑

i≥k

(1 − ε)i−k = k +
1

ε
∈ O(log m)

We have shown

Theorem

The expected number of rounds in Luby’s algorithm is in O(log m).



Luby’s Algorithm

In the current version of Luby’s algorithm we put a node v into S
with probability 1

2d(v) .

For this we have to flip n = |V | many biased coins (with
Pr(head) = 1

2d(v) and Pr(tail) = 1 − 1
2d(v)) independently.

It can be shown that nΩ(1) many truely random bits (fair coin flips)
are necessary (and sufficient) in order to approximate these n
independent biased coin flips sufficiently good.

But: In the analysis of Luby’s algorithm, we only used pairwise
independence.

We will show that Ω(log(n)) many random bits suffice in order to
generate n = |V | biased coin flips (Pr(head) ≈ 1

2d(v)) that are
pairwise independent.



Luby’s Algorithm

This leads to a derandomized version of Luby’s algorithm:

Assume that α log(n) random bits suffice in order to generate n
biased coin flips, where α is a constant. Let R = {0, 1}α log(n),
thus |R| = nα.

A single round in Luby’s algorithm is replaced by the following
procedure:

for all s = a1 · · · aα log(n) ∈ R do in parallel

simulate the next round of Luby’s algorithm deterministically
with ai = the i-th random bit

endfor

choose that simulation that removes the largest number of edges
and go with the resulting graph to the next round



Luby’s Algorithm

For every v ∈ V let δ(v) ∈ R such that

7

9
·

1

2d(v)
=

1

2d(v)
−

1

9d(v)
≤

1

2δ(v)
≤

1

2d(v)

First, we check that the analysis of Luby’s algorithm also works
when we replace d(v) by δ(v) everywhere (in particular,
Pr(v ∈ S) := 1

2δ(v)).

Lemma 1 (∀v ∈ V : Pr(v ∈ I ) ≥ 1
4δ(v)): ✓

Lemma 2 (v good ⇒ Pr(v ∈ N(I )) ≥ 1/36): ✓

Recall that v is good if
∑

u∈N(v)
1

2δ(u) ≥ 1
6 and that an edge is

good if one of its endpoints is good.



Luby’s Algorithm

Instead of showing that at least half of the edges are good
(Lemma 3), we will prove that at least 1/4 of all edges are good.

Again, we direct every edge towards its endpoint with larger
δ-value.

Lemma

Let n1 = |N1| be the number of incoming edges of a node v. If
7n1

18d(v) ≥ 1
6 then v is good.

Proof
∑

u∈N(v)

1

2δ(u)
≥

∑

u∈N1

1

2δ(v)
=

n1

2δ(v)

≥
7

9
·

n1

2d(v)
≥

1

6



Luby’s Algorithm

Thus, if v is bad then
7

18
·

n1

d(v)
≤

1

6
.

We obtain n1 ≤
3

7
· d(v).

Thus, d(v) − n1 ≥
7

3
n1 − n1 =

4

3
n1.

Therefore, n1 ≤
3

4
(d(v)−n1), i.e., at least 1/4 of all edges is good.

If X is the number of edges that are removed (in a certain round),
then we obtain

E(X ) ≥
1

36
·
|E |

4
=

1

144
|E |



Luby’s Algorithm

We have shown that Luby’s algorithm works with δ(v) instead of
d(v) as well.

Recall δ only has to satisfy
1

2δ(v)
∈

[

7

9
·

1

2d(v)
,

1

2d(v)

]

.

Now choose a prime number p with 9n ≤ p ≤ 18n — such a prime
exists by Betrand’s postulat. We may identify V with a subset of
Fp = {0, . . . , p − 1}.

The interval
[

7
9 · 1

2d(v) ,
1

2d(v)

]

has size
1

2d(v) −
7
9 · 1

2d(v) = 1
9d(v) ≥ 1

9n ≥ 1
p
, thus there exists a number of

the form av

9n in this interval for some av ∈ N. We can set
1

2δ(v) = av

p
.

Determine a subset Av ⊆ Fp with |Av | = av , where
7
9 · 1

2d(v) ≤ av

p
= 1

2δ(v) ≤ 1
2d(v)



Luby’s Algorithm

Now choose (x , y) ∈ Fp × Fp randomly (using O(log(n)) many
random bits) and put v into S if and only if x + vy ∈ Av .

Since for every y , z ∈ Fp there is exactly one x ∈ Fp with
x + vy = z , namely x = z − vy , we have

Pr(v ∈ S) =
1

p2
|{(x , y) | x + vy ∈ Av}|

=
1

p2

∑

z∈Av

|{(x , y) | x + vy = z}|

=
1

p2

∑

z∈Av

p

=
av

p



Luby’s Algorithm

Finally, we have to show pairwise independence: Let u 6= v be two
different nodes. Then

Pr(u ∈ S ∧ v ∈ S) =
1

p2
|{(x , y) | x + uy ∈ Au ∧ x + vy ∈ Av}|

=
1

p2

∑

(zu ,zv )∈Au×Av

∣

∣

∣

∣

{

(x , y) |

(

1 u
1 v

)(

x
y

)

=

(

zu

zv

)}∣

∣

∣

∣



Luby’s Algorithm

The matrix has an inverse (the determinant is v − u 6= 0), thus for
every (zu, zv ) there is exactly one (x , y) ∈ Fp × Fp for

(

1 u
1 v

)(

x
y

)

=

(

zu

zv

)

We obtain

Pr(u ∈ S ∧ v ∈ S) =
1

p2
auav =

au

p

av

p
= Pr(u ∈ S) · Pr(v ∈ S).

We have shown pairwise independence.


