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a b s t r a c t

A fundamental component of language acquisition involves orga-
nizing words into grammatical categories. Previous literature has
suggested a number of ways in which this categorization task
might be accomplished. Here we ask whether the patterning of
the words in a corpus of linguistic input (distributional information)
is sufficient, along with a small set of learning biases, to extract
these underlying structural categories. In a series of experiments,
we show that learners can acquire linguistic form-classes, general-
izing from instances of the distributional contexts of individual
words in the exposure set to the full range of contexts for all the
words in the set. Crucially, we explore how several specific distri-
butional variables enable learners to form a category of lexical
items and generalize to novel words, yet also allow for exceptions
that maintain lexical specificity. We suggest that learners are sen-
sitive to the contexts of individual words, the overlaps among con-
texts across words, the non-overlap of contexts (or systematic gaps
in information), and the size of the exposure set. We also ask how
learners determine the category membership of a new word for
which there is very sparse contextual information. We find that,
when there are strong category cues and robust category learning
of other words, adults readily generalize the distributional proper-
ties of the learned category to a new word that shares just one con-
text with the other category members. However, as the
distributional cues regarding the category become sparser and con-
tain more consistent gaps, learners show more conservatism in
generalizing distributional properties to the novel word. Taken
together, these results show that learners are highly systematic
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in their use of the distributional properties of the input corpus,
using them in a principled way to determine when to generalize
and when to preserve lexical specificity.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The ability to categorize is a powerful mechanism that learners employ to represent and interact
with their environment. Categories compress information, thereby reducing demands on memory,
and they allow for rapid generalizations. There are many fewer categories than exemplars, and if a
particular exemplar is a member of a category, it inherits the defining properties of category member-
ship. Often these defining properties are based on perceptual similarity (things that are green), seman-
tic relations (things that float), or functional roles (things that can be sat upon). In the domain of
language, however, there is a very loose relationship between perceptual, semantic, or functional
properties and grammatical categories. A noun that serves as the subject of a sentence does not always
sound like other subjects, express uniform semantics, or even play the same role in sentences that
convey the same meaning (e.g., The frog ate the bug vs. The bug was eaten by the frog).

How, then, do naïve learners master the assignment of exemplars to grammatical categories in nat-
ural language? This is a crucial first step in language acquisition, since sentences of languages are or-
ganized in terms of grammatical form-classes (such as noun, verb, and adjective). Language learners
must determine when they should treat words as a category (thus generalizing from properties of
experienced words to novel words) and when they should treat words separately, as lexically idiosyn-
cratic (with no generalization from properties of experienced words to novel words). Importantly,
words of both types do in fact occur in natural languages. This process of organizing words into cat-
egories, and the selective generalization of patterns from experienced word combinations to novel
ones, account for important aspects of the expansion of linguistic knowledge in the early stages of lan-
guage acquisition. As highlighted above, linguistic categories are rarely defined on the basis of percep-
tual similarity; assignment of words to most grammatical categories is independent of the surface
features of its members.

There are a number of additional complicating factors that make the acquisition of grammatical
categories different from non-linguistic categorization. We hear individual words in a limited number
of specific contexts. However, the rules that languages are built on involve patterns defined over cat-
egories of words, not the individual words themselves. Additionally, language input is serially pre-
sented – we hear words in their various sentence contexts spread out over hours or days – so
learners continually need to predict the proper contexts for words they have not yet heard in their full
range of possible contexts. Learners never see the entire input corpus, so they must figure out the
proper contexts for new words, keeping in mind that sometimes there are lexically specific restrictions
on words (such as give versus donate: despite having similar meanings, Joe can give David a book, but
Joe cannot ⁄donate David a book). In acquiring grammatical categories, then, the learner must tease
apart lexically specific restrictions and small-sample omissions from the corpus, asking whether con-
texts are absent by accident or because they are ungrammatical.

This question is particularly difficult to resolve when a new item is encountered in a single context
and therefore only minimally overlaps with previously encountered words. For example, consider
hearing the sentence: I remembered to nerk yesterday. Should one generalize from this context to other
contexts that are grammatical for the category ‘verb’, such as She will make him nerk tomorrow, or I saw
the cat nerk earlier?

Despite the difficulty of this problem, learners are able to determine how to use a new word even
when there is very sparse information regarding its acceptable contexts. A number of hypotheses have
been considered to explain this (Gleitman & Wanner, 1982). One hypothesis regarding how learners
solve the problem of categorization is that linguistic categories (though not their lexical instantia-
tions) are innately specified prior to experiencing any linguistic input, with the assignment of tokens
to categories accomplished with minimal exposure (e.g., Chomsky, 1965; McNeill, 1966). However,
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assuming a universal innate set of syntactic categories does not resolve the problem: some languages
lack certain categories (such as the distinction between adjectives and verbs) or have multiple sub-
classes particular to that language (such as noun gender or verb subcategories). In addition, having in-
nate abstract categories does not solve the massive problem of how the lexical items are assigned to
these categories.

A second possibility is that the categories are formed around a semantic definition and extended
via semantic bootstrapping (e.g., Grimshaw, 1981; Pinker, 1984, 1987). This hypothesis suggests that
children associate semantic properties with syntactic classes, either via innate knowledge about this
mapping (e.g., Brown, 1957; Grimshaw, 1981; Pinker, 1984, 1987), or through discovery of this map-
ping via the input (e.g., Bates & MacWhinney, 1979, 1982; Bowerman, 1973; Macnamara, 1972; Schle-
singer, 1974). This hypothesis also has some significant problems. Similar to the strong nativist view of
syntactic categories, an innatist approach to semantic bootstrapping assumes that there is a universal
set of part-of-speech categories, which is not true for all syntactic categories. In addition, some classes
of words are almost entirely semantically arbitrary, like gender classes (Maratsos & Chalkley, 1980),
yet children are still readily able to acquire these categories. Furthermore, semantic bootstrapping re-
quires a referential completeness assumption that is not upheld in natural language. Semantic fea-
tures do not neatly match syntactic categories; yet, despite this lack of fit, there is little evidence
that children miscategorize words based on their semantic properties (Gordon, 1985; Maratsos &
Chalkley, 1980).

While it is likely that innate learning biases and semantic or phonological sources of evidence make
important contributions to the task of linguistic categorization, it is also clear that grammatical cate-
gories must eventually be represented in terms of the syntactic contexts that are allowable for the
words in a category. This important role for context suggests a third hypothesis for how learners might
solve the problem of categorization: they exploit distributional information in the input to discover the
category structure of natural languages (e.g., Bloomfield, 1933; Braine, 1987; Cartwright & Brent,
1997; Finch & Chater, 1992, 1994; Fries, 1952; Harris, 1951, 1954; Maratsos & Chalkley, 1980; Mintz,
2002, 2003; Mintz, Newport, & Bever, 1995, 2002; Redington, Chater, & Finch, 1998). The ‘‘distribu-
tional learning’’ hypothesis stems from the idea that learners could group words together into catego-
ries when those words occur in the same linguistic environments (e.g., Bloomfield, 1933), thus
utilizing the same type of information that linguists use to find grammatical categories in a language
(Harris, 1951, 1954). Given infinite time, input, and memory resources, a language learner could use
such methods to compute the similarities among words in their linguistic contexts and determine
whether missing contexts in the input signal an accidental gap (because that utterance has not yet
been heard) or a meaningful gap (because it is part of the category structure). There are a number
of different types of distributional information correlated with syntactic categories that could be
exploited in this manner: for example, in English, words that take /-ed/ as a suffix also usually take
/-s/ as a possible suffix and are in the category verb (Maratsos & Chalkley, 1980). Discovering these
patterns between properties of word roots (e.g., /-ed/ and /-s/ suffixing) might be an important part
of the learning process. Indeed, computational analyses using very large linguistic corpora show some
success in solving the categorization problem via distributional analyses alone (e.g., Cartwright &
Brent, 1997; Finch & Chater, 1992, 1994; Mintz, 2003; Mintz et al., 1995, 2002; Redington et al., 1998).

However, distributional learning has often been thought to be insufficiently powerful to play a ma-
jor role in the category acquisition process. Human learners never see an entire input corpus, and to
perform a distributional analysis they must compute statistics over noisy, highly variable and serially
presented input. Given the information processing limitations of young children and the complexity of
the computational processes that would be entailed, this hypothesis has often been viewed as implau-
sible. However, there is a wealth of recent evidence that human infants and adults can learn other as-
pects of language based on distributional evidence. But could a distributional learning mechanism
lead learners to know which distributional contexts are the relevant ones for grammatical categoriza-
tion? Pinker (1984, 1987), for example, suggested that a distributional learning mechanism must work
in tandem with semantic information; otherwise children would be unable to resolve ambiguous in-
put such as in the sentences: Jim could fish; Jim likes fish; Jim eats fish; Jim eats beef; Jim eats quietly. If a
learner were to have access to this input and only tallied word co-occurrences, the learner would be
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likely to generalize to the erroneous and ungrammatical ⁄Jim could quietly, ⁄Jim likes quietly and ⁄Jim
could beef.

Similarly, many have argued that, in order for a learner to successfully utilize distributional infor-
mation for category acquisition, there must be multiple correlated cues to category structure in the
input (e.g., Braine, 1966). In accord with this suggestion, a large number of artificial language
learning studies have explored the utility of correlated non-distributional cues to enable category
learning (for example, semantic cues: Braine et al., 1990; morphological cues: Brooks, Braine,
Catalano, Brody, & Sudhalter, 1993; phonological cues: Frigo & McDonald, 1998; Gerken, Gomez,
& Nurmsoo, 1999; Gerken, Wilson, & Lewis, 2005; Monaghan, Chater, & Christiansen, 2005; Morgan,
Shi, & Allopenna, 1996; Wilson, 2002; shared features: Gomez & Lakusta, 2004). The consensus
interpretation of their results is that the formation of linguistic categories depends crucially on
the presence of some perceptual property that links items within the category, such as Braine’s
(1987) ‘‘similarity relations’’ (see also Gomez & Gerken, 2000). Examples of correlated perceptual
cues are the identity or repetition of elements in grammatical sequences (Gomez & Gerken,
1999), or – more commonly proposed – a phonological or semantic cue identifying words across dif-
ferent sentences as similar to one another (e.g., words ending in –a are feminine, or words referring
to concrete objects are nouns).

These correlated-cues hypotheses, however, suffer from the following puzzle: grammatical catego-
ries in natural languages do not always have reliable phonological, morphological, or semantic cues
(Gleitman, 1990; Maratsos & Chalkley, 1980). The absence of reliable correlated cues suggests that
learners must acquire such categories at least in part by utilizing the distributional cues to the linguis-
tic contexts in which words occur. (For example, Maratsos and Chalkley (1980) pointed out that the
existence of semantically arbitrary grammatical categories necessitates some form of distributional
analysis.) Furthermore, when the semantic and distributional properties of a word conflict, it is usually
the distributional information that determines the syntactic class of the word (Braine, 1987; Gordon,
1985).

As mentioned above, a number of investigators have demonstrated that computational models uti-
lizing clustering algorithms over co-occurrence statistics can successfully acquire elementary form-
class categories in natural language corpora (e.g., Cartwright & Brent, 1997; Finch & Chater, 1992,
1994; Mintz, 2003; Mintz et al., 1995, 2002; Redington et al., 1998). These models exploit purely dis-
tributional information in the input, highlighting the potential importance of such a strategy during
child language acquisition. However, the details of how a distributional learning mechanism actually
operates in natural language acquisition has been difficult to ascertain; many distributional cues to
category structure in natural languages are correlated with other sources of information (e.g., seman-
tic: Pinker, 1984; or phonological: Farmer, Christiansen, & Monaghan, 2006; Kelly, 1992). This makes
it difficult to isolate distributional cues in studies of natural language to determine their contribution
to linguistic category learning, unconfounded by these other cues.

Fortunately, artificial language learning paradigms offer the ability to test how learners utilize dis-
tributional information, by permitting precise experimental control over the various properties of the
input and then testing to find the circumstances under which learners acquire categories. A first step
in using miniature languages to study categorization was by Smith (1966), who showed that learners
were quite capable of learning a simple language where there are only two categories of letters (a and
b) and one rule that requires a words to be followed by b words. Participants saw some of the possible
strings of the language and were then asked to do written recall of as many strings as possible. The
results showed that participants recalled both the presented strings as well as ‘‘intrusions’’ (legal
strings according to the pairing rule of the language that were not presented during exposure). The
recall of grammatical intrusions is evidence of category-level generalizations, where categories are de-
fined by positional information only (since the co-occurrence statistics between the two categories are
distributionally uninformative). More recently, both Mintz (2002) and Gerken et al. (2005) have used
artificial grammar learning paradigms with many correlated distributional cues to show that adults
and infants can learn a simple version of a grammatical category cued only by distributional
information.

However, none of these earlier studies articulated the principles governing the use of distributional
variables that enable learners to solve the problem of category learning. In the present series of
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experiments, we introduce a framework for describing the structure of the distributional information
available to the learner. We focus on one part of the categorization problem: namely, how does the
learner cope with incomplete evidence about the allowable contexts for particular words?1 We then
ask what type of distributional information will lead learners to behave as if a set of words is a single
category, and what type will lead learners to restrict generalization and treat words as lexical exceptions.
If learners demonstrate generalization from experienced words and their contexts to the full range of
contexts for all words in the target set, they will have demonstrated formation of a category. If they re-
strict generalization to specific words, they will have demonstrated that they have stored particular con-
texts as being lexically specific. Overall, we view such behavior as probabilistic, rather than as sharply
divided between category-general versus lexically specific representations. As we will see, human learn-
ers appear to weigh distributional information carefully and probabilistically, tending to generalize or
restrict generalization as they learn and obtain more evidence, depending on the precise structure of
the information provided.

Our series of experiments begins by outlining the distributional cues in the input that we hypoth-
esize learners could use to form categories, without correlated perceptual or semantic cues. We then
demonstrate that these cues alone can lead to successful learning of linguistic categories in an artificial
language learning paradigm. In a series of four experiments (Experiments 1–4), we manipulate these
distributional variables, showing that modulating these variables does indeed shift learners’ tendency
to generalize. The main distributional variables of interest are: the number of linguistic contexts in
which each word in the input set occurs, the density or proportion of these contexts present in the in-
put, and the degree of overlap of contexts across words. In addition, we investigate the importance of
the frequency of these cues (or size of the input corpus). If learners operate in a principled way when
using the statistics of their exposure corpus, then infrequent and non-systematic omissions in the in-
put should still result in generalization to the appropriate category; the low frequency and non-sys-
tematic character of such omissions suggest that those contexts are accidentally omitted from the
exposure corpus. On the other hand, systematic and recurring gaps should lead learners to increase
their certainty that the gaps are meaningful. In this situation, where there is frequently recurring
non-overlap among contexts, generalization should decline.

To ask whether human learners can exploit distributional information in such systematic ways,
Experiments 1–4 vary the density of contexts in the input, the overlap of contexts across words,
and the number of contexts in the input in order to assess the effects of these variables on learners’
willingness to generalize novel words to a potential category. In Experiment 5, we ask how, under
these same circumstances of varying category strength, learners extend the target category to the
special case of a novel word for which they have only minimal context information. This last
experiment thus asks if there is a point in category learning where hearing only one context for a
novel word is enough to obtain full category privileges for that word, or whether every novel word
must be heard in a number of overlapping contexts in order to be treated as a member of the
category.

All of the experiments reported here employed adults as participants. Although there may be dif-
ferences in the principles that guide learning by adults, who already possess a rich linguistic system,
and infants who are just acquiring their native language, we believe that the relative ease of exposure
and test among adults justifies an exploration of their ability to acquire a simple artificial language in
the lab. Moreover, adult performance on many learning tasks is sufficiently reliable that subtle com-
parisons are possible as the distributional properties of the language are manipulated. Of course, in
future work, it will be important to extend these studies, if possible, to young children and infants
who are acquiring their first language.
1 There are, of course, other important components of the categorization problem that we and other researchers have explored
elsewhere. In this work, we focus on acquisition of a single category surrounded by context words, and we ask which contexts
should be assigned to particular category members based on distributional analyses alone. But we could also ask how learners
categorize the context cues themselves (e.g., Mintz, 2002), or how learners figure out that the noun category belongs with one set
of contexts, but the verb category does not belong with those contexts. The results reported here have implications for these other
aspects of categorization, but our work on subcategorization (e.g., Reeder, Newport, & Aslin, 2009, Experiment 5) more directly
speaks to these other questions.
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2. Experiment 1

In Experiment 1, learners were exposed to a fairly dense sampling of a language generated by an
artificial grammar, with a small number of exemplars withheld from the total set of possible gram-
matical strings. We did this by presenting two-thirds of the possible sentence types in the exposure
set and withholding one-third for later test. The goal of this experiment was to give learners a rich
input set (while still allowing for tests of novel strings), in order to establish a baseline level of per-
formance on category formation in our artificial language learning paradigm.

2.1. Method

2.1.1. Participants
A total of 19 monolingual native English-speaking students at the University of Rochester partici-

pated in Experiment 1 and were paid for their participation. Two subjects were excluded from the
analysis for not complying with experimental instructions. Participants were randomly assigned to
one of two languages: eight subjects were assigned to language 1, and nine subjects were assigned
to language 2. All of the participants, in this and all of the remaining experiments, were naïve to each
experiment and were not allowed to participate in any other categorization study.

2.1.2. Stimulus materials
All sentences in the language were constructed from a grammar of the form (Q)AXB(R), where Q, A,

X, B, and R were categories of nonsense words. X was the target category under study, while A and B
were the context categories that formed the distributional cues to the X category. Q and R served as
optional categories that made sentences of the language vary in length from 3 to 5 words (thus, sen-
tences could be of the form AXB, QAXB, AXBR, or QAXBR). The optional status of Q and R categories
ensured that the words of the language observed regular patterning in terms of relative order and
co-occurrence but did not have fixed positions in the sentences. As in natural languages, then – but
in contrast with several other artificial language experiments on this topic – fixed or absolute position
information (such as ‘initial position’ or ‘second word in the string’) could not be used as an informa-
tive cue to category membership.

Two versions of the language (languages 1 and 2) were created to insure that the mapping of words
to categories was not inadvertently biased to aid the learner with the categorization task. The same 13
words were used in each of the two languages (see Table 1). These words were read in isolation by a
native English-speaking female and were each recorded with both a non-terminal and terminal list
intonation. Words were adjusted in Praat (Boersma, 2001) so that the pitch, volume, and duration
Table 1
Word-to-category assignments for languages 1 and 2.

Q A X B R

Language 1
spad flairb tomber fluggit gentif
(/spæd/) (/fleIrb/) (/tAmbe/) (/flugIt/) (/FentIf/)
klidum daffin zub mawg frag
(/klaIdVm/) (/dæfIn/) (/zVb/) (/mOg/) (/fræg/)

glim lapal bleggin
(/glIm/) (/lVpOl/) (/blegIn/)

Language 2
frag gentif spad zub lapal
(/fræg/) (/FentIf/) (/spæd/) (/zVb/) (/lVpOl/)
daffin mawg fluggit tomber flairb
(/dæfIn/) (/mOg/) (/flugIt/) (/tAmbe/) (/fleIrb/)

klidum bleggin glim
(/klaIdVm/) (/blegIn/) (/glIm/)
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of syllables were qualitatively consistent. Languages 1 and 2 differed only on the assignment of words
to categories. In both cases, we ensured that each category had a relatively balanced number of one-
and two-syllable words, and no category was strongly imbalanced in terms of phonological properties
of the category members (onset, offset, and number of syllables) (see Table 1). The words were not
mapped to any referential world, and they had no meanings associated with them. Sentences were
constructed by splicing together words into sequences using Sound Studio, with 50 ms of silence be-
tween each word and selecting the word token with a terminal intonation contour as the final word in
the sentence.

Focusing on just the AXB portion of the grammar, there were 27 possible word strings in the lan-
guage (3 A-words � 3 X-words � 3 B-words). Of the 27 basic AXB sentence types, 18 were presented
and 9 were withheld (see Table 2). Within these 18 AXB types, AXB, QAXB, AXBR and QAXBR strings
were created by varying whether the 2 Q- and 2 R-words were present or absent. Q- and R-words were
added such that each X-word was seen with all Q- and R-words. Bigram frequencies of Q–A and B–R
pairs were controlled such that the flanker words could not be an informative cue to the sentence
type. With the use of the optional flanker Q- and R-words, the 18 AXB sentence types used for expo-
sure generated a total of 72 different (Q)AXB(R) sentences (18 of each of the four sentence types AXB,
QAXB, AXBR, and QAXBR). Each possible A_B frame was also heard equally often during the exposure
phase; learners heard each of the nine different frames 32 times during exposure. (See Supplementary
materials for exact frequencies of all adjacent and nonadjacent bigrams for each experiment.)
2.1.3. Procedure
Participants were seated in a sound-attenuated booth and were informed that they would be

exposed to some sentences from a new language that they had never heard before. They were told
to just listen to the sentences and to pay attention to them because they would be tested on their
memory of them in the second portion of the experiment. The exposure set of 72 sentences was
presented four times (288 sentences) via headphones, forming 20 min of exposure to the language.
Exposure strings were presented in pseudo-random order with 1.5 s of silence between sentences.
Importantly, the 18 AXB sentence types used during exposure included each X-word in the presence
of every A-word and every B-word and two-thirds of the possible AXB sentences. Thus, the exposure
set for this language is dense (covering a high proportion of the overall language space) and has com-
plete overlap of the possible A_ and _B contexts among the various X-words within the target category
(see Fig. 1).

After exposure, participants were presented with a pseudo-random ordering of individual test
strings and were asked to rate each test string on a scale of 1–5 based on whether or not they thought
the test sentence came from the language they heard during training: 1 meant that the string sounded
like it definitely did not come from the language; 2 meant the string might not have come from the
language; 3 meant the string may or may not have come from the language; 4 meant the string might
have come from the language; 5 meant the string definitely came from the language. If subjects asked
what it meant to ‘‘come from the language,’’ they were instructed to go with their gut reaction as to
whether the string might have been something a native speaker of the language would have said when
Table 2
Possible AXB strings in Experiments 1–4. Strings presented in Experiment 1
are denoted H; strings presented in Experiment 2 are denoted z; strings
presented in Experiments 3 and 4 are denoted s.

A1 X1 B1 H A1 X2 B1 A1 X3 B1 H z s

A1 X1 B2 A1 X2 B2 H z A1 X3 B2 H s

A1 X1 B3 H z s A1 X2 B3 H A1 X3 B3

A2 X1 B1 A2 X2 B1 H z s A2 X3 B1 H

A2 X1 B2 H z s A2 X2 B2 H A2 X3 B2

A2 X1 B3 H s A2 X2 B3 A2 X3 B3 H z

A3 X1 B1 H z A3 X2 B1 H s A3 X3 B1

A3 X1 B2 H A3 X2 B2 A3 X3 B2 H z s

A3 X1 B3 A3 X2 B3 H z s A3 X3 B3 H



Fig. 1. Pictorial depiction of the learning task in Experiments 1 and 2. Learners hear each X-word with every A-word and with
every B-word (though not every A_B context), such that there is completely overlapping contextual information across the X-
words.
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Fig. 2. Rating score results from Experiments 1–4, comparing familiar, grammatical novel, and ungrammatical test strings.
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following the rules of the language’s grammar. All test strings were 3-word sentences and consisted of
three types: grammatical familiar (9 AXB strings presented during training), grammatical novel (9 AXB
strings withheld during training), and ungrammatical (strings of the form AXA or BXB).2 Although
ungrammatical test strings contained repeated categories (such as AXA), no test string had repeated
word tokens. The nine familiar and nine grammatical novel strings were randomized with nine ungram-
matical strings during the first half of the test, and then the same nine familiar and nine grammatical
novel strings were presented again in random order along with nine different ungrammatical strings
during the second half of the test. (See the Supplementary materials for all test items used in the re-
ported experiments.)
2 Experiments 1–4 were later each piloted with two additional types of ungrammatical items (AAB and ABB) to make sure that
participants were not simply using the A_B frame in order to identify the ungrammatical test items. AAB and ABB strings, like the
AXA and BXB strings, had no repeated word tokens. These additional ungrammatical test items were not rated significantly
differently than the AXA and BXB items (p > 0.05 for each experiment), and confirm that performance during test is not solely
based on learning the positional information contained in the A_B frame.
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2.2. Results

A repeated measures ANOVA was conducted with condition (familiar, novel, and ungrammatical)
as the within-subjects factor and language (1 or 2) as the between-subjects factor. There were no sig-
nificant effects of language (F < 1). The mean rating of grammatical familiar strings was 3.78
(SE = 0.11), the mean rating of grammatical novel strings was 3.69 (SE = 0.10), and the mean rating
of ungrammatical strings was 2.58 (SE = 0.10) (see Fig. 2). There was no significant difference between
ratings of grammatical novel strings and grammatical familiar strings (F(1,15) = 1.85, p = 0.19). How-
ever, these items were rated significantly higher than ungrammatical strings (F(1,15) = 51.992,
p < 0.001).

Because individual subjects may utilize the rating scale in different ways, raw ratings scores were
converted into z-scores in order to standardize ratings across subjects, using the formula zij ¼

ratingij�lj

SEj
,

where zij is the z-score for the ith test item rated by subject j based on the raw rating of item i by sub-
ject j. Thus, a score below zero indicates that an item was rated lower than a subject’s average rating,
and a score above zero indicates that an item was rated higher than a subject’s average rating. Using
the z-scores, another repeated measures ANOVA was conducted with condition (familiar, novel, and
ungrammatical) as the within-subjects factor and language (1 or 2) as the between-subjects factor.
Overall effects were the same as when computed over raw ratings (no significant difference between
languages 1 and 2: F < 1; no significant difference between grammatical novel and grammatical famil-
iar strings: F(1,15) = 1.792, p = 0.2; significant difference between grammatical novel and ungrammat-
ical strings: F(1,15) = 70.630, p < 0.001).

2.3. Discussion

In Experiment 1, learners were exposed to a dense sampling of the language space, with two thirds
of the possible AXB contexts presented and with all of the words in the target category appearing in
many highly overlapping A_ and _B contexts. Under these conditions, learners fully generalized, treat-
ing the X-words as belonging to a category of words that all had the same set of permissible linguistic
contexts. They did not discriminate between the presented and the withheld AXB’s, both of which
were rated as highly grammatical and strongly preferred to ungrammatical sentences in which one
word in the string occurred in an ungrammatical position. These findings show, that when the expo-
sure set densely samples the language space and words within a category appear in highly overlapping
contexts, learners will successfully form a linguistic category. This occurs without any perceptual or
semantic cues to indicate that the words form a single category, and with no negative evidence about
which strings are illegal.

In Experiments 2–4, we investigate the degree to which category generalization is affected by
manipulating the distributional variables of density and overlap in learning a single X category. Fur-
thermore, we explore whether learners use distributional information to avoid overgeneralization
when deciding if particular contexts are lexically specific.
3. Experiment 2

In Experiment 2, we kept the number of contexts presented for each X-word and the overlap
among X-word contexts the same as in Experiment 1, but we substantially reduced the number of dif-
ferent A_B contexts that were presented during the exposure phase (see Table 2). We refer to this as
reducing the density (or increasing the sparseness) of the contexts for X-words that are presented during
learning.

3.1. Method

3.1.1. Participants
A total of 19 monolingual native English-speaking students at the University of Rochester were

paid to participate in Experiment 2; three were excluded for not complying with experiment
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instructions (2) or for equipment failure (1). This left 16 total subjects, with eight participants assigned
to each of languages 1 and 2.

3.1.2. Stimulus materials and procedure
Strings were created in the same manner as in Experiment 1. However, out of the 27 possible AXB

combinations, only nine were presented during exposure (see Table 2). Crucially, every X-word was
still heard in combination with every A- and every B-word; therefore, as in Experiment 1, the exposure
set had complete overlap of contexts across X-words (see Fig. 1). As in Experiment 1, each of the 9 AXB
sentence types was presented with category flanker elements Q and R present or absent, producing 36
sentences in the exposure set (rather than the 18 � 4 = 72 sentences presented in Experiment 1). Each
of the nine possible A_B frames was heard 16 times during the exposure phase.

The procedure was the same as in Experiment 1. The input corpus consisted of presenting the expo-
sure set four times in pseudo-random order. Since the exposure set included fewer sentences than
Experiment 1, total exposure time was about 10 min. The test was the same as in Experiment 1, except
that the 18 grammatical novel test strings were counterbalanced such that half of the participants in
each language were tested on one subset of nine of the withheld (grammatical novel) strings, and the
rest of the participants were tested on the other nine grammatical novel strings.

3.2. Results and discussion

A repeated measures ANOVA was used to analyze the ratings, with condition (familiar, novel,
ungrammatical) as the within-subjects factor, and language (1 or 2) and subtest (which counterbal-
anced set of novel items the subject received during test) as the between-subjects factors. As in Exper-
iment 1, there was no difference between languages 1 and 2, (F < 1), nor was there any effect of subtest
(F < 1) or interactions (F < 1 for all). The mean rating of grammatical familiar strings was 3.54
(SE = 0.12), the mean rating of grammatical novel strings was 3.47 (SE = 0.12), and the mean rating
of ungrammatical strings was 2.74 (SE = 0.14). Grammatical novel strings were rated just as highly
as grammatical familiar strings, and there was no significant difference between these two types of
strings (F(1,12) = 0.810, p > 0.3). Ungrammatical strings were rated significantly lower than the gram-
matical strings (F(1,12) = 19.022, p < 0.001) (see Fig. 2).

As in Experiment 1, raw scores were transformed into z-scores, and another repeated measures AN-
OVA was conducted with condition as the within-subjects factor and language and subtest as the be-
tween-subjects factors. Once again, there was no difference between familiar and novel grammatical
ratings (F(1,12) = 0.693, p > 0.4), but ratings of ungrammatical strings were significantly lower than
grammatical strings (F(1,12) = 21.842, p < 0.001). None of the interactions were significant.
Fig. 3. Pictorial description of full overlap in the grammar space for the X-words in Experiment 2 (Fig 3A), compared to the
partial overlap in Experiment 3 (Fig 3B).
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These results show that learners’ performance is qualitatively unchanged from Experiment 1, de-
spite the change in density/sparseness while other properties of the distributional information were
maintained – that is, despite the fact that the exposure was half as rich and also half as long. This out-
come suggests that a change in the density/sparseness of the input does not alter generalization in cat-
egory learning, so long as the input contains a systematic pattern of overlap in contexts among the
members of the category. In Experiment 3, we ask what happens when the amount of overlap in
the contexts of the X-words is reduced. In Experiment 4, we then ask what happens when the reduced
or missing overlap is a consistent property of the input.
4. Experiment 3

In Experiment 3, as in Experiment 2, we presented only 9 of the possible 27 AXB combinations.
Here, however, we presented a slightly different set of AXB combinations that reduced the overlap
of contexts among members of X. This allows us to assess the importance of overlap in distributional
information for category formation and generalization. In the present experiment, each of the three X-
words occurred in all of the A and B contexts. However, individual X-words did not fully share all their
contexts with one another (see Fig. 3): each X-word occurred with only 2 A-words and 2 B-words, out
of the possible 3. The question addressed, then, is the degree to which learners will restrict their gen-
eralization across the category as a function of this reduction in overlap.

4.1. Method

4.1.1. Participants
A total of 24 monolingual native English-speaking students at the University of Rochester were

paid to participate in Experiment 3; 12 were assigned to language 1, and 12 were assigned to language
2.

4.1.2. Stimulus materials and procedure
Strings were composed in the same way as Experiment 2, with only 9 of the 27 possible AXB com-

binations presented during the exposure phase. X1 was heard in the context of A1, A2, B1 and B2, but
not in the context of A3 or B3. X2 was heard in the context of A2, A3, B2 and B3, but not A1 or B1. X3 was
heard in the context of A1, A3, B1 and B3, but not in the context of A2 or B2. Thus, the overlap among
contexts is maintained over the X category as a whole, but individual words in X do not have the de-
gree and type of overlap in distributional contexts that they did in Experiments 1 and 2 (where every
X-word occurred with each A- and each B-word). As in Experiment 2, each of the 9 AXB sentence types
was presented with category flanker elements Q and R present or absent, producing 36 sentences in
the exposure set. Also, as in Experiment 2, the exposure set was presented 4 times and had a total
exposure time of about 10 min. Each of the 9 A_B frames was heard 16 times during the course of
exposure. Thus, the only difference between Experiments 2 and 3 was in the co-occurrence of individ-
ual X-words with the individual context A- and B-words, not in the A_B frame frequencies. The train-
ing and test procedures were otherwise the same as in Experiments 1 and 2.

4.2. Results and discussion

The mean rating of grammatical familiar strings was 3.79 (SE = 0.1), the mean rating of grammat-
ical novel strings was 3.48 (SE = 0.16), and the mean rating of ungrammatical strings was 2.85
(SE = 0.15). A repeated measures ANOVA, with condition as the within-subjects factor and language
as the between-subjects factor, revealed no difference between languages 1 and 2 (F < 1), but a signif-
icantly higher rating for grammatical strings than for ungrammatical strings (F(1,22) = 40.691,
p < 0.001). In contrast to Experiments 1 and 2, however, the ANOVA revealed significant differences
between grammatical familiar and grammatical novel strings (F(1,22) = 18.981, p < 0.001).

Raw scores were transformed into z-scores, and another repeated measures ANOVA was con-
ducted. There was no effect of language (F < 1), but, again, grammatical novel strings were rated
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significantly lower than grammatical familiar strings (F(1,22) = 23.852, p < 0.001) and significantly
higher than ungrammatical strings (F(1,22) = 56.230, p < 0.001).

Because of the incomplete overlap imposed by this experimental design, the grammatical novel
test items can be divided into multiple types according to bigram information: ‘‘heard 2 bigram’’ test
strings, where the subject heard both the AX and XB bigrams during exposure (but not the entire AXB
trigram); and ‘‘heard 1 bigram’’ test strings, where the subject heard only one of the AX or XB bigrams
during exposure. There was no effect of language on these ratings, so the two languages were col-
lapsed for this analysis. Paired samples t-tests revealed that the two types of grammatical novel test
items were rated differently (heard 2 bigrams mean = 3.62, SE = 0.12; heard 1 bigram mean = 3.41,
SE = 0.12; t = 2.54, p = 0.018). This string difference is subtle, and so is the rating difference it produces;
but it suggests that learners are extremely sensitive to the details of the exposure corpus. In line with
the overall result for this experiment, learners apparently utilize the pattern of specific contexts in
which words do and do not occur to determine their likelihood of generalizing to novel contexts. This
result might also point to the type of statistic that subjects are storing (bigram information) in order to
acquire the categories of the language. We return to this possibility in Section 8.

Whereas Experiment 2 tested how subjects would respond to fewer contexts but full overlap of
the context environment, Experiment 3 tested the effect of reducing the overlap in the exposure
while keeping the amount of exposure the same as in Experiment 2 (see Fig. 3A as compared to
Fig. 3B). Of course, as the size of an input corpus is reduced, some of the contexts that are possible
for a particular word are likely not to occur, simply by chance. A naïve learner would not be sure
whether such absences were chance omissions, or were reflections of the unacceptability of the
non-occurring contexts. However, at some point along the sparseness and non-overlap dimensions,
learners must stop concluding that X is a category and must acquire lexical restrictions or shift to
word-by-word learning. The results of Experiment 3 give insight into the computational details of
how this occurs by showing that, despite full coverage over lexical items, the incomplete overlap be-
tween words led to a slight decrease in generalization. At the same time, however, learners did con-
tinue by and large to generalize, showing a much higher rating for grammatical novel strings than
for ungrammatical strings. These results suggest that learners take into account both the overlap
and the non-overlap among items, modestly reducing their willingness to generalize when the data
supporting generalization are less strong. In Experiment 4, we investigate how repeated exposure to
these partially overlapping items influences the decrease in generalization that we witnessed in
Experiment 3.
5. Experiment 4

One more variable that may impact generalization versus lexical distinctness is how often each
type of context is presented (and therefore the frequency with which contextual gaps recur). If
learners operate in a principled way when using the statistics of their input corpus, the prediction
is that very high frequencies of sparse distributional information, with systematic and recurring
gaps, should lead learners to increased certainty that the gaps are meaningful. This should lead
learners to restrict generalization. Indeed, this is the result obtained in work by Wonnacott, New-
port, and Tanenhaus (2008) in a miniature verb-argument structure-learning paradigm, as well as
in work on concept acquisition by Xu and Tenenbaum (2007). In Experiment 4, we explored how
an increase in the amount of exposure to the very same corpus used in Experiment 3 would affect
categorization.
5.1. Method

5.1.1. Participants
A total of 17 monolingual native English-speaking students at the University of Rochester were

paid to participate in Experiment 4. One was removed for failing to understand the testing directions,
which left eight subjects assigned to each of languages 1 and 2.
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5.1.2. Stimulus materials and procedure
The corpus was the same as in Experiment 3; however, exposure was tripled, by presenting the

exposure set 12 times rather than 4. The exposure therefore lasted for approximately 30 min, which
was a somewhat longer exposure than Experiment 1, but contained only 9 contexts, as in Experiments
2 and 3. The training and test procedures were the same as in Experiment 3.
5.2. Results and discussion

A repeated measures ANOVA, with condition (familiar, novel, ungrammatical) as the within-sub-
jects factor and language (1 or 2) as the between-subjects factor, revealed no differences of language
(F < 1). The mean grammatical familiar rating was 4.01 (SE = 0.06), the mean grammatical novel rating
was 3.458 (SE = 0.136), and the mean ungrammatical rating was 2.014 (SE = 0.157). There were highly
significant differences between all conditions. Novel grammatical strings were rated significantly low-
er than familiar strings (F(1,14) = 19.40, p < 0.005), and were also rated significantly higher than
ungrammatical strings (F(1,14) = 31.747, p < 0.001) (see Fig. 2).

Raw scores were transformed into z-scores and another repeated measures ANOVA was conducted
on the transformed familiar, novel, and ungrammatical mean ratings. Once again, there was no signif-
icant effect of language, but there were highly significant differences between all three within-subject
conditions. Novel grammatical strings were rated significantly lower than familiar grammatical
strings (F(1,14) = 21.473, p < 0.001) and significantly higher than ungrammatical strings
(F(1,14) = 38.919, p < 0.001).

The results from Experiment 4 reveal that increased exposure to a corpus containing incomplete
overlap reduces the likelihood that learners will generalize based on this input. Instead, learners
are more likely to assume that these systematic gaps in the input are not accidental omissions, but
instead they signal potential idiosyncratic behavior of individual lexical items. The increase in the dif-
ference between grammatical familiar and grammatical novel strings that occurs between Experi-
ments 3 and 4 highlights the learner’s sensitivity to these frequent and consistent gaps. This
conservatism may be a component of the learner’s strategy to avoid overgeneralization. Despite this
reduced generalization in Experiment 4 (compared to Experiments 1–3), participants still judged no-
vel grammatical strings as more familiar than ungrammatical strings, thereby documenting an initial
generalization bias. We return to this conflict between over- and under-generalization in Section 8.
6. Discussion of Experiments 1–4

The first four experiments tested whether learners can acquire a category that is defined solely by
distributional information, generalizing from exposure to some instances of the contexts of individual
words (with some withheld) to the full range of contexts for all the individual words in the set. The
results lend strong support to the hypothesis that learners can extract the category structure of an
artificial language based solely on the distributional patterning of the words and their surrounding
contexts. These results run counter to a large body of previous research claiming that linguistic cate-
gories in artificial language experiments cannot be formed on the basis of distributional contexts
alone, and that additional information (such as phonological or semantic cues) is required for success-
ful learning (e.g., Braine, 1987; Gomez & Gerken, 2000). The results of Experiments 1–4, however,
show that such additional cues are not necessary for adults to induce a category from distributional
contexts alone. We return to the question of why our experiments may be different from previous
experiments in Section 8.

Looking just at difference scores between familiar and novel test strings and between familiar and
ungrammatical test strings (see Fig. 4), it is clear that in Experiments 1 and 2, familiar and novel gram-
matical test strings are rated no differently from each other (the ratings difference between the two
types is not different from zero). Experiments 1 and 2 were cases in which only the number of contexts
differed (the sampling of the language space became sparser, but the overlap in contexts across words
was not changed). But in Experiment 3, learners start to reduce their likelihood of generalizing when
the overlap in contexts is reduced. This reduction in overlap leads learners to increase the difference in
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their ratings for familiar versus unfamiliar grammatical sentences. They restrict generalization even
more sharply in Experiment 4, when the same reduced-overlap exposure corpus was repeated three
times. In the limit, with much more extensive exposure to gaps created by reduced overlap, we should
see an even larger increase in the difference between ratings of familiar and novel grammatical
strings, such that learners would eventually rate the novel strings at the level of ungrammatical
strings (a result that would suggest no generalization to those contexts whatsoever). Taken together,
the manipulations implemented in Experiments 1–4 suggest that adult learners are quite sensitive to
the distributional information in the input that signals whether to generalize across lexical items
(indicating that gaps are likely to be accidental), or restrict generalization to lexically specific contexts.
Participants in these experiments were able to skillfully balance a rich set of variables to aid them in
this task – degree of overlap among category members, amount of input, consistency or systematicity
of gaps and overlaps, and conflicts or consistency among cues.

These results highlight some types of information that learners might be encoding or computing
during learning, and other types that they do not appear to be relying on. If learners were encoding
the full set of exposure sentences, or the trigrams or quadrigrams (e.g., AXB, AXBR) and their frequen-
cies of occurrence during exposure, they should discriminate between the familiar and novel gram-
matical sentences in all of the above experiments. In contrast, if they were only keeping track of
simple word frequencies, they would fail in all experiments, since these frequencies were carefully
controlled. It is clear that neither of these explanations can fully explain behavior across all four
experiments.

Another possibility is that learners were simply responding on the basis of perceived surface sim-
ilarity between familiar and novel items, and not based on forming a higher-level category structure.3

One such explanation for our results might argue that learners were matching training and test items
based on the similarity of adjacent or nonadjacent bigrams, without constructing an X category. A similar
explanation might hypothesize that learners responded on the basis of familiar and unfamiliar A_B
frames, without taking X into consideration. To rule out such possibilities, we carefully controlled multi-
ple aspects of the input and test strings across all experiments. Moreover, though word order violations
may be the reason why ungrammatical strings are always rated lower than grammatical strings, simple
surface strategies such as these cannot explain our results with regards to our comparison of central
interest: familiar vs. novel grammatical strings. First, we re-ran Experiments 1–4 each on naïve
3 We thank Toby Mintz for helpful discussions of this alternative hypothesis.
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participants and included two additional types of ungrammatical test strings: AAB and ABB (see footnote
2; none of the ungrammatical strings included repetitions of individual words). These ungrammatical
items allowed us to examine whether learners were assessing A_B frames without attending to the X-
word. We found that participants did not rate these new ungrammatical test strings higher than our
old types of ungrammatical test strings, AXA and BXB (p > 0.05), and overall, the results of these exper-
iments were qualitatively the same as those of Experiments 1–4 reported above.

Moreover, it is important to consider how A_B frames are distributed across our experiments. The
crucial pattern of results from Experiments 1–4 is that the difference between familiar and novel
grammatical items systematically increases across experiments, as the overlap among the contexts
of X-words declines (Experiment 3) and the consistency of these gaps increases with extended expo-
sure (Experiment 4). However, all possible A_B frames were heard equally often during the exposure
phase of each experiment, so the pattern of generalization across experiments cannot be due to A_B
frame learning. If learners relied solely on the A_B frames without encoding their relationships to
the X-words, we would expect to see stable ratings of novel grammatical strings across the experi-
ments. Instead, we see no relation between frequency of A_B frame exposure and generalization.
For example, in Experiments 2 and 3, each A_B frame was heard exactly 16 times during exposure.
However, in Experiment 2 there is no difference in ratings of familiar and novel grammatical strings,
whereas in Experiment 3 there is a significant difference. What did change across these experiments
was the overlap of contexts for each X-word: Experiment 2 had complete overlap of contexts, whereas
Experiment 3 had only partial overlap. This shift in the overlap of shared contexts among individual X-
words, not the familiarity of A_B frames, drives our effect across the four experiments. (See Supple-
mentary materials for more details on frequencies of adjacent and nonadjacent bigrams.)

However, it is still unclear what type of information extracted by the learner best accounts for the
difference in results across the four experiments. Our hypothesis is that participants are highly sensi-
tive to the statistics in the input and conduct distributional analyses over multiple levels of input
based on their current representation of the language’s category structure, but we have not yet asked
about the specific type of statistical information that learners are acquiring. For example, learners
might extract local (adjacent) pair-wise (bigram) statistics over words to form categories, and then ex-
tract pair-wise statistics for new words with respect to these categories. Also unknown is how learners
exploit these statistics, in conjunction with their current knowledge about the language, in order to
decide whether to incorporate new words into existing category representations. One might imagine,
for example, that when a category is strongly formed, new words that share some of the category’s
linguistic contexts will then inherit all of that category’s other linguistic contexts, indicating that
the category has crystallized and acts as a unit of representation. On the other hand, given the graded
and probabilistic way in which generalization to novel strings operated in Experiments 1–4, we might
find that extension to a new word will also show lexical specificity or a graded degree of generaliza-
tion. The goal of our final experiment is to investigate these questions within the framework of our
artificial language learning paradigm.

Experiments 1–4 showed how we can manipulate various aspects of the language landscape via
certain distributional variables, all of which are based on shared contexts across words, in order to gain
insight into the computational requirements for successful category learning. We now turn to explor-
ing the variables involved in extending category knowledge to a new word presented in a single con-
text. We investigate whether learners always maintain lexical specificity when they have very limited
distributional information for a new word, or whether they show varying degrees of generalization to
a new word, depending on the type and strength of the distributional information available for other
words. In these experiments, learners face the same question for the new word as they did in Exper-
iments 1–4 for more familiar words: are the unattested contexts for this new word absent by accident,
or because they are ungrammatical?
7. Experiment 5

The goal of the remaining series of experiments is to assess whether learners will generalize the
distributional properties of a learned category to a word that shares just one context with the other



Table 3
Possible AXB strings in Experiments 5. Strings presented in Experiment 5A are denoted H; strings presented in Experiment 5B are
denoted z; strings presented in Experiments 5C and 5D are denoted s.

A1 X1 B1 H A1 X2 B1 A1 X3 B1 H z s A1 X4 B1 H z s

A1 X1 B2 A1 X2 B2 H z A1 X3 B2 H s A1 X4 B2

A1 X1 B3 H z s A1 X2 B3 H A1 X3 B3 A1 X4 B3

A2 X1 B1 A2 X2 B1 H z s A2 X3 B1 H A2 X4 B1

A2 X1 B2 H z s A2 X2 B2 H A2 X3 B2 A2 X4 B2

A2 X1 B3 H s A2 X2 B3 A2 X3 B3 H z A2 X4 B3

A3 X1 B1 H z A3 X2 B1 H s A3 X3 B1 A3 X4 B1

A3 X1 B2 H A3 X2 B2 A3 X3 B2 H z s A3 X4 B2

A3 X1 B3 A3 X2 B3 H z s A3 X3 B3 H A3 X4 B3
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category members. Recall that in the full overlap design of Experiments 1 and 2, every one of the three
X-words appeared with every A-word and every B-word (a total of 9 contexts), and in the partial over-
lap design of Experiments 3 and 4, every X appeared with 2/3 A’s and 2/3 B’s (a total of 4 contexts).
Here we introduce a new X-word that occurs in only a single A and B context. Over a series of four dif-
ferent experiments mirroring the distributional manipulations in Experiments 1–4, we now explore
how the amount and type of exposure to the input corpus influences whether learners extend full cat-
egory privileges to the minimally overlapping X4 word. As in Experiment 1, we first explore how the
learner behaves in situations where there are strong distributional cues (high density) to X being a cat-
egory (Experiment 5A). Then we test the outcome of weakening one distributional cue (moderate den-
sity) while maintaining others (overlap of contexts; Experiment 5B). Lastly, we explore the effect of
further weakening the distributional cues to the X category, by first reducing overlap in contexts
across X-words (Experiment 5C), and then by increasing exposure to systematic gaps in the input
(Experiment 5D). By manipulating the contexts across X-words, we can assess the degree to which
learners restrict generalization within X1–X3 as we did in Experiments 1–4, and we can also explore
how this affects extension of category membership to the novel X4 word.

7.1. Method

7.1.1. Participants
Separate groups of 16 monolingual native English-speaking students at the University of Rochester

were paid to participate in each subcomponent of Experiment 5 (eight in each of the two languages
created by different assignments of words to categories for each subcomponent). None of these par-
ticipants took part in any other categorization study; a total of 64 naïve participants were involved
in Experiments 5A–D.

7.1.2. Stimulus materials
The languages used in these experiments were identical to the languages in Experiments 1–4 ex-

cept that there were 4 X-words instead of 3. Thus, the full language had 3 � 4 � 3 = 36 grammatical
AXB strings. However, one of the 4 X-words was presented in only one AXB context, rendering its den-
sity as minimal as possible. As with Experiments 1–4, the presence of the 2 Q- and 2 R-words was var-
ied evenly in order to remove stable position cues to the A, X, and B categories. Each of the 9 possible
A_B frames was heard equally often during the exposure phase of each experiment (see Supplemen-
tary materials for adjacent and nonadjacent bigram frequencies).

We started by exposing participants to a dense sampling of the language by presenting a high pro-
portion of the possible X1–X3 strings, mirroring the distribution of Experiment 1. Thus, in Experiment
5A, 19 of the possible 36 AXB sentence types in the language were presented to participants, and the
remainder were withheld for testing generalization (see Table 3). Including the optional addition of Q
and R words, the exposure set was expanded to 76 possible (Q)AXB(R) sentences. However, the input
to the learner was very sparse for X4. The exposure set contained only four X4 strings: A1X4B1,
Q1A1X4B1, A1X4B1R1, and Q2A1X4B1R2, which presented the X4 word in only one A_B context
(A1_B1); the remaining 72 sentences included equal numbers of sentences containing X1, X2, and X3
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such that every one of these three X’s appeared with every A-word and every B-word. This meant that
there was complete overlap of contexts among X1, X2, and X3, but X4 shared only one context with X1–
X3. Training consisted of four times through this exposure set, forming 22 min of exposure.

In Experiment 5B, we explored whether an increase in sparseness for X1–X3 affected learners’ gen-
eralizations to the novel X4 item. We decreased the density of the contexts for X1–X3 words such that
the exposure set contained only 10 (versus 19 in Experiment 5A) of the 36 possible AXB combinations
(see Table 3), but we kept the number and overlap among X1–X3 contexts the same. As in Experiment
5A, every X1–X3 word was heard in combination with every A-word and every B-word, but X4 was only
heard in a single context (A1_B1). With the addition of AXB strings with optional Q and R flanker
words, there were 40 sentences in the exposure set. The exposure set was repeated four times for a
total duration of about 12 min.

Exposure for Experiment 5C consisted of only 10 of the 36 possible AXB combinations, as in Exper-
iment 5B. However, in order to test how overlap in contexts influences generalization of category
knowledge to new X-words, this experiment reduced the overlap of contexts among members of
X1–X3. X1 only occurred with A1, A2, B1, and B2, but not A3 or B3; X2 was heard with A2, A3, B2, and
B3, but not A1 or B1; X3 was heard with A1, A3, B1, and B3, but not A2 or B2. Thus, the overlap among
contexts is maintained over the X1–X3 category as a whole, but individual X-words do not have the
degree and type of overlap in distributional contexts that they do in Experiments 5A and 5B, where
each X-word occurs with every A-word and every B-word. This partial-overlap situation is analogous
to the design of Experiment 3.

The language for Experiment 5D was the same as in Experiment 5C, except that training was tripled
by presenting the exposure set 12 times rather than 4 (which is qualitatively equivalent to the expo-
sure for Experiment 4). Training lasted for approximately 22 min.
7.1.3. Procedure
As in the earlier experiments, a female native English speaker recorded the words from Experiment

1 plus two new X4-words (nerk /nek/ and sep /sep/). The words were adjusted in Praat (Boersma, 2001)
such that pitch, volume, and duration were roughly consistent. Sentences were constructed in the
same manner as for Experiments 1–4. The order of sentences in the exposure set was randomized
for each subject and presented via a custom software package on a Dell PC. Each sentence was sepa-
rated by 1.5 s of silence. Participants wore headphones and passively listened to the exposure sen-
tences during training.
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Training and test instructions were the same as in the earlier experiments. All test strings were 3-
word sentences of the following forms: grammatical familiar strings (10 AXB strings presented during
training), grammatical novel strings (13 AXB strings withheld during training), or ungrammatical
strings (of the form AXA or BXB).4 Although ungrammatical test strings had one category repeated,
no word tokens were repeated in any string. Of the grammatical novel test strings, 4 of the 13 were
strings testing generalization of X4: A2X4B2, A2X4B3, A3X4B2, and A3X4B3. (See Supplementary materials
for the list of test items.) With these strings we can ask whether learners have generalized X4 to the full
range of grammatical contexts for X-words even though they have only seen X4 in one of these contexts.
These strings can then be compared to the 6 ungrammatical strings that contain X4 (three of the form
AX4A, and three of the form BX4B).

7.2. Results

For each manipulation in Experiment 5, we ran a repeated measures ANOVA with condition (famil-
iar, novel, ungrammatical) as the within subjects factor and language as the between subjects factor.
For each of the four variations, there were no significant effects of language (F < 1), leading us to col-
lapse across the two languages for all subsequent analyses.

Our analyses examine generalization separately within test strings that contain X4 and test
strings that contain X1, X2, and X3. We do not compare ratings of the X1–X3 test items directly
with those for the X4 items, because of the lower statistical power of the X4 test (4 trials versus
9 trials) and the large difference in frequency of exposure to X4 vs. X1–X3 (up to 18 times more).
For all experiments, we take the pattern of learning for familiar and novel grammatical items of
the same type to be more informative than the size of the differences between X1–X3 and X4

(see Fig. 5).

7.2.1. Results for Experiment 5A: Dense and complete overlap
For test items without X4, the mean rating of grammatical novel strings was 3.87 (SE = 0.14), the

mean rating of grammatical familiar strings was 3.86 (SE = 0.13), and the mean rating of ungrammat-
ical strings was 2.90 (SE = 0.15). We found no significant difference between ratings of grammatical
novel strings and grammatical familiar strings (F < 1). These strings were rated significantly higher
than ungrammatical test strings (F(1,15) = 26.40, p < 0.001).

For the test items that contained X4, the mean rating of grammatical novel strings was 3.28
(SE = 0.18), the mean rating of grammatical familiar strings was 3.59 (SE = 0.24), and the mean rating
of ungrammatical strings was 2.61 (SE = 0.21). These items showed the same pattern as the without-
X4 items: there was no significant difference between ratings of grammatical novel X4 strings and
familiar X4 strings (F(1,15) = 1.71, p = 0.21), however there was a significant difference between these
strings and ungrammatical X4 strings (F(1,15) = 13.10, p < 0.005).

7.2.2. Results for Experiment 5B: Sparse and complete overlap
For test items without X4, the mean rating of grammatical novel strings was 3.55 (SE = 0.09), the

mean rating of grammatical familiar strings was 3.54 (SE = 0.10), and the mean rating of ungrammat-
ical strings was 2.61 (SE = 0.15). Just as in Experiment 5A, as well as Experiments 1 and 2, there were
no significant differences between ratings of grammatical novel items and grammatical familiar items
(F(1,15) = 0.008, p = 0.93), but grammatical test strings were rated significantly higher than ungram-
matical test strings (F(1,15) = 23.12, p < 0.001).

For the test strings that contained X4, the mean rating of grammatical novel strings was 3.27
(SE = 0.15), the mean rating of grammatical familiar strings was 3.59 (SE = 0.22), and the mean rating
of ungrammatical strings was 2.45 (SE = 0.16). This is the same trend as demonstrated for the X1–3

items and the comparable analyses in Experiment 5A. While there was a significant difference
4 As with Experiments 1–4, a separate experiment confirmed that AAB and ABB ungrammatical strings were rated similarly to
AXA and BXB ungrammatical strings, indicating that subjects learned more than just the A_B frame. This argues against the
possibility that learners are only responding to the surface similarity between training and test items when making grammaticality
judgments of the novel X4 strings.
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between grammatical X4 strings and ungrammatical X4 strings (F(1,15) = 13.42, p < 0.005), there was
no significant difference between ratings of grammatical novel X4 strings and familiar X4 strings
(F(1,15) = 2.343, p = 0.147).

7.2.3. Results for Experiment 5C: Sparse and incomplete overlap
For test items without X4, the mean rating of grammatical novel strings was 3.71 (SE = 0.12), the

mean rating of grammatical familiar strings was 3.91 (SE = 0.09), and the mean rating of ungrammat-
ical strings was 2.55 (SE = 0.15). We found significant differences between ratings of grammatical no-
vel strings and grammatical familiar strings (F(1,15) = 9.12, p < 0.01). Additionally, grammatical
strings were rated significantly higher than ungrammatical test strings (F(1,15) = 26.82, p < 0.001).

For the test items that contained X4, the mean rating of grammatical novel strings was 3.25
(SE = 0.16), the mean rating of grammatical familiar strings was 3.66 (SE = 0.24), and the mean rating
of ungrammatical strings was 2.21 (SE = 0.16). Although the mean ratings of the X4 strings and the X1–3

strings showed similar differences between familiar and novel grammatical items, we did not see any
significant difference between novel grammatical X4 strings and familiar X4 strings (F(1,15) = 2.98,
p = 0.11), perhaps due to the lower statistical power for these test strings. There was, nevertheless,
as in all prior experiments, a significant difference between ratings of grammatical and ungrammatical
X4 strings (F(1,15) = 26.21, p < 0.001).

7.2.4. Results for Experiment 5D: Increased exposure to sparse and incomplete overlap
For test items without X4, the mean rating of grammatical novel strings was 3.86 (SE = 0.12), the

mean rating of grammatical familiar strings was 4.05 (SE = 0.10), and the mean rating of ungrammat-
ical strings was 2.61 (SE = 0.21). These results show a significant difference between ratings of gram-
matical novel strings and grammatical familiar strings (F(1,15) = 8.60, p = 0.01). Additionally,
grammatical novel strings were rated significantly higher than ungrammatical test strings
(F(1,15) = 26.37, p < 0.001).

For the test items that contained X4, the mean rating of grammatical novel strings was 3.44
(SE = 0.19), the mean rating of grammatical familiar strings was 4.06 (SE = 0.21), and the mean rating
of ungrammatical strings was 2.37 (SE = 0.21). Similar to the X1–3 strings, we now find a significant
difference between novel grammatical X4 strings and familiar X4 strings (F(1,15) = 8.33, p = 0.011),
along with a significant difference between these and ungrammatical X4 strings (F(1,15) = 14.261,
p < 0.005).

7.3. Discussion

As in Experiments 1–4, learners strongly preferred familiar and novel grammatical sentences to
ungrammatical sentences. In Experiment 5A, learners showed generalization to the novel grammatical
X4 strings, but not to the ungrammatical X4 strings. Thus, subjects generalized the novel X4-word to
the full range of grammatical contexts for X-words, even though they had heard X4 in only one of these
contexts. These results show that, when learners are exposed to a dense sampling of the language
space for words in the target category (X1–X3) and presented with many overlapping contexts, they
generalize their knowledge within the X1–X3 category and also extend the category to X4. Importantly,
the generalized contexts are novel contexts for X4, but are well represented in the learner’s exposure
to the permissible contexts for X1–X3. Neither the X-words nor their contexts were cued by any
semantic or perceptual cues, indicating that learners were able to use distributional information alone
to extend their knowledge of the X category to a novel X-word.

Also in accord with the results of Experiments 1–4, the degree to which learners extend their cat-
egory generalization to X4 in other conditions depends on the strength of the category formed for X1–
X3. In Experiment 5A, with high density and overlap among the X1–X3 words, novel and familiar con-
texts for the X4 word were judged to be equivalently acceptable, mirroring the results of Experiment 1.
In Experiment 5B, when we decreased the density of the contexts for X1–X3 words, (but kept the num-
ber and overlap among X1–X3 contexts the same), the results mirrored those in Experiment 2. Reduced
density did not greatly affect learners’ performance, as long as there was full overlap of contexts
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among X1–X3 words. The generalization to X4 was maintained despite greatly reduced exposure, due
to a sparser sampling of the language space.

In Experiment 5C, we reduced the overlap among contexts in the exposure set by a third, while
keeping the number of contexts in the input the same as in Experiment 5B. The results show that
the incomplete overlap between X1–X3 words led to decreased generalization within X1–X3 and also
led to decreased generalization to X4. However, learners still showed a much higher rating for X4

grammatical novel strings than ungrammatical strings, indicating that they were still willing to gen-
eralize, though somewhat more conservatively than when there was complete overlap of contexts.

As we saw in Experiment 4, the decision to generalize over a gap in the input or to maintain lexical
distinctness is also influenced by the frequency of contexts (and gaps) in the input. If a context is con-
sistently and repeatedly absent, learners show even more conservatism in their generalizations and
more certainty that gaps in the input are systematic and not accidental (e.g., Wonnacott et al.,
2008; Xu & Tenenbaum, 2007). This manipulation is particularly important with regards to X4, where
we can observe how an increase in the exposure to the one context for X4 (and an increase in the gaps
formed by the non-occurring contexts for X4) affects how learners generalize their knowledge of the
category defined by X1–X3. In Experiment 5D, when we increased exposure to the sparse data of
Experiment 5C (with incomplete overlap among the X-words and recurring gaps that presumably be-
come more prominent with repetition), learners were even less likely to generalize over such gaps.
Not only did this lead to reduced ratings of novel X1–X3 strings, but the increase in exposure to one
context for X4 led to reduced ratings of novel X4 strings as well. While novel grammatical test strings
continued to be rated as more acceptable than the ungrammatical strings, further exposure to the
sparse input set might push learners to judge all novel strings as ungrammatical.

Overall, as we move along the dimensions of sparseness, overlap, and frequency explored in Exper-
iments 5A–D, we see that learners use the same variables investigated in Experiments 1–4 to weigh
the likelihood that X4 shares the same contexts as X1–X3. The more strongly learners generalize within
X1–X3, the more strongly they also generalize to X4. Looking at these results in another way, we can
use the degree of generalization to a novel word that is observed in a single context as a diagnostic for
how strongly the X-category has been formed. Below we consider what these results suggest regard-
ing the type of information learners are extracting from their input and the type of category represen-
tation they may be constructing of the linguistic category and of specific lexical strings.
8. General discussion

The present experiments provide compelling evidence that adult learners can use their sensitivity
to systematic patterns of distributional information to acquire a grammatical category. Moreover, the
pattern of data across the experiments demonstrates that learners generalize across gaps in the input
by weighting distributional information in a principled manner. They accomplish this task in the ab-
sence of correlated cues such as phonological similarity or semantic relatedness, which is important
given that natural language does not always contain consistent and reliable correlated cues (Gleitman,
1990; Maratsos & Chalkley, 1980). The first finding regarding these variables was that we observed
strong generalization and category formation with fairly dense input (when learners were exposed
to 18 of the 27 possible basic AXB sequences in the language) and a high degree of overlap in contexts
among words (Experiment 1). We also found no decline in categorization when learners were exposed
to sparser input of the same type (reducing exposure to 9 of the 27 AXB sequences in the language), as
long as only the number of contexts was reduced, but not the overlap in contexts across words (Exper-
iment 2). Learners began to decrease their generalization (that is, increased the difference in their rat-
ings of familiar versus novel grammatical strings) when the overlap in contexts for different words
within the category was reduced (Experiment 3). Learners restricted their tendency to generalize even
more sharply when the same exposure corpus (and its gaps) was repeated three times (Experiment 4).
Taken together, these findings indicate that learners are highly sensitive to the details as well as the
overall patterning of distributional information in their linguistic input, and they use this information
in sophisticated ways to determine when it is appropriate to generalize words to new contexts or to be
cautious about generalization.
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For many decades, the literature on syntax acquisition has focused on concerns about generaliza-
tion – especially about the danger of overgeneralization and the impossibility of recovering from over-
generalization without negative evidence. These concerns have arisen, in part, from the assumption
that learners must be working from individual input sentences and the misleading information they
potentially provide. (Consider, for example, the uncertainty about whether to generalize dative move-
ment to the verb ‘donate’ after hearing sentences in which ‘give’ undergoes dative movement; cf. Ba-
ker, 1979; Pinker, 1984.) Our results suggest, however, that adult learners decide whether to
generalize based not on individual input sentences, but based on the statistical patterning of evidence
in the input corpus. Even without negative evidence, they can compute the likelihood of certain types
of gaps occurring by chance, depending on the size and structure of the corpus to which they have
been exposed. Given a sizeable corpus, sophisticated statistical learners can determine the likelihood
that gaps are recurring and systematic or are accidental, and can base their generalizations on such
information. These results are consistent with other findings (see especially Tenenbaum & Griffiths,
2001; Tenenbaum, Griffiths, & Kemp, 2006; Xu & Tenenbaum, 2007) that show human learners are
able to weigh observed evidence (the likelihood) with expectations about what evidence should be
observed (the prior) in a Bayesian framework applied to many cognitive domains.

Importantly, the current experiments also show that learners can skillfully transfer their knowl-
edge of category structure and category cues to a novel item that is only minimally represented in
the input (Experiment 5). When given a dense sampling of the language space with almost complete
overlap of contexts for many words in a target X-category, learners generalize a novel word (X4) to the
full range of grammatical contexts of the other X-words, even when they have only seen X4 in one of
those contexts. This willingness to add X4 to the strongly established X1–X3 category is most robust
when the X1–X3 contexts are dense and overlapping. When contexts are more sparse and less overlap-
ping across different X words, we see more conservative generalization to a new X4 word. The most
extreme case is when we increase the number of times the learner hears the sparse exposure set, thus
increasing the frequency of recurring gaps in the input for X1–X3 strings: learners in this situation rate
the withheld X4 contexts as more unfamiliar, while rating the one context in which X4 was actually
heard as highly familiar. These findings are in line with results from Wonnacott et al. (2008) on
verb-argument learning. In their studies, if a language contains many verb-specific constructions, par-
ticipants do not show generalization of a minimally exposed verb (like X4) to other contexts. In con-
trast, if the language allows the same contexts for all verbs, then participants show strong
generalization of a minimally exposed verb to contexts in which it has not been heard. The results
of Experiment 5 again show that learners use the pattern of distributional information across the lan-
guage to tell them when to generalize and when to be lexically conservative. They also suggest a new
finding: with sufficiently well-structured input (as in Experiments 5A and B), linguistic categories can
become ‘crystallized’, allowing all of their properties to be passed on as a whole to novel items that are
only seen a few times, but are nevertheless consistent with category membership. We return to this
point below in considering what representational hypotheses are consistent with this behavior.

Why have so many other artificial language learning studies failed to show category formation with
only distributional information, thus necessitating correlated perceptual or semantic cues in order to
attain successful category learning? One contrast between our experiments and earlier studies is the
way many investigators have framed the categorization problem. Most prior studies have looked at
the formation of multiple categories in a single artificial language, whereas the present work looks
at the formation of a single category. The ability to acquire multiple categories – in essence, knowing
that X’s allowable contexts are A_ and _B, while Y’s allowable contexts are C_ and _D, and that these
are not interchangeable – is obviously an important aspect of natural category acquisition. This com-
ponent of the category acquisition problem is one that we have not directly addressed in the present
set of experiments. However, one way to view the multiple form-class categories previously studied in
small artificial grammars is as subcategories (such as subcategories of grammatical gender of nouns),
rather than major form-class categories (such as noun or verb). Categorization and subcategorization
involve similar processes, since in both, the learner must distinguish between the gaps that are acci-
dental omissions from the input and the systematic gaps that signal structural aspects of the category
or subcategory. Subcategory learning has an important difference from single-category learning,
though: the subcategorization task inherently involves a conflict of cues. For subcategories of a larger



P.A. Reeder et al. / Cognitive Psychology 66 (2013) 30–54 51
form-class category, some distributional information (namely, word order) signals that there is one
category, while other distributional cues (such as the patterning of context words) signal that there
are distinct categories within the larger category. In the present experiments we have been careful
to study only basic category learning. However, in more recent work we have applied the same distri-
butional variables to the problem of subcategory acquisition. We have found the same type of out-
comes as in the present studies, though (as expected from conflicting cues) with somewhat reduced
sharpness of subcategory formation (see Reeder et al., 2009: Experiment 5).

A second difference between our present findings and those of prior studies is that we have system-
atically manipulated a number of distributional variables in order to understand not only whether dis-
tributional information can support category learning, but also how and when it can do so. As we have
seen from this exploration, category learning shows graded effects, depending on the nature of the dis-
tributional patterns contained in the linguistic input. Such results may explain why earlier experi-
ments have shown either chance or weak performance in category learning from distributional cues
alone – often the learner must contend with very small languages that have weak distributional evi-
dence for categories, and conflicting distributional cues that are inherent to a subcategory structure.
8.1. Formulating the precise mechanisms underlying categorization

A comprehensive approach to formulating the mechanisms underlying linguistic categorization
will require computational modeling work, which is already in progress. However, the results from
the present experiments allow us to discern something about the types of information that partici-
pants are extracting from the input and utilizing for generalization during learning. First, learners
could not have been relying on a simple encoding of the exposure sentences as complete sequences
or in terms of their trigrams or quadrigrams. If they were storing any of these types of information,
they would have discriminated sharply in every experiment between familiar and novel grammatical
strings. This is because these strings always differed in the specific AXB trigrams they contained, as
well as in the quadrigrams or complete sequences that included these AXB trigrams. At the opposite
extreme, learners could not have relied solely on storing the individual word frequencies in the expo-
sure, as this information was carefully balanced between test items in all of the experiments. What
types of information storage, then, are compatible with the results we have obtained?

The results of Experiments 1–4 are compatible with the possibility that learners are encoding bi-
gram frequencies (e.g., AX, XB) and using them to rate test strings. However, this is incompatible with
the results from Experiments 5, as storing bigram frequencies could not account for generalization to
novel X4 strings. Because the X4 word was presented in only one A_B context, only 2 bigrams for X4

were part of the exposure set (A1X4 and X4B1). Nonetheless, generalization to new X4 contexts was
very strong when, based on the contexts in which X1–X3 had appeared, the overall X category was ro-
bustly learned. These results suggest that, as modeled in corpus work on category acquisition (cf.
Mintz et al., 1995, 2002), learners might be keeping track of word co-occurrences by storing a network
of occurring contexts for each individual word, and then collapsing the individual words into a cate-
gory when these networks bear enough quantitative (and qualitative) similarities to one another.5 By
this mechanism, the category network could be applied as a whole to a new word that shared any of the
contexts. As already mentioned, ongoing work is testing this and other models against the details of the
experimental data (Qian et al., 2012).

An additional question of interest concerns whether this type of distributional analysis is specific to
language, or can be performed by a more domain-general statistical learning mechanism. In order to
study category learning in a non-linguistic domain, Hunt and Aslin (2010) used a non-linguistic serial
reaction time categorization task in which sets of buttons formed the possible serial order patterns to
which subjects were exposed. Their results suggest that the type of mechanism involved in learning
5 One possible interpretation of our data is that the X-words have not formed a true category, but instead are merely just the by-
product of a set of linked contexts. The work presented here, in combination with our modeling results (Qian, Reeder, Aslin,
Tenenbaum, & Newport, 2012) and other behavioral results from our lab on the acquisition of multiple categories and
subcategories, makes this interpretation unlikely.
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categories of items based on shared contexts may well apply to non-linguistic as well as linguistic cat-
egory tasks.

8.2. Extending the results to natural language learning

How do the results of these experiments apply to natural language learning? Of course, the present
studies involve adult subjects, whereas the most important natural language learners are young chil-
dren. Perhaps adults are better able to take the rich details of differing distributional environments
into account (however, see Mintz et al. (2002) and Wang and Mintz (2008) for evidence that a re-
source-limited system can still perform successful categorization just by utilizing certain types of dis-
tributional information). We are in the process of performing these same experiments with children –
a methodological challenge, since young children do not readily participate in listening experiments
for the length of time required to learn these languages. We have found that they look very much like
adults in their ability to generalize in designs like those in Experiments 1 and 2; whether they look
precisely the same as adults across the input variations in Experiments 3–5 remains to be seen. In
the meantime, though, we can ask which of the experimental conditions is most similar to the distri-
butional environments in typical natural language input to children. From there, we can ask what the
similarities and differences from natural language input can tell us about extending our findings to
language acquisition.

In contrast to our experiments, where we have removed all phonological and semantic information,
natural language categories do sometimes have partially correlated phonological or semantic cues
that learners could use in acquiring categories, and many studies have shown that category learning
is enhanced when category membership is correlated with such surface cues (e.g., Monaghan et al.,
2005). It is also true that learners could utilize a distributional learning mechanism in tandem with
performing semantic analyses on the input, as suggested by Pinker (1984, 1987). Like other investiga-
tors, we expect that learners will exploit correlated cues when they are available. But an important
question in this literature is whether category learning can utilize distributional information as a
way to break into the category learning problem. As we have noted, our results indicate that adult
learners are able to skillfully employ a statistical learning mechanism as the primary tool with which
to extract category information from the input, even in cases where other correlated cues are incom-
plete or absent. Furthermore, in response to arguments such as those made by Pinker (1984, 1987),
our results suggest that a few shared lexical contexts are not sufficient to collapse grammatical cate-
gories. In particular, our findings indicate that a distributional learning mechanism can utilize the con-
sistency or inconsistency of contextual cues, as well as the breadth and overlap of contextual cues
across lexical items, to decide whether to collapse words into a category. This mirrors results from
Xu and Tenenbaum (2007) and Gerken (2006), where infants and children generalize only when the
contextual evidence suggests that tokens are interchangeable because of strong context overlap. These
results suggest that some contextual ambiguities will not mislead learners into major category forma-
tion errors.

Which of our experiments best represents the type of distributional information that is likely to be
present in real linguistic input? We expect that a large corpus of speech directed to young children
would contain a mixture of the types of distributional patterns presented to learners in Experiments
1–5. It is likely that only a small number of words will have patterning similar to the X-words from
Experiments 1 and 2, where the input includes full and overlapping coverage of the possible grammat-
ical contexts for each word. Even so, our results from Experiment 5 suggest that encountering just a
few words with this type of patterning is enough to allow learners to extend category properties to
other minimally overlapping words.

Linguistic input to young language learners likely involves many words with partially overlapping
contexts (as in Experiment 3). Although this might be seen as a problem, the results of Experiment 3
indicate that adult learners do show generalization to novel strings that follow the patterns of the
overlapping familiar contexts, though with some uncertainty. (Recall that although grammatical novel
strings are rated significantly lower than familiar strings, they are rated significantly and substantially
higher than ungrammatical strings.) If the learner has encountered some words with stronger cues to
category membership (as in Experiments 1 and 2), this could be enough to bootstrap category
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membership to the words experienced in partially overlapping contexts. Indeed, a computational
analysis of maternal speech corpora from CHILDES reported in Mintz et al. (2002) found that the
100 most frequent nouns and verbs in the corpora each occurred in a wide variety of overlapping lin-
guistic contexts; this was the basis for the successful classification of nouns and verbs achieved in that
work. The present findings indicate that human learners also utilize these patterns of overlapping dis-
tributional contexts. Furthermore, given a large set of words that vary in their contextual overlap (as
exhibited across our experiments), human learners appear to be able to discern precisely where to
generalize and where to withhold generalization based on these distributional patterns.

In conclusion, our findings suggest a new framework for thinking about the linguistic category-
learning problem. According to this view, a critical question concerns the structure of the distributional
information that the learner receives. Across our experiments we observed remarkable sensitivity to
the character, patterns, and reliability of distributional information, indicating not only that learners
are sensitive to this information, but also that they are capable of using this information in principled
and sophisticated ways to induce form-class categories from language input.
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