

Dr Dejan B. Budimirović Medical Director,

AUTIZAM

- neistraženo polje izazova

Akademska posvećenost dr Dejana Budimirovića

injegovi napori u tom

 pravcu dosežu daleko. Kao jedan od najboltih studenata medicine, tokom svog obrazovanja bio je dobitnik na desetine nagrada i priznanja. Student generacije, nagraden je da završi svoj lekarski staž na Univerzitetskim klinikama Medicinskog fakulteta u Beogradu. Ranih 90. godina javno je promovisao naučno potkrepljene studije zdrave ishrane u cilfu prevencije kardiovaskuarnih i malignih bolesti.Ovi pionirski koraci u smislu obrazovanja šire populacije u našoj sredini su kasnije, pokazalo se, stvorili mogućnost i za saradnju sa institucijama u SAD

Dr Dejan Budimirović je medicinski direktor Fragile X Klinike i glavni lekar u nedavno oformljenom nićko ispitivanje novih lekova Kennedy Krieger Institutu. On je du gogodišnji ordinirajući prvenstveno dečji neuropsihijatar u istom institu tu i puno radno vreme redovni član nastavnog osoblja u zvanju asisten profesora na Johns Hopkins Univers ty School of Medicine. Dr Budimirovic je sa odličnim ocenama polożio spe cijalizaciju iz psihijatrije odraslih osoba, a posebno je iskusan u dugo godišnjem klinickom radu sa decom i adolescentima, sto je potvrdio sa ponovljenim najvisim ocenama u sveobuhvatnoj proveri znanja iz tih oblasti. Kao takav stručnjak, ve 14 godina je priznati član američke licencne Komore za psihijatriju ineurologiju i nagrađivan je od strane svojih profesora i kolega za svoje terapeutske kliničke sposobnosti i profesionalizam.
Dr Budimirović je prvo stekao di plomu škole za medicinske tehniča Medicinsk Sapcu, pa onda diplomu Medicinskog fakulteta Univerzite ta u Beogradu, gde je diplomirao najbolii student u svojoj generaciij (Klas 1987) Svoje medicinsko cijalističko obrazovanje je proširio i cusavšio na Harvardu a posle toga na takođe privatnom, Njuiork uina, takode privatnom, Njujork uni verzitetu

Nakon obaveznog pripravničkog staža, dr Budimirović je izabrao brzo razvijala u to vreme, i anga žovao ga je Univerzitetski klinički centar, Katedra za psihijatriju. Stekao je izuzetno bogato kliničko iskustvo na dvogodišnjoj specijalizaciij iz ključnih oblasti opšte psihijatri-
je, koje je upotpunjeno završetkom postdiplomskih studija iz biološke psihijatrije sa najvišim ocenama.

Uspešan i vredan stručnjak

 rado je primljen u SADNakon preseljenja sa porodicom u SAD, 1994. godine, dr Budimiro vićevi izuzetni uspesi su prepoznati, pa je prihvaćen na Katedri za opštu psihijatriju Medicinskog fakulteta na Harvardu, a zatim jako uspešno i kreativno zavrsava subspecijaliza ciju na Katedri dečje i adolescentne psihijatrije Medicinskog fakulteta Univerziteta u Njujorku. Ova prak sa mu je omogućila da proširi svoje iskustvo i znanje u kliničkoj psihija triji i dodatno je stimulisala njegovu istraživačku inicijativu i sposobnost za zajedničke projekte.
Na kraju te subspecijalizacije, za takve postignute rezultate, dr Bu dimiroviću je dodeljena plaketa za izvanredne terapeutske sposobnosti i profesionalnost u radu sa pacijen tima. Ovo priznanje je time veće jer se ne dodeljuje svake godine, a potiče od nastavnog osoblja i kolega sa Odseka za dečju i adolescentnu psihijatriju njujorškog Centra za studi je dece ivec cuv Hill bolnice Tijce, i Lenoks Hill bolnice
vaj tek otvoreni Centar, drugi te brzo i uspešno širio ka jedan se nadolazećih "'zvezda vodilia" Uz to, takav uspeh dr Budimirovića je kulminirao sa njegovim prvim aka demskim imenovanjem na Univer zitetu Jeil, gde je bio postavlien za asistenta profesora. To zvanje se daje kandidatima čiji rezultati obe ćavaju najviša moguća akademska dostignuća u svojoj branši. Tokom svog četvorogodišnjeg mandata na Jejlu, kao specijalista psihijatar, dr

Budimirović se uspešno brinuo o nekoliko stotina pacijenata, prven stveno omladine, ali i pacijenata uz opšte i gerijatrijske psihijatrije
Svoje zvanje je i opravdao tako što se izborio da bude glavni istraživač na jednom projektu iz oblasti poremećaja raspoloženja, koji je finansirala uticajna privatna fondacija. On je, takođe, pokazao liderske veštine, i izabran je za jednog od direktora adolescenna leilu. Pajije Univerzitetske beo perioda na Univerzitetskoj bolnici, Dečje odeljenje na Univerzitetu Stoni Brook, gde se dr Budimirovićevo kliničko iskustvo dalje upotpunilo sa posveće nim vođenjem samo dečje populacije, u novembru 2004, dr Budimirović je angažovan i primljen u nastavno oso blje u zvanju asistenta profesora na Univerzitetu Johns Hopkins, i specija liste dečje i adolescentne psihijatrije u Institutu Kenedi Kriger

Naučno-istraživački projekti na polju autizma
Dokazujući svoje sposobnosti, dr Dejan Budimirović je tokom svih godina svoje karijere učestvovao u različitim naučno-istraživačkim projektima. Sa njegovim učešćem kao člana istraživačkog tima na projektima finansiranim od privatnih fondacija, Vlade SAD - Nacionalnog instituta za zdravlje (NIH), tokom rada na univerzitetima lejl, Stoni Brook, i Johns Hopkins, dr Budimirović je učvrstio svoje naučno - istraživačke temelje.

Od dolaska na svetski poznati Institut Kenedi Kriger u oblasti razvojnih poremećaja, uključujući i autizam, dr Budimirović je doprineo proširenju kliničke aktivnosti u Fra gile X klinici (osobe sa "nestabilnim dugim krakom na X hromozomu). U 2006, klinika je postala jedna od članica osnivača "Fragile X klinika Istraživačkog konzorcijuma", koji sada broji 26 članova u SAD i Kanadi. Počev od 2008. pa sve do danas, Centar za kontrolu i prevenciju bolesti Vlade SAD finansira neke od istraživačkih aktivnosti ovog kon zorcijuma, u cilju boljeg razumeva nja osoba sa nestabilnim dugim krakom na X hromozomu, koje često imaju i autizam!
Tokom poslednjih godina, dr Budimirović je objavio nekoliko publi kacija u časopisima sa značajnim
mpakt faktorom. Jedna od njegovih publikacija je originalni rad na glavnim faktorima socijalnih deficita kod osoba sa FXS i autizma (2006). Ovaj originalni rad bio je osnova za publikacije i nekoliko dova u nekoliko finansijskih agencija, prvenstveno NIH. Sa razvojem i početkom korišćenja novih lekova u ovoj oblasti, njegove kolege sve više citiraju ovaj njegov originalni rad. Njegovi rezultati su nedavno ponovljeni u 10 puta većem uzorku u studiji najviše lokacija u kojoj je učestvovala i njegova klinika, što dokazuje kvalitet njegovog istraživačkog rada na duge staze.
Sistematskom primenom različitih metoda, dr Budimirović će u toku istraživačke aktivnosti nastaviti da doprinosi na tom terenu.
Pored toga, dr Budimirović je i glavni istraživač u tri projekta: Fragile X klinička istraživanja i Konzorcijum registar i baza podataka, Fragile X klinika Farmakološka baza podataka, Prvi znaci Fragile X sindroma, međunarodnog projekta koji ima za cilj mnogo raniju kliničku identifikaciju FXS, radi što ranije genetske dijagnostike FXS, i tako podgrupe autizma.
On je, takođe, glavni istraživač na nedavno podnetom velikom pro

jektu koji koristi novu tehnologiju estirania FXS, koja ima za cili da iscedi još više soka iz FMR1 gena (FXS) i tako unapredi razumevanje i autizma. Jedan nedavno podneti projekat iz oblasti FXS, koji je uključio četiri različita univerziteta iz dve američke države, takođe je angažovao dr Budimirovića zbog njegove visoke stručnosti u ovoj oblasti.

Fragilni X gen ima važnu ulogu kontrolora" sinteze proteina na mestima gde se dve nervne ćelije poljube" (tzv. synapsa).
Jedan gen, puno više markera. Povećanje broja CGG nukleotidnih ponavljanja (slova azbuke DNK) u području FMR1 genu daje izgled X hromozoma kao da će se "prekinuti" (crveni ovalni krug). Ovaj region je odgovoran za sve kliničke forme ovog gena.
Ovi markeri su CGG ponavljanja, AGG ponavljanja (novi test da se prati stepen rizika da se pogorša u sledećoj generaciji, vidi dole), i metilacija (mehanizam koji umrtvi aktivnost ovoga gena, pa nema njegovog proteina - FMRP).

Različite grupe mutacija

Tačnije, postoje dve velike grupe mutacija sa "nestabilnim - proširenim" dugim krakom na X hromozonim"
mu:
a) m
a) mnogo teža klinička forma, sa potpuno nestabilnim, tzv. fragilni X sindrom (FXS), koji je vodeći poznati uzrok autizama izazvan pojedinačno izmenjenim poznatim
genima; genima;
b) u prvim decenijama života mnogo blaža klinička forma, tzv. delimičzmenjen fragilni X gen, koji je u
manjoj meri povezan sa autizmom, a mnogo više sa povećanim rizikom za ranu menopauzu kod žena i jedne posebne vrste rane demencije kod
muškaraca. Važno je istaći i to da je delimično izmenjen fragilni X gen 10 puta češći, i takvih slučajeva nosilaca u SAD se smatra da ima jedan milion! lako najčešće ne znaju da su nosioci ove genske promene, buduće majke

Deo predavanja dr Dejana Budimirovića u školi "Dr MiIan Petrović" u Novom Sadu, u te konferencije srpske medicinske dijaspore

- Osobe sa autizmom imaju problem u učenju, počev od najranijeg usvajanja osnovnih znanja i navika, pa do pisanja, usvajanja znanja uopšte i drugih veština. Smetnje su najviše izražene u domenu komunikacije, u razumevanju i prihvatanju pravila koja zahtevaju određene socijalne situacije. Glavni razlog zašto se polje ne uro nauke okreće prema FXS kao "modelu za studiranje au tizma", bar jedne grupe, jeste da su istraživači ustanovili da Fragilni X gen utiče, "ostavlja otiske prstiju na polovinu od
mnogobrojnih gena uautizmu!
nose 50:50 rizik da dobiju muško po tomstvo sa FXS, koji se ubrzo po ro đenju često manifestuje sa teškim poremećajima psihomotornog razvoja. Dr Budimirović je i dalje posvećen tom cilju, uključujući dalje unapre đenje "'jezgrovnog" tretmana ovog poremećaja. Kao direktor Klinike za fragilni X poremećaj i autizam na Kennedy Krieger institutu, u okviru Medicinskog fakulteta i bolničkog kompleksa Johns Hopkins u Baltimoru, zahvaljujući dugogodišnjem uspešnom radu ovog lekara, otvoren je prošle godine Centar za istraživa nje ovih, I drugih, lekova na institu tu. Ova klinika je deo jednog zajed ničkog napora na desetine klinika u SAD i svetu da to provere u kliničkim studijama, u nadi da ce moći mnogo bolje da pomognu obolelima.
Klinika je izabrana kao jedna od dve lokacije za klinička ispitivanja za koja je dr Budimirović glavni sa radnik-istraživač:

1. Faza III, ključno kliničko ispitiva nje STKS209 (Arbaclofen-GABA-B stimulator, radi kao kočnica) za le čenje izražene socijalne povučenosti kod odraslih, adolescenata i dece sa FXS, pod pokroviteljstvom Seaside terapije, Inc. Ova istrazzivanja su bila proširena isledi nastavak ove studije. 2. Faza II, kliničko ispitivanje GluR5 antagonista (NP 27936), radi tako da olabavi pedalu za
gas (glutamate), i koristi se za le čenje socijalnog povlačenja kod odraslih sa FXS, a pod pokroviU okviru svoje nastavne aktivnosti, dr Budimirović predaje studentima na Johns Hopkins University Homevood kampusu, studentima medicine i specijalizantima. On je takođe, mentor i gostujući naučnik
ka suštinskom rešavanju problema rekao je dr Budimirović
-Autistični spektar je termin koji se danas koristi kako bi se ukazalo na postojanje velikog broja različitih sve te razlike obuhvatile jednim so mom. Autizam, ogroman i rastući problem javnog zdravlja u SAD, i šire, predstavlja hitan medicinski slučaj

oni su u završnoj fazi testiranja na Ijudima. Kao što je navedeno, fragilni X gen utiče, "ostavlja otiske prstiju" na polovini od mnogobrojnih gena u autizmu! U tome je ključna nada, obećavajući rezultati, da će tretman autizma u fragilnom x sindromu biti U kojoj su autizmu drugog porekla rativno, ovo kao da "gradimo most po kome upravo sada i hodamo". Dakle, građenje mosta napreduje, ali se mora ići polako i sigurno, bezbedno.

- Treba podsetiti da se autizam javlja i kod jednog od 50-80 novorođene dece, što svakako nije broj za zanemarivanje. Koliko sam ja obavešten, broj evidentiranih osoba sa autizmom u Srbiji je oko 3.000. Taj broj je sigurno veci jer znaçajan broj osoba sa autističnim problemima, nažalost, nije ni dijagnostikovan.
- Moja zapažanja sa susreta sa kolegama i običnim ljudima tokom boravka u Srbiji za vreme trajanja Konferencije srpske medicinske dijaspore - ukazuju na činjenicu da se sada sve više govori o problemu autizma na ovim prostorima. U Americi je tako već dosta dugo. Razlozi su vrlo veliki i važni i neophodno je
u Austriji na zajedničkim projekti ma.
Dr Budimirović je član američkog Odbora za psihijatriju i neurologiju odrastin, dece i adolescenata, a po novo je sertifikovan za deçu i adoAmeričke akademije za dečiu i ado Americke akademije za deçju adoričke psihiiatrijske asocijacije tokom 14 godina i Američkog medicinskog udruženja Kao medicinski direktor Fragile X klinike dr Budimirović je, ta kođe, član FX konzorcijuma, u nastojanju da unapredi raniju dijagnostiku i lečenje za fragil X u vezi istraživanja i kliničke primene. Dr Budimirović j aktivno učestvovao na Devetim danima zastupanja fragilnog X, održanim u Američkom kongresu.
-Ono što se, sa sigurnošću, zna u okviru ovog poremećaja - jeste da postoje medikamenti koji su u završnoj fazi testiranja, koji mogu po moći osobama sa autizmom. Istraživanja idu u tom pravcu da se sa primenom ovih lekova počne i kod osoba sa autizmom nepoznate etio logije, da bi se procenio njihov efe kat. Od velikog je značaja naglasiti da je dejstvo ovih lekova usmereno

Ono što se, sa sigurnošću, zna u okviru ovog poremećaja - jeste da postoje medikamenti koji su u završnoj fazi testiranja, koji mogu pomoći osobama sa autizmom
(1:38 ukupan broj slučajeva, 1:110 dijagnostikovano, sa 3,2 miliona doara cenom koštanja za života). Taj težak psihomotorni poremećaj počinje u najranijem detinjstvu, i nije jed na bolest već grupa bolesti različitog porekla koja se slično manifestuje. Te različitosti. I pored velikog ulaganja u istraživanja u genetiku u autizmu ne zna se šta je tačno uzrok toga. Smatra se da je preko 100 gena izmenje no u autizmu. Nema leka, ali postoji tretman Ono što se smatra velikim napretkom u nauci u ovoj oblasti jeste područje nestabilnog X hromozoma. Tu se jasno zna šta je jezgrovni uzrok autizma: pojednostavljeno rečeno,"previše aktivna pedala za gas-transmiter u mozgu glutamat i/ ili nedovoljno aktivne kočnice-transmiter GABA". Postoje i specifični lekovi za taj poremećaj koji to jasno koriguju na životinjskom modelu, i
da se javno mnenje što bolje upozna sa ovom problematikom. I podržavaje postojećih kao i dalje proširenje Srazivanja je neophodmo da bi se bolje razumeo i da bi pomoć bila ursishodnija i ovim osobama i niisvrsishodnija i ovim
hovim porodicama.

Pripremila:

Dr Božana Noskov-Peregi

> Klinički istraživački centar na Kennedy Krieger Institutu/ Johns Hopkins
> 716 Severna Široka Ulica Baltimor, država Merilend, SAD Telefon: (443) 923-2634 begin_of_the_skype_highlighting
(443) 923-2634 FREE end of (443) 923-2634 FREE end_of_ the_skype_highlighting Mejl: budimirovic@kenne dykrieger.org

Dr Dejan B.
Budimirović, MD, Medical Director, Fragile X Clinic, Johns Hopkins
Medical Institutions Medical Institutions
Assistant Professor of Psychiatry \& Benavioral Sciences, Johns Hopkins School of Medicine

Adta Selentiat

Autism in Fragile X Syndrome

1. What is Fragile X Syndrome and what areAutism Spectrum Disorder? Fragile X syndrome (FXS) is the eading known single gene cause of autism spectrum disorder (ASD). FXS caused by a full-mutation of the FMR1 gene, which results in a deficit of its encoded protein: the Fragile X Menta Retardation Protein (FMRP). FMRP normally acts as a "brake" in the proces f protein synthesis, particularly in res ponse to synaptic activity.FXS is medical diagnosis, or more precisely, genetic diagnosis, whereas ASD is purely behaviorally-defined diagnosis, representing a group of disorders with varied and yet incompletely elucidated tiology but with a common set of cli nical manifestations.

The just released Diagnostic and Staistical Manual of Mental Disorders Fifth Edition (DSM-5)groups the diffe ent disorders with autistic symptom represented in DSM-IV by the more evere form or autistic disorder (i. Kanner type), the less severe pervasive evelopmental disorder (PDD-NOS), and the higher intellectual functioning Asperger disorder as a single diagnosi of autism spectrum disorder (ASD DSM-5 defines ASD as an entity with wo sets or domains of behavioral ma festations: 1) deficits in socialcommu ication and interaction and i1) presen of restricted interests and repetitive nd stereotyped behaviors. All thre teria of the coresocialdomain and east two out of the four of the restricted repetitive behaviors are needed for the diagnosis of ASD.To better delineate er range of manifestations by ASD, t of specifiersthat include cognitive behavioral, and medical factors

Over the past decade, many studie using the DSM-IV criteria, have attempe denetic diagnosis of FXS and the the genetic diagnosis of FXS and the
behavioral symptoms commonly seen in patients with FXS. These studies have found that the vast majority of males with FXS have autistic features. More over, approximately $46-67 \%$ of males and 20% of femaleswith FXS meet cri teria for ASD. Of these, $18-36 \%$ of males have the more severe autistic disorder. On the other hand, 1-2\% o children with ASD is identified as having FMRI full mutation or FXS in their neurobiologic research suggeststhat ASD is the common clinical expression of arange of disorders with overlappin gmolecular and cellular features. Cu rrently, FXS is considered one of the syndromic types of ASD although $F M R$ I testing is also recommended for indivi duals without any physical phenotype.
2. Why is studying syndromic ASD in FXS increasingly important for the field of ASD?
Autism spectrum disorderis an eno mous and growing public health chall enge.Nationally, there are one million individuals with ASDs, which represent an urgent, unmet medical need (i.e., $1: 50$ prevalence, $1: 110$ diagnosed, with $\$ 3.2 \mathrm{M}$ lifetime cost).This is a lifelong and often severe neurobehavioral syn drome that manifests with a widespec trum of behavioral symptoms, severity and co-occurring conditions. Such complexity has hindered the understanding of core underlying neural mechanisms of the ASDsand the development of new therapies targeting these causes. Thus, treatments that target the core deficits in this convoluted disorder are lacking. Since ASD are highly heterogeneous genetically, reliable homogeneous genetic models for its study are being sought.

As the expansion-type mutationis the cause of FXS in more than 99% of cases, in that sense, FXS is biologically a
highly homogeneoussingle gene disorder that accounts for $2-6 \%$ of cases of ASDs. Hence, their association with FXS, which can be considered a genetic cause of ASD or one of the "autisms,"allows for the opportunity to refine a behavioral phenotype against the established genetic background of FXS. Indeed, the underlying complex pathophysiology of FXS provides important links to the behavioralexpress ons of FXS + ASD and other ASD. The translation of treatments targeted at FXS led to clinical trials in humans of pro mising targeted medications for FXS+ASD and FXS-only, without ASD (FXS-O), and possibly other ASD (ASD-O). Thus, headlines such as 'New Roadmap to Unlock the Mystery of Autism: Is Fragile X the Key?' reflec this meaningful progress in the field.

The behavioral phenotype of FXS includes many typical "autistic" features such as deficits in social interaction (i.e., poor eye contact, peer relation ships) and communication (i.e., language), motor stereotypies, perseverative behavior, social withdrawal behavior and self-injurious behavior (i.e., hand biting). As these typical "autistic" fea tures overlap with ASD-O, clinician ought to understand and appreciate the similarities and differences between FXS+ASD and ASD-O. Nevertheless, because of a significant phenotypic overlap between these two conditions, it can be challenging to identify these differences, which is important in order to better guide its management effort Together, understanding what is known about FXS+ASD can in particular help advance the development of appropriate therapies (1.e., biological, behaviora, educational) not only in FXS but potentially also in ASD-O. Although rare, FXS is the most prevalent monogenetic cause of intellectual disability and autism. Moreover, due to its high pene trance and homogeneity, FXS is the most desirable genetic model of intellec tual disability and ASD, and as such is well-studied.
3. What clinical features differentiate individuals with FXS-ASD and FXS-O
In general, these children are simila but also different. If the FXS phenotype includes many typical DSM-defined autistic features, what differentiates
children with FXS-Ofrom FXS+ASD?In general, while boyswith FXS-O typically have intellectual deficits, hyperarousal and social anxiety, the core deficits in FXS+ASD are due to impairment incomplexsocial interactions. Charac teristics common to both entities include (a) social interaction deficits, (b) poor eye contact, (c) motorand communica-tion-language deficits, and (d) repetitive behaviors.
Social Interaction Deficit. Children with FXS+ASD have deficits in complex social interaction skills (i.e., peer relationships, social-emotional reciprocity) with frequent social withdrawal beha-
vio
(i) mostsimilar (overlap) with respect lower-order(motoric) restricted entitivebehaviors (i.e., stereotypy elf-injury), and social approach initiation)but that they
(ii) contrast in more complex forms of repetitive behaviors (i.e., signif cantly lower in FXS+ASD) and me social response behaviors (1.e eople with FXS+ASD appear more social cues than peopl with ASD-O).

viors (i.e., social avoidance and social indifference).Social avoidance and failure to recognize social cues are more prominent features in individuals with FXS + ASD than in those with FXS-O These impairments in the social domain are expressed on a continuum in FXS regardless of the comorbidity (i.e., anxiety). Moreover, as social avoidance and anxiety are generally common in individuals with FXS, these features may not reliably distinguish those with FXS-O from those with FXS+ASD Similarly, impairments in friendship are present in all individuals with FXS re gardless of their ASD status, which ould be attributed to anxiety symptoms, dine delays. difiries, and cogni tive delays
Earlier studies comparing discrete SXS behaviors between people with AS-ASD FXS DCD show 'inat hose whe' higher rates of repetitive behavior A higher rats of reper of repetitive and social behavior in two roups of youngboys withFXS +ASD ASDsO Thestly foul

Furthermore, a lack of social initiati alone does not necessarily imply the bsence of social awareness orsocia nterest. For those with FXS+AS ocial initiation deficits may reflect the ocial anxiety, which is common to children with FXS. In contrast, socia deficits in ASDwithout FXS are likely 0 originate from a failure to attend ocial information and to a genera ocial indifference, thus precluding appropriate social behavior.
(b)Poor Eye Contact. Eye contact is a fundamental component of human social interactions. Though "poor" ey contact is symptomatic of both XS+ASD and FXS-O, the quality of eye contact deficits is substantially different. Individuals with FXS only directly avoid eye contact, looking away anoner direction to cope with thei lying social hng vidul 1 FXS ASD do engize social res csize of information or interactio Thus, eye gaze avoidance in FXS probably unrelated to $A S D$ because only FXS+ASD.

Further illustrating these differences, individuals with FXSmay seek human interaction, but the social anxiety consistent with FXS often significantly gets duals with FXS+ASDare largely unaware of the function others serve in relation to themselves; hence they rarely seek social interaction.In practical terms, insisting on eye contact with those who have FXS-Ooften leads to greatly heightened social anxiety and may initially worsen cortisol dysregulation. Insisting on eye contact with those who have FXS+ASDmay have some merit (i.e., information). At times, teachers and caregivers may say that they do not need to know about FXSsince they have training to work with children with ASD. However, interventions appropriate for children with FXS-O may be quite opposite from those for ASD. Not all children with FXS have autism, but may still have social anxiety, sensory procesing problems, and/or repetitive behaviors that require interventions, which may be different for the child with an ASD.
(c) Motor and communication deficits. Nearly all parents report delays in early motor and communication (i.e., receptive-expressive language skills) in individuals with FXS. In FXS-O, males have moderate to severe deficiencies with a greater impairment in expressive anguage compared to receptive language skills. In contrast, in FXS+ASDthere are greater impairments in receptive anguage skills, and fine and gross motor abilities than those with FXS-O. Additionally, some studies have found greater deficits (lower scores)in motor abilities in individuals with FXS+ASD than individuals with ASD-O.Furthermore, differences in profiles of other skills (i.e., imitation) may be helpful in a clidevelopatan Imitation is a pivotal developmental skir that is generally a treng for ASDASD.
(d)Repetitive behaviors. Both indi viduals with FXS-O and with FXS+ASD have repetitive behaviors, such as ste reotypical object manipulationand motor
tereotypies (hand-flapping, body-stiffening, and rubbing or wiping the head with a hand) Those with FXS-O tend to exhibit more repetitive behaviors due to excitement, anxiety, or difficulty "stopping" or inhibiting their behavior, while individuals with FXS+ASD appear to engage in those behaviors for less specific and more varied reasons (i.e., vestibular stimulation results in a lot of spinning and jumping). As of yet, the precise pattern of repetitive behavior associated withASD in FXS remains unclear.
4. What are challenges in characterizing social interaction disorders in FXS: ASD-Anxiety link?
In FXS, the behavioral manifestations of anxiety and hyperarousal complicate the ability to diagnose ASD. According to the National Parent Survey, anxiety is the second most common behavioral abnormality in FXS individuals older than 6 years of age. Another recent studyfound a greater percentage of in dividuals with FXS meeting criteria for a variety of anxiety disorders than in other intellectual disability groups or in the general population.One of anxiety's variants, social anxiety, is adisorde characterized by avoidance in social situations and are not simply secondary to cognitive deficits.An epidemiological report notes that social anxiety is the most common comorbidity in ASD-O.

5. Why is a reliable early diagnosis of

 ASD in FXS important?Persistent abnormalities in social ineraction could be a sign of an emergingASD. Children with FXS are often first diagnosed with ASD, as theseneurobehavioral features are the most profied symptoms, hen FXS is identidal an of a medical/genetic valuation. As in the general populat on, a diagnosis of an ASD in FXS is based on history and a behavioral obser vation, usually complemented by stan dardized questionnaires, DSM-base clinical impression, rating scales, and observational measures, such as the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic behaviors are more severe in thow FXS + ASD than in the with FXS As detailed above it is impor consider social anxiety disorder or with ASD in the differential diane sis of social withdrawal in a child with FXS.

Individuals with $F X S+A$ SD tend to have the following characteristics: (i) lower language skills, particularly receptive skills, (ii) more impaired nonverbal cognition, (iii) lower adaptive skills, (iv) more complex socialdeficits, and (v) more severe overall behavioralproblems than those without ASD Consequently, from educational and vocational viewpoints, individuals with FXS+ASD face more severe challenges.

Similar to the general population, early identification of ASD in FXS is important because it can lead to earlier and more intense interventions. The guidelines of the American Academy of Pediatrics (AAP) regarding develo pmental screening would allow early identification of children with FXS. The Academy recommends the use of standardized developmental surveillance well-cring tests administered during month). Additionally it recommends that an ASD specific screening tool be administered at 18 and 24 months. Moreover, a developmental assessment should also be performed any time a concern is raised.Guidance statements from professional organizations also emphasize the need for fragile X testing in individuals with ASD. Yet, genera clinical practice and available literature reveal that, for different reasons, only 30% to 40% of individuals with ASD get actually tested for FMRI mutations.
6. What treatment strategies are used to helpindividuals with FXS and ASD?
A wide range of maladaptive behaviors is common in children with ASD in FXS. These behaviors cause enormous academic and adaptive behavior impairments beyond intellectual deficit. Psychotropic medications are often necessary to target different symptom clusterssuch as ADHD symptoms, anxiety, and aggressive behavior, but are not specific to FXS. Medication may be necessary to support therapeutic services (i.e., speech-language, occupa tional, behavioral, educational) and to allow a child to learn in the least restric tive environment
Many of the behavioral issues in FXS are related to anxiety and hyperarousal and associated challenges in managin gthem.In younger males with FXS-ASD
sensory processing problems and hyperarousal are particularly common; their treatment includes occupational therapy and alpha adrenergic agonists.

For children with FXS-ASD, intense interventions that target communication and social ization skills are appropriate
Because of their relatively lower cogni tive level, educational strategies for children with FXS-ASD may need to focus on functional skills as much as on academics. The crucial point for teachers, therapists, and others involved in the support of people with FXS (with or without ASD) is to utilize existing knowledge about behavior and learning styles of people with FXS in an "indi vidualized" manner in order to better customize these educational, behaviora and other strategies.

While the aforementioned 'targeted symptoms' approach of treating associated symptoms with psychotropic medications is helpful, it is inadequate, as it does not address the underlying cause. To date, there have been no adequately controlledstudieof any of the sympto monly prescribed for FXS. Nevertheless, we are closer to FXS-specific treatments today than ever before.Targeted molecular therapeutics has shown favorable results in early clinical trials for patients with FXS. Moreover, some related therapies have been successfully extended to those with ASDs, but clearly larger studies are needed to replicate hese initial findings. Furthermore, even men these novel targeted treatments are available forgeneral use in treating FX, it is likely that psychiatric comoridy will still require administration conventional psychotropic medica
ons. Hopefully, even if theseearly
herapeutic strategies are only
to help guide further treatment development and further enhance our understanding of enhance our understanding of
FXS and its clinical and neuFXS and its clinical and neu-
robiological relationship to ASDs.
 hold much promise for the future as

Distinguishing psychiatric diseases by their symptoms has long been difficult. For example, autism was called childhood schizophrenia until the 1970s, and there was a very high rate of undiagnosed FXS in individuals with ASD and/or ASDwere misdiagnosed as intellectual disableduntil the 1990s.In the meantime, evidence has accumulated that the diagnosis of FXS increases the probability that an individual will also meet the criteria for an ASD. Moreover, recent discoveries suggest a genetic basis that points to a specific signaling system underlying five types of mental and developmental disorders, including autism and schizophrenia. This indicates that lesions in a single neural signaling pathway may result in a variety of neurodevelopmental syndromes and clinical outcomes, with the clinical expression certainly dependent on genetic and envirommental interactions. FXS is a biologically homogeneous single gene disorder whose 'translational model has enabled enormous progress in fragile X targeted therapeutics.A strong value of the homogeneity or FXS is also that it offrs an ideal model for nisms associated with the subpopulat nisms associated with the subpopulation of indivials wind highly enlarged caudate and small nersu modest cor versus modest caudate and amygdala ASD-O). Furthermace converging evi-ASD-0). Furbe, churg dence of both animal and har critical factor in FXS, which supports the notion of ninteraction between $F M R I$ and 'modifier' backgroundenes in the pathogenesis of ASD in FXS, Studies using high resolution analyses Studies using high resolution analyses
of the $F M R$ I gene, protein assays for FMRP expression, as well as genetic screening panels (e.g. microarrays, screening panels (e.g. microarrays,
NextGen sequencing, and epigenetic NextGen sequencing, and epigenetic
screens) will enable an understanding of the full value of FMR1gene and its encoded protein (FMRP) as a diagnostic and potential therapeutic marker for ASD and permit further refinement and understanding of the molecular basis of ASD in FXS.

The 'two-hit hypothesis'

Dejan B. Budimirovic, MD
Medical Director, Fragile X Clinic, KKI, JHMI
Fragile X Clinical \& Research Consortium
Attending Child Neuropsychiatrist, KKI, JHMI
Sub-Investigator Physician, Clinical Trials Unit, KKI, JHM Assistant Professor of Psychiatry \& Behavioral Sciences, Johns Hopkins University School of Medicine

Fragile X-associated disorders FXD) result from an expans on mutation of a CGG polymorphism in the first exon of the the FMR1 gene. When the normal number (4-45) of CGG repeats increase to >200 (full mutation), a hypermethyla tion-mediated 'shut-down' of FMR gene leads to a deficit in its encoded protein, fragile X mental retardation protein (FMRP). The deficit in this RNA-binding dendritic protein results in the symptoms of fragile X syndrome (FXS) (Kaufmann and Reiss, 1999, Sherman, 2002; Darnell et al., 2011). In contrast, intermediate level expansions (55-200 CGG repeats), which are termed permutations, are not associated with FXS (Kaufmann and Reiss, 1999] but with a carrier status or other clinica phenotypes (e.g., mild cognitive/beha vioral problems, fragile X-associated primary ovarian insufficiency syndrome (FX-PO1), Fragile X Tremor Ataxia Syndrome (F -TAS) Hageman \& 2009). It is noth the 209). It is noteworthy that these pro nism from the FMRP deficincy in FXS Regadess all the disors (ie, FXS FX-POI FX-TAS) fall underan lla of FXD (Boyle \& Kaufmann, 2010) 2010).

The FMR1 premutation is common in the general population (1 in 130-250 in females and 1 in 250-810 males; re viewed in Tassone et al 2012) , and the phenotypic manifestations of carriers
may impact more than 1 million individuals in the US alone. In contrast to XXS, these premutation carriers show ower rates of autism spectrum disorder ASD) (Chonchiaya et al 2012; Farzin et al., 2006) than in FXS. There are a variety of potential 'phenotypic modifier' factors that could explain variable penetrance in FMR1 premutation. These may include interactions with other genes within the X -chromosome (Lubs et al., 2012) or other regions of the genome (1.e., CNVs) (Girirajan \&Eichler, 2010), epigenetic differences or/and rionmental factors. The rapid pro grss in high-resolution genome scafing technologies has allowed identiof the same genomic lesions with apparently very diverse phenotypes. Case example: A 8 year-old female with mild ASD, anxiety, abnormalities of the attentional network, and mildmoderate intellectual disability (ID), work up, including an unce-genetic SNP array has not explained the ID ASD. Nevertheless 3 podentilly and

vant X-linked ID synapse-related hits among below mentioned genes detailed on page 4 (NLG4, DLG3, and CASK) may explain the degree of ID, and po sibly ASD, in this low level (CGG 58 epeats) fragile X female carrier. While these aforementioned genes affecta wide range of functions, and the cause fhe clinical overlap is not clear, ynergistic synaptic pathology might mpact the severity of the phenotype. urthermore, it is likely that regulatio of expression of disrupted genes may explain the phenotypic variability in remutation carriers through additive ffects, in which a change in the at-ris allele' leads to a phenotype-determining feature ("Second Hit hypothesis") The 'two-hit hypothesis,' which was initially applied to large CNVs (i.e, 6p12.1 microdeletion), could also apture a smaller CNV or a single-nuc leotide change affecting a phenotypically related gene or 'at-risk' allele hit" can result in additive or sistal hit can result in additive or epistatic efec, hus changing he atrisk alle a phenotype determining feature, the

Intellectual disability threshold

Neuropsyhiatric

 thresholdmodel has been expanded to many other cases with unexplained severe phenotype, especially the ones with low de novo mutation rate (reviewed in Girirajan \&Eichler, 2010). In other words, one hit is enough to reach a threshold just sufficient to induce select neuropsychiatric features but a second hit notype with intellectual disability and developmental delay (Figure 1).
Another concept, termed developmental brain dysfunction (DBD), has been used to integrate neurodevelopmental disorders caused by a variety of genetic variants of variable penetrance and expressivity. This conceptual framework has been initially used to describe abnormality of brain function and continuum of developmental disabilities (Capute \& Palmer, 1980, Capute 1991). Genome-wide studies have shed some lights into this complexity, and, similar to variably expressed CNVs, have revealed that variants in the same gene might be associated with various neurodevelopmental phenotypes (http:// www.nature.com/ng/journal/vaop/ncurrent/full/ng.2711.html). In other words, there is compelling evidence of variability in the clinical presentations of discrete genetic variants and sharing of genctic causes among cimically distinct brain disorders. These frequently co-occurring disorders have overlapping ficant challenge for clinicient a significant challenge for chicians and reseal., 2011). In light of these challenges
and the technological progress, Ledbetter and colleagues have expanded the initial DBD concept to include the common denominator underlying neurodevelopmental, and some neurodegenerative, disorders (reviewed in De-Luca et al., 2013). Namely, the proposed DBD results in clinical manifestations that include the less severe disorders once encompassed by minimal brain dysfunction (Denckla M, 1978) or minimal cerebral dysfunction (i.e., learning disabilities, language disorders, developmental coordination disorder, and ADHD), the more severe classic neurodevelopmental disabilities (eg, ID, ASD), and also at least a subset of neuropsychiatric disorders (eg, schizophrenia and possibly major affective disorders). Both the 'second-hit' and the DBD models captures our hypothesis that the addition of a second genetic hit to the premutation is likely to increase the risk of autism or/and ID due to molecular changes leading to neuronal deficits (i.e., synaptic dysfunction).
Precise
Precise genetic origins such as certain CNVs and single-gene mutations (i.e., FMR1 gene) are shared among disorders that are held to be clinically distinct. For example, representing 'disorders of synapse,' an increasingly replicated link between FXS and at least a subset of al. 2012) has been reported who et FMRP is the critical unifying factor for FWRP is the critical unifying factor for FX-associated disorders (Sidorov et al.,
2013) although its role in FX premuta2013) allough its role in FX premata-
breakthrough is important due to an enormous phenotypic heterogeneity in idiopathic ASD (Scherer \&Dawson, 2011; Betancur, 2011). Nevertheless, the technological genomic advancement (Marshall et al., 2013) has led to recent several reproducible findings as for de novo mutations in idiopathic ASD (Jiang et al., 2013; Sanders et al., 2012; O'Roak et al., 2012; Neale et al., 2012; Iossifov et al., 2012; Michaelson et al., 2012; Kong et al., 2012), which begins to elucidate the genetic pattern of ASD. Specifically, an identifiable genetic etiology is attributable to $5-15 \%$ of individuals with ASD, which matches known CNVs changes or single gene disorders (i.e., FMR1 gene mutations). In addition, a recent focus in the field of ASD has yielded discovery of rare but apparently highly expressed de novo or inherited CNVs in upwards of 5-10\% of cases with idiopathic ASD. These findings, coupled with genome sequencing data, suggest the existence of hundreds of ASD-risk genes, many of which are involved in synaptic function.
Furthermore, given the well-established role of genetic factors in idiopathic ASD (Zhao et al., 2007; Hallmayer et al., 2011), not only de novo variants but also rare autosomal and X-linked inherited variants in families were examined using whole-genome sequencing (Jiang et al., 2013). Among ASD probands, the authors identified pathogenic de novo mutations in 19\% inherited alterations in 31% families (some had combinations of $\mathbf{\text { m }}$ families including CAPRIN1 and AFF2 (both incluaing CAPRIN1 and AFI2 (both linked to FMR1). CAPRINI, as an
RNA-binding protein, may be involved in synaptic plasticity in neurons and cell proliferation and migration in multiple cell types. Moreover Fatimy et al. (2012) recently showed that CAPRIN1
(2017. might modulate FMRP functions as might modulate FMRP functions as
they have in common at least two RNA targets (i.e., CaMKII α and Map1b targets (i.e., CaMKII α and Mapib
mRNAs). CAPRIN1 together with mRNAs). CAPRIN1 together with AFF2, a non-syndromal XLMR
(FXMR2, Xq28), are also potential candidates for clinical drug trials, incandiaates for clinical drug trials, in-
volving allosteric modulators of GABA receptors, which have ameliorated au-tism-like symptoms in mice (Henderson tism-iike symptoms in mice (Henderson
et al., 2012) and humans (Berry-Kravis et al., 2012). Additionally, rare variations in AFF2 could contribute to ASD susceptibility as it also may explain some of the male excess in ASD (Mondal et al., 2012).

The premutation FMR1 gene is typically unmethylated, and the phenotype is usually not associated with ID, but there are around 10% atypical cases Progress in delineating X-Linked intellectual disability (XLID) has revealed over 150 syndromes, by far the most common of which is FXS, and XLID accounts for $5 \%-10 \%$ of ID in males. Mutations in 102 X -linked genes have been associated with 81 of these XLID syndromes and with 35 of the regionally mapped families with non-syndromal XLID (reviewed in Lubs et al., 2012) The association of ASD with mutations in at least eight of the 102 genes has been reported most frequently in FXS and Rett syndrome bit also in disorders resulting from mutations in genes invol ved in synapse remodeling (NLGN4 and NLGN3) (Jamain et a., 2003, Yan et al., 2005, Darnelfeta., in Cell 2011), RPLIO RAB39B, PTCHD1 (Papon et al., 2013), DLG3, he synapse scafolding (CASN) and MeDI2. Imporank, NLGN (Dl/eMIRBg), 20 CASK (htp./goo g/eM.eng) and CASK (htp.//goo.g/ ding sites, and they are also linked to non-syndromal XLID. While all thes genes affect a wide range of functions and the cause of the clinical overlap is not clear, a synergistic synaptic patho
logy might impact the severity of the phenotype. In addition, it is compelling to speculate that even if the FMR1 mutation were not completely inactivating such as in premutation there still could be a synergistic pathology. In conclusion, there are a variety of reasons for variable expression in premutation carriers and clearly potentially more than one mechanism involved. The level of FMRP may be affected and/or one or more FMRP targets may be also disrupted by a mutation, copy number, or epigenetic change, which could lead to a synergistic synaptic pathology. An additive or synergist effect could then impact the severity of the phenotype. Currently, a key goal in the fragile X field is to identify which proteins are regulated by FMRP and how increases or decreases in these proteins may account for phenotypes of the disorder (Sidorov et al., 2013). Since a comprehensive view of the effects of genetic and pathway aberrations is lacking, in silico tools that estimate the severity of the DNA base changes at the molecube useful in as PolyPhen or SIFT, can minating potential connections the supported by existing evids supported by existing evidence, and io also critical not to over interpret such predictive, and unvalidated results Future

Note: Relevant to this article, Dr Bucimirovic is a co-autho of a recent peer-reviewed article from a group of authors in the field titled 'Are genomic stualies necessary in autism eurological deficits of Frag pre) The group has presened at 1st International Confeence on 'the FMR1 Premutation: Basic Mechanisms and Clinical Involvement' that was held in June of 2013, Perugia, Italy. Dr Budimirovic's oral presentation was titlec High Resolution FMR1 Genetic and Epigenetic Molecular Assessments in a Well Characterized Cohort of Full Mutation and Premutation
Fragile X Patients.' Fragile X Patients.
studies, including those that integrate olistic molecular understanding of the interplay and consequences of FMR tailed p , an Krincontext further advance undertan, ing of likely complex mechnism(s) involved th nderlies variable expression in premu tion carres.

Fragile X: From Neurodevelopmental to Neurodegenerative Disorders

Chair: Randi J. Hagerman, MD, Medical Director of the M.I.N.D. Institute
Endowed Chair in Fragile X Research, UC Davis Health System, Sacramento, CA
Presenters: Randi Hagerman MD, Gary Latham PhD, Dejan Budimirovic MD, Craig Erickson, MD

Gary J. Latham, PhD Vice President, Research and Technology Developmen Asuragen, Inc.

Craig Erickson, M.D Assistant Professor of Psychiatry Cincinnati Children's Hospita Medical Center,
Cincinnati, Ohio

Symposium titled 'Illuminating the fragile X spectrum of disease through molecular, clinical, and therapeutic advances' organized by Dr Budimirovic for American Academy of Child and Adolescent Psychiatry Annual 2014 Meeting.

Biology
 inuminate molecular, clinical and targeted treatment advances in fragile-X associated disorders (FXD) that are caused by premutation and full-mutati on expansions in the fragile X mental retardation 1 (FMRI) gene. We seek to describe the following: (i) fragile X premutation-associated disorders in both development and aging (ii) recent ad vances in PCR that allow comprehen sive molecular assessments of the FMR1 gene, and expand the types of specimens that can be analyzed, (iii) molecular clinical profiles in a cohort of fragile X EMR1 as a patients of relevance to FMR1 as a diagnostic and therapeutic potential mediators of dendritic deficits poter X) deficit in the fragile X full-mutation.

FXD are caused by two types of CGG repeat expansions within the $F M R I$ gene First, in fragile X syndrome (FXS), the causal defect is epigenetic silencing of the FMR1 gene and the consequent absence of FMRP (FMRI protein) due to large CGG expansions (>200 repeats full-mutation). FMRP functions as a translational repressor ('brake') interac ting with hundreds of mRNA transcripts, including ones for many genes implica ted in autism spectrum disorder (ASD) (Ascano et al., 2012; Iossifov et al., 2012),
As FMRP is As FMRP is important for proper synapse
development and function, its absence development and function, its absence
causes intellectual disability and ASD. causes intellectual disability and ASD Second, the FMR1 gene remains fully active in premutation expansions (55-200 repeats) but demonstrates increase M008. Chat proct (Bailey 2008; Chonchaiya et al., 2012; Hagerma and Hagerman, 2013)

Clinical
Normal

Premutation
(CGG) 55-200

Primary ovarian insufficiency (POI), fragile X-associated tremor ataxia syndrome (FXTAS) due to excess mRNA

From Hagerman et al. Pediatrics 123:378-90, 2009

It is noteworthy that the premutation associated disorders arise through dif ferent pathogenic mechanisms than FXS oppoly hey are clinically apparent through different pathogenic mechani sms (i.e., gene silencing in FXS versu RNA toxicity in the premutation). The fragile X premutation is common in the general population (1 per 130-250 women and 1 per $250-810$ men (Tassone et al., 2012). After the disco very of $F M R 1$ in 1991, premutation carriers were considered non-penetran or unaffected. However, it was subsequ ently discovered that the premutation was a common cause of early ovarian failure (menopause before age 40), later named fragile X-associated primary ovarian insufficiency (FXPOI). In the 1990s, some children with the premuta tion were found to have developmental problems including ADHD, ASD and intellectual disability in addition to lowered levels of FMRP. In 2000 Tassone and colleagues reported eleva tod tovels orm 10 manging from 2 of this discovery was the identification this discovery was the identification of from an intention tremor, cerebella taxia neuropathy and colite sometimes leading to domis was named the fragile X -associate
tremor ataxia syndrome (FXTAS) While excessive RNA xpresion may well be the toxic element in FXIAS the accumulation of polyG in the ubi tquitin-positive inclusions as the characteristic of FXTAS is linked to RNA toxicity as well. Clinically, FXTAS occur in approximately 40% of male carriers and 16% of female carriers with an average age of onset at 62 years (Ja 2008). Dr et al., 2004, Cofrey et al., the field and has published extensively as they, and others, have identified a variety of medical and psychiatric pro blems associated with the premutation either wilh or winout FXIAS in controlled studies. To summarize, signifi cant differences were found in preva lence for depression (in approximately 40% of carriers; 60% of those with FXTAS) and anxiety in 50% of carriers with FXTAS (Bourgeois et al., 2009), migraines in 45% of females and 30% of male carriers, restless legs syndrome in 30% of carriers, hypertension in 50 to 60% of carriers, fibromyalgia in 0\% of women with FXTAS, hypot hyroidism in 50% of women with with FXTAS. There is 35% of men incidence of sizures in also a higher those with seizures the rate of intellec tual disability and ASD is increased in carrier boys and ASD is increased in siblings. ADHD is also increas nal pared to controls in boys with the pre
mutation compared to controls and also in adults who are carriers compared to controls. The premutation can also lead to neuroradiological chances including an increase in DTI FA changes versus controls in specific tracts and volumetric changes in carriers, particularly in the cerebellum and brainstem before the onset of FXTAS versus controls. It is important to note that involvement from he full mutation is related to deficits in MRP and involvement in those with premutation relates to the toxic flets of elevated FMRI mRNA and is sometimes combined with a mild deficit of FMRP, particularly for thos ne upper range of the premutatio

ASD is an enormous and growing public health (CDC, 2012) and economic (Levelle et al., 2014) challenge. his is a heterogeneous, behaviorally defined group of disorders of mostly unknown etiology. Treatments targeing the core deficits in ASD are lacking. Thus, current research is focused on identifying shared pathways and common therapeutic targets among patients with causal genetic defecs It may be helpful to thint "cloud" which represents a final common pathway of of brain wiring The cloud contins common set of behavioral chateter stics that are core features of ASD: teria for ASD with higher social anxiety, hyperarousal, and other FXS-related ifferences. Owing to the prevalence f ASD in FXS and its shared neurophysiology with ASD, FXS has been Budimirovic \& Kaufmann, 2011), and offers a new hope to translate into rational therapy (Hagerman et al., 2009). The deficits in FMRP lead to upregulation of the mGluR5 and downregulation of the GABA systems, respectively, resulting in an excitatory-inhibitory imbalance. While the mediators of
dendritic pathology in FXS include abnormalities in dendritic spins the remain inadequately understood. To date, rescue of the dendritic pathology of FXS has largely centered on use of mGluR5 antagonists (Gantois et al. 2013) and GABA-B agonists (Henderson et al. 2012). Other molecular systems in FXS that carry such potential as they also mediate FMRP expression are brain derived neurotrophic factor (BDNF) (Lauterborn et al., 2007) and secreted amyloid precursor protein alpha (SAPP α). In light of the progre ss with fragile X targeted therapeutics (Jacquemont et al., 2011; Berry-Kravis etal. 2012), further molecular-clinical full vare needed to understand the full value of $F M R 1$ as a diagnostic and
therapeutic marker. This is possible only with innovative assays in the FMR1 gene diagnostics (Chen et al., 2010; 2011) as well as to further inve stigate other mediators of the dendritic baseline which persons with FXS may best respond to a particular treatment (Erickson and Wink, 2013); both aim to develop personalized medicine options for this disorder.
This symposium tackles recent molecular, clinical, and targeted therapeutics advances in FXD in humans, and particularly FXS as one of the 'autisms. Presenters will review mostly the pre liminary data on the molecular, diagnostics advanced methodology, genotype phenotype profiles, and targeted

treatments in the field. Dr Hagerman, the chair, will briefly introduce the topic, and then present molecular and clinical data on a rapidly emerging field of fragile X premutation-associated disorders in both development and aging. Multiple studies will be reviewed that are associated with a cal phenotypes, including ASD. H storically, molecular analysis of FMRI gene has been limited by difficult-toamplify repeats sequences. Dr Lathan will describe the emergence of rapid information-rich fragile X PCR diagnostic methods and how they can enable improved patient-centered specimen collections across multipl FMRI markers. Using the same PC methods, Dr Budimirovic will present preliminary molecular-clinical profi les on 19 subjects as for of relevance to understanding the full value of $F M R I$ as a diagnostic and therapeutic marker. These preliminary data underscore the potential of highly sensitive and quantitative assays to inform genotype/phenotype linkages in patients with a range of genetic, cognitive, and behavioral characte stics. In particular, the observed dif ferences in molecular profiles between mesodermal (venous blood) and ec deserve futher study. Below is deserve furner stany. Below is a mosaic with fully a methylated full-mutation but differences in repe length and methylation mosaicism between buccal ad blod cell types It will be important to understand
significant which of these molecula profiles may be most clinically rele vant.
In addition to a larger sample size improved assays such as methyl-Se and FMRP (LaFauci et al., 2013) that are being introduced in these studies are expected to provide a much more enlightened opportunity to find meaningful distinction between ASD and non-ASD individuals of relevance for targeted the rapeutics (Jacquemont et al., 2011) In the same line that the impact of deficient FMRP is likely wide and far reaching, Dr Erickson s initial work with BDNF and sAPP α point to these two additional potentia molecular systems that exhibit dysre gulation in FXS. As a contributor to this pathophysiology, such prelim nary data in 10 youths with FX favors excessive sAPPo in the patients with FXS with autism compare to those with idiopathic autism BDNF potential overactivity of BDN compared to matched ne rotypical controls. Dr Erickson' group is currently working to confir these finding in the $F M R 1 \mathrm{KO}$ mous model. These initial findings and this line of research also hold promise (i) to guide therapeutics developmen derivatives mabe posible with derivatives maybe possible wit (Erick Wi K 2013), that one or both of these marker may help to profile in the future which persons with FXS may best respond to a particular treatment

In conclusion, these four studies demonstrate a significant progress in the fragile X translational model success story.' It begin to address the methodology, phenotyping gaps of relevance not only to fragile X CNS mechanisms targeted therapeutics but also to a potentially broader psychiatric spectrum of disorders, including ASD. Progress in basic neuroscience has led to discovery of molecular targets for treatment in FXS and other neurodevelopmental disorders; however, there is a gap in translation to targeted therapies in humans (Jacquemont et al., 2013; Berry-Kravis et al. 2013). It is important to unders core that the fragile X premutation and full-mutation are clinically apparent at opposite ends of the age range, and arise through different pathogenic mechanisms. Moreover, a rapid progress in understanding the $F M R 1$ premutation phenotype has left many clinicians unaware of the stark distinction between FXS (neurodevelopmental) and FXTAS (neurodegenerative) disorders, respectively (Hagerman and Hagerman 2013). The premuation can lead to medical and psychiatric problems throughout life related to RNA toxicity effects in the CNS, wism thern pilencing mechanisms than gene silencing in FXS. Radiological changes on DTI and volumetric studies can be seen in midife well before the onset of ran be made once a di premutation is made. premutation is made.

Bibliography

Budimirovic DB, \& Kaufmann WE (2011). What Can We Learn About Autism from Studying Fragile X Syndrome? Developmental Neuroscience, 33 (5), 379-394.
Centers for Disease Control and Prevention. (2012). Prevalence of autism spectrum disorders-Autism and Developmental Disabilities Monitoring Network, United States, 2008. Morbidity and
Mortality Weekly Reort (Renort No 61[SS03)]). Washington DC: Government Printing Office.
Chen L., Hadd A., Sah S., Filipovic-Sadic S., Krosting J., Sekin ger E., Pan R., Hagerman P.J., Stenzel T.T., Tassone F., and Latham G.J. (2010). An Information-Rich CGG Repeat Primed PCR Tha Detects the Full Range of Fragile X Expanded Alleles and Minim zes the Need for Souncrn Blot Analysis. J Mol Diagn. 12(5), 589-600.
Chen L, Hadd AG, Hagerman PJ, Tassone F, Latham GJ et al fragile X analysis: Evidence for novel $F M R 1$ methylation pattern undetected in Southern blot analyses. Genet Med 13(6), 528-538.

Erickson C A, Wink LK et al. (2013). Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology (Berl).

Hagerman, R.J., Berry-Kravis, E., Kaufmann, W.E., Ono, M.Y., Tartaglia, N., Lachiewicz, A., Kronk, R., Delahunty, C., Hessl, D., isootsak, J., Picker, J., Gane, L., Tranfaglia, M. (2009). Advance in the treatment of fragile X syndrome. Pediatrics, $123,378-390$

Hagerman R and Hagerman P (2013). Advances in clinical and molecular understanding of the $F M R I$ premutation and fragile Xassociated tremor/ataxia syndrome. Lancet Neurol, 12, 786-98. Jacquemont S, Berry-Kravis E, Hagerman R J et al. (2011). Epigenetic modification of the FMRI gene in fragile X syndrome is associated with differential response to the mGluRS antagonist AFQ056. Science Translational Medicine, 3(64), 64ra1---6 64ra1. LaFauci, G., Adayev, I., Kascsak, R., Kascsak, R., Nolin, S.,
Mehta, P., Brown, W.T., and Dobkin, C. (2013). Fragile X Screening by Quantification of FMRP in Dried Blood Spots by a Luminex Immunoassay. J Mol Diagn, 15: 508 e 517.

Stratification of fragile X syndrome and autism patients using tandem DNA and protein assays that can identify prognostic clinical features and help individualize therapy options

Objective: Improve the application of existing and emerging treatment options for fragile X syndrome (FXS) with and without autism patients using comprehensive molecular assays
for the Fragile X Mental Retardation for the Fragile X Mental Retardation (FMR1) gene and its encoded fragile X
mental retardation protein (FMRP). mental retardation protein (FMRP). Hypothesis: A novel, quantitative
FMRP (qFMRP) assay in combination FMRP (qFMRP) assay in combination
with next generation FMR1 DNA molewith next generation FMR1 DNA mole-
cular assays will differentiate neurobecular assays will differentiate neurobehavioral profiles and clinical diag
ses/severity in patient friendly ses/severity in patient friendly
specimens from individuals with FXS.

Background

Clinical significance of FXS and related disorders: FXS is the best-understood single cause associated with autism spectrum disorder (ASD) that accounts for up to 5% of al cases of ASD [1]. FXS is caused by a full-mutation (FM, >200 CGG repeats) and epigenetic silencing of the FMR1 gen which results in a loss of its encoded protein (no FMRP) [2]

One gene, many markers. An expansion of the number of CGG nucleotide repeats in the FMR1 gene gives the appearance chromosome can easily break (red oval). This region is responsible for FXS and othe FXasso AGG intertions, an (hyper)methation

It is a genetic-medical diagnosis, unlike ASD which is behaviorally-defined diagnosis. Clinically, individuals with FXS have a wide array of impairments in skills (i.e., intellectual disability-ID) [1] and behaviors that can include many features of syndromic ASD (refers to ASD in FXS), such as deficits in social interaction and communication (e.g., eye
ontact, peer relationships, social withdrawal-SW) [3], and restricted and repetitive behaviors [1,3]. Moreover, two out of three boys with FXS meet criteria for a diagnosis of the causal ASD [1]. There are also evidence for existence of neurobehavioral subgroups in FXS based on whether individuals met criteria for ASD [4, 5], including subgroups based on severity of SW set of behaviors as a unifying factor of ASD and anxiety [6]. Indeed, the FMR1 FM confers an es pecially high risk for anxiety disorders compared to general ID [7]. Yet, to date, there has been little work suggesting the existence of separable neurobiological phenotypes within XS. Only two studies suggest that FXS may lack homoge neity at the neurobiological level despite arising from the ingle gene mutation $[8,9]$. The work outlined here may dentify endophenotypic subgroups within FXS through a model of molecular-behavioral stratification and may offer insights to understand the biological basis of neuropsychiatric pathology (e.g., the RDoC approach articulated by IMH:http://www.nimh.nih.gov/research-priorities/rdoc index.shtml),including in individuals with ASD in FXS (https://www.grc.org/programs.aspx?year=2014\&program= fragilex).
FMR1 molecular diagnosis and new PCR technologies: dvances in molecular methods have enabled the assessmen of the degree of CGG expansion and promoter methylation and Interpreter® $F M R 1$ methylation status (mPCR) brands. Ne vertheless, the ability of these assays to predict the severity of clinical phenotypes is limited by the many variables that nfluence $F M R I$ translational output: size and methylation mosaicism, X-chromosome inactivation, and other factors hat regulate $F M R 1$. Therefore, an important advance in the feld is the development of an assay to reliably quantify FMRP [10]. By quantifying FMRP (qFMRP)-the functional endpoint of $F M R I$ gene expression-a more compre nal endpoint of $F M R /$ gene expression-a more compre the diagnosis, prognosis, and treatment options for affected individuals. Furthermore, the mPCR advanced method allows quantifying the spectrum of methylation characteristics in patients with FMRI expansions [11]. This is important as somatic mosaicism is well documented in FXS and this heterogeneity can confound molecular [11] and clinical interpretations [1].

FXS as a model for ASD, from biology to clinical management: Despite an early controversy, it is now clear that there is not only the clinical overlap between FXS and ASD [3] but also a substantial overlap in the molecular pathology in the brain disorders [12]. FMRP is ubiquitously expressed of total mammalian brain mRNAs [13, 14], thus, regulates the levels of many important proteins involved with brain connections.

Since FMRP normally acts as a "brake" on protein synthesis in neural dendrites, the hallmark effects of the FMRP deficit are increased dendritic protein synthesis $[12,15]$ due to an overactive glutamatergic signaling mediated up-regulation in mGluR5 and down-regulation in GABA synaptic receptors $[14,16]$. Many of the proteins involved in signaling pathways that regulate protein synthesis at brain synapses and interact with FMRP are associated with ASD in FXS [13, 14]. In addition, many of the proteins regulated by FMRP have been found to be associated with idiopathic ASD [17, 18]. Further, low FMRP levels have been documented in research samples of individuals with ASD in FXS [14, 19], and idiopathic

WE CAN
 "CURE" THE

But Mouse is not Man...

ASD [20]. Thus, deficits in FMRP seem to be the critical unifying factor linked, at a molecular and synaptic level [21], to dysfunction in brain pathways and links that lead to behavioral symptoms of ASD.

Emerging targeted therapies for FXS and ASD: A wide range of social deficits and maladaptive behaviors is common in individuals in FXS with and without ASD [1]. It causes enormous impairments in these individuals and their family's normal day-to-day function. FXSnonspecific psychotropic drugs are often used to target different symptom clusters but only with partial benefits [1]. FXS-specific molecular modifying treatments present as a solution as they show potential to modify core soci-al-communication and other behaviors in FXS with ASD [22]. Compelling evidence emerged that modification of the FMRP-deficit driven dysregulation of mGluR5 and GABA receptors in the $F M R 1$ knock-out animal model reversed the underlying pathophysiology of FXS. Specifically, several studies that used GABA-B receptor agonist STX209 [23] and mGluR5 antagonists [24, 25] rescued the FMRP-deficit caused protein excess in these mice.

Furthermore, molecular characterization of epigenetic (full-methylation) patterns in ASD and FXS [9] has suggested hat methylation status may constitute a treatment-sensitive 8]. As or predicting response to a mGluR5 inhibitor [27, eurobiolod earlier, this work is important to delineate trials have also highlighted several challenges such as th populations heterogeneity, the lack of specific and sensitive outcome measures capturing the full range of improvements of patients with FXS, and a lack of reliable biomarkers that can track whether a specific mechanism is responsive to a new drug within relatively short period of time and whethe the response correlates with clinical improvement [28].
Expected scientific impact of using the FMR1 molecu ar diagnosis and new PCR technologies. The qFMRP assay [10] provides a reliable method for FMPR quantitation and is under development at Asuragen. A significan mpact is expected as for subgrouping individuals with FXS hrough molecular-behavioral subphenotyping of relevance iomarker to guide treatment in FXS with ASD [9]. FMRP ta in males with FXS has significantly corl [9. FMP laptive behavi, A possibly ASD $[19,29]$. Moreove

Lack of Models for Trials in FXS

- Before 2002 lack of significant moderate \large clinical trial experience in FXS with any "standard" drug
No defined measure of behavioral improvement - No "gold standard" outcome measure
- No template from any developmental disability about measuring cognitive outcomes when attempting to treat underlying disorder

Basic science has targets but mismatch in trial design/outcome measure development
standardization of qFMRP application may further hel patient stratification (endophenotyping) and advance clinical trials outcomes of multiple targeted therapies for syndromic ASD and possibly in idiopathic ASD. The latter is known to result from a variety of causes, and represents an enormous and growing public health issue. The aforementioned clinical trial studies have had promising results which offers new hope for rational therapy. This molecular-behavioral stratification approach may bode well with imaging-behavioral oning bing in which researchers found low and high functiin FXS [8].

Next, buccal cells may be a better surrogate for brain cells than blood as they are closer in origin to ectodermal-derived neurological tissue than mesodermal blood [31]. This sampling approach also offers several patient-friendlier advantage over venipuncture, including convenience and decreased anxiety in patients. Moreover, such convenience may also enable better compliance and earlier diagnosis in FXS [33] and in idiopathic ASD [34]. An earlier age identification of the individuals with FXS with and without ASD and idiopat hic ASD would typically lead to the initiation of early intertiple candidates of targeted therapies for fragile X and idiopathic ASD the targe inerapies for fragile X and tive if administered as early as possible. Together this would lead to an individuals and their families.

A firststep? Buccal Swab

Easy collection

In summary, testing FMRP levels in clinical specimens with the new qFMRP assay is one of cutting edge predictor of the molecular-behavioral stratification in FXS of relevan ce to FX-targeted clinical trials [27, 28]. This is important for individuals with FXS with and without ASD as well a non-FXS disorders because abnormally low FMRP level have also been linked to non-FXS disorders in those with normal $F M R 1$ genotype (i.e., major depression and bipola disorder [34, 35], and schizophrenia [36]). These finding may support the use of the qFMRP test for much broad clinical applications other than just fragile X disorders

Note: This text is an exert from Dr Dejan B. Budimirovic's recent application through the Johns Hopkins Medicine Brain Science Institute's Synergy grant mechanism. A collaboration of Drs. Marco Grados (The Johns Hopkins Hospital), Budimirovic (Kennedy Krieger Institute, the Johns Hopkins Medical Institutions) and Gary Latham (Asuragen, Inc.) proposed in this application is expected to grow into a larger group of studies (behavioral phenotype biomarker studies) that will also nclude researchers in other genetic disorders.
Acknowledgement: The author would also like to acknowledge and thank Elizabeth Berry-Kravis MD, PhD from Rush University and Gary Latham, PhD from Asuragen. Inc. for their generosity in providing several slides-

References

. Hagerman, R.J., et al., Advances in the treatment of fragile X syndrom Pediatrics, 2009. 123 (1): : $3.378-90$. Kular and celluar genetics of fragile syndrome. Am J Med Genet, 1999. 88(1): p. 11-24.
Buaimirovic, D.B. and W.E. Ka oumann, What can we learn about Sev Neurosci, 2011.33(5): 379-94.
Woiff, J., et al., Evidence of a disinct behavioral phenotype in oung boys with fragile x syndrome Adolesc Psychiatry, 2012.51(12): Adolesc Psychiatry, 2012.51(12): p Brock, shing features of autism in boys with agile X syndrome. JIntellect Disabil es, 2010.54(10): p. 894-90.
. Budimirovic, D.B., et al., Autism drome: differential contribution of daptive socialization and social 40A(17): p. 1814-26.
. Cordeiro, L., et al., Clinical asse Sment of DSMM-V anxiety disorders fragile X syndrome: prevalence isord, 2011. 3(1): : . .57-67.
. Romano, D., et al., Topological methods reveal high and low funcragile X syndrome. Hum Brain Mapp. fragile X
2014.
9. Jacqu
9.Jacquemont, S S. et al. Epigenetic
modification of the $F M B 1$ gene in modification of the FMRI gene in fagie X syndrome is associatedwith
differential response to the mGluR
antagonist AFQ056 0. LaFauci G ar ning by quantification of XMP in dried blood spots by a Luminex Immunoassay. J Mol Diagn, 2013. 5(4): p. 508 -17.

1. Wohrie, D., et al., Unusual mu ations in high functioning fragile
\times males: apparent instability of expanded unmethylated CGG epeats. J Med Genet, $1998.35(2)$.
p. 103-11. 2. Bassell, G. X syndrome: loss of local mRNA re gulation alters synaptic developmen 201-14. 13. Darnell, J.C., et al., FMRP stalls ris bosomal translocation on mRNAs linked to synaptic function and 1. Atism. Cell, 2011. 146(2): p. 247-61. 14. Bagni, C, e et al., rragile X syndro
me: causes, diagnosis, mechanisms and therapeutics. J Clin Invest, 2012 22(12): p. $4314-22$.
2. Kaufmann, W.E.
mann, W.E. and H.W. Mose Dendritic anomalies in disorders Cereb Cortex 2 mental retardation Cereb Cortex, 2000. 10(10):p.981-9 Waren, The mGluR theory of fragil X mental retardation. Trends Neuros i, 2004. 27(7): p. 370-7. 17. Ascano, M., et al., FMRP targets istinct mRNA sequence elements Nature, 2012
3. Iossifov, I., et al., De novo gene disruptions in children on the autistic spectru
285-99.
J. Hagerman, Phenotypic variatio Retard Dev Disabil Res Rev, 2004 0(1): p. 31-41.
4. Fatemi, S.H. and T.D. Folsom, The ole of fragile X mental retardation Neuropharmacology, 2011. 60(7-8) p. 1221-6. 1. Sidorov, M.S., B.D. Auerbach, and on protein and symantic plasticity n protein and synaptic plasticity
Mol Brain, 2013. 6: p. 15 . 22. Dolen, G. and M.F. Bear, Courting cure for fragile X. Neuron, 200 55(5): p. $642-4$.
disease-related pathologies in the fragile X mouse model by selective activation of GABAAB) receptors with 4(152): p. 152 ral 128.
\qquad stration of AFQ056/Mavogluran restores social behavi 239: p. 72-9.
5. Pop, A.S., et al., Rescue of dendrific spine phenotype in Fmrl 1 KO mice Mavoglurant Psychooharmacolog (Berl), 2014. 231 (6): p. 1227-35. 26. Berry-Kravis, E.M., et al., Effects of STX209 (arbaciofen) on neurobe adults with fragile X syndrome: randomized, controlled, phase 2 trial. Sci TransI Med, 2012. 4(152): p
152ral 127 . 152ra 127. measures for clinical trials in fragile

X syndrome. J Dev Behav Pediatr, 2013.34(7): p. 508-22 28. Jacquemont, S., et al., The chal syndrome. Psychopharmacology (Ber), 2014. 231 (6): p. 1237-50. 29. Lessard, M., et al., Quantitative platelets as a new screening test for fragile X syndrome. Clin Genet, 2012 82(5): p. $472-7$.
30. Maddalena, 30. Maddalena, A., et al., A fragile X
mosaic male with a crytic tation detected in epithelium but hot in blood. Am J Med Genet, 1996. 64(2): p. $309-12$.
31. Mackenzie, JJ, J.
31. MacKenzie, J.J.I. Sumargo, and
5.A. Taylor, A cryptic full mutation in a male with a classical fragile X phe notype. Clin Genet, 2006. 70(1): p 32. Bailey, D.B., Jr, et al., No chane in the age of diagnosis for fragile . parem: findings from a nationa 124(2): p.527-33. Padiatrics, 2009 124(2): p. $527-33$.
33 Shattuck PT
33. Shattuck, P.T., et al., Timing
dentification among children an autism spectrum disorder: findin gs from a population-based surve
lance study. JAm Acad Child Adles Psychiatry, 2009. 48(5): p. 474-83. 34. Fatemi, S.H., etal., Fragile X mental retardation protein levels are decre Sched in major psychiatric disorder 35. Kovacs, T., o. Kelemen, and s. Ke Decreased fragile X mental retarda tion protein (FMRPP is associated with
lower IQ and eallier lower IQ and earlier illness onset in patients with schizophrenia. Psy
try Res, 2013. 210 (3): p. $690-3$.

Serbian Diaspora Medical Conference 2014

19-21 June 2014

HRH Crown Princess Katherine Foundation and Lifeline Humanitarian Organization will hold the Fifth Serbian White Palace, Belgrade, 19-21 June 2014.

Planning is underway and an exciting conference programme and a varied social schedule is being organised to assist you in making the most of your time in Belgrade.
We look forward to seeing you in June 2014.

As illustration of the forthcoming Serbian Diaspora Medical Conference 2014, please see learning objectives of our symposiums that will be held on Thursday, as well as a couple of abstracts for our Medical Genetics Symposium For registration, please visit: www. serbiandiasporamedical.rs.

Abstracts:

Thursday, 19 June

Medical Genetics
venue: Amphitheatre, University Children's Hospital, Tirsova 10
11.20 - 11.40

Title:

Newborn Screening

Current Status and Future
Prospective
Presenter: Dimitar Gavrilov, M.D., Ph.D., Mayo Clinic, Rochester, MN, USA
Assistant Professor of Laboratory Medicine \& Pathology - Mayo Clinic College of Medicine
Consultant (Joint Appointment) - Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota
Consultant - Division of Laboratory Medicine Department of Laboratory
 Rochester, Minnesota

Thursday, June 19, 2014
 0800-1630 Pre-Conference Workshop

Venue 1: Main Conference Hall, Medical School, Belgrade Includes Dean and ViceDean of MedSchool Belgrade address
CanMEDS \& Residency Training: Impacting the Care of Patients (Royal College of Surgeons and Physicians of Canada)
Venue: Main Conference Hall, Medical School, Belgrade University, Dr Subotica 8
Facilitators: Dr. Goran Popovic Dr. Jerry Maniate Learning Objectives: At the end of this workshop, the participants will be able to:
(1) Define competency-based education
(2) Describe the CanMEDS Physician Competency Framework and outline its origins and rational
(3) Understand the CanMEDS roles and how to relate
it to daily practice
(4) Describe the competencies of the each Intrinsic CanMEDS Role
(5) Describe one teaching method for Intrinsic CanMEDS Role

Thursday, June 19, 2014

1100-1630 Medical Genetics

Venue: Amphitheatre, University Children's Hospital Tirsova 10
Moderators: Mira Irons, Dusica Babovic, Goran Cuturilo Learning Objectives:
At the end of this symposium, the participants will be able to:
(1) Understand the value of newborn screening programs and recognize acute presentation of metabolic disorders (2) Know how to evaluate patients with suspected mitochondrial disease
(3) Describe pediatric tumor-related syndromes (4) Understand advantages and limitations of new diagnostic methods in genetic testing (chromosome microarrays, next generation sequencing etc)
(5) Familiarise with a novel high-resolution PCR technolog (Amplidex) that allows understanding of genotype-genotype correlation in Fragile X-associated disorders

Several different methodological approaches are currently applied in newborn screening including enzy matic, MS/MS, immunologic and DNA based methods. To further improve the sensitivity and specifi city and to reduce the number of false positive results, second tier testing for specific analytes and post-anal ytical tools have been developed and utilized.
Extensive work has been done to broaden the range of conditions to be screened and several new groups of diseases have been or soon will be added as targets for newborn screening.

Thursday, 19 June

Medical Genetics
Venue: Amphitheatre, Universi10
12.00-12.20

Title:
High Resolution FMR1
Molecular Assessments in a Cohort of Fragile X Fulland Premutation Patients.

Presenter: Dejan B. Budimirovic MD, Medical Director, Fragile X Clinic, KKI, JHMI
Fragile X Clinical \& Research Consortium
Attending Child Neuropsychiatrist, KKI, JHMI
Sub-Investigator Physician, Clini-
cal Trials Unit, KKI, JHMI
Assistant Professor of Psychiatry \& Behavioral Sciences,
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Objective: To identify molecular clinical profiles in a cohort of patients with fragile-X expansion mutations spectrum disorder (ASD) is common in males with an FMR1 full mutation (FM), but the premutation (PM) males may also represent a significant
form of FMR1 in ASD. In light of the progress with fragile X targeted therapeutics and regarding FMR1's role as a diagnostic and therapeutic marker, we investigated a cohort of FM and PM patients for high resolution molecular testing using a panel of next generation PCR assays.

Methods: The clinical cohort $\mathrm{n}=19$, ongoing recruitment) was randomly selected from the Kennedy Krieger Institute's Fragile X Clinic. Clinical assessments and standardized measures of variety of skills (i.e., cognitive, adaptive, language) and autistic behavior (ADOS) were supplemented with parent rating scales. Genomic DNA was isolated from hree collections per patient (EDTA blood, blood spotted on FTA cards, and buccal swabs). AmplideX(r) FMR1 PCR technologies (Asuragen) were utilized to report CGG repeat izing, size mosaicism, X-activation, nethylation status and AGG interruption patterns for each collection type.

Results: To date, 16 males, 3 females have been enrolled in the study. Out of ten (56%) individuals with ASD, $8(44 \%)$ of them had DSM-IV diagnosis of autism, and three (12%) had PDD-NOS. All of the males and two females had an FMR1 FM, whereas one female had a PM. More than half (53%) of FM patients had at least one AGG interspersion, and $>70 \%$ revealed some level of PM size mosaicism. Although AGG interruption patterns and methylation of the primary expanded allele was conserved across blood and buccal cell collections from the same patient, differences in repeat size and/or methylation mosaicism was evident in several cases
Conclusions: We present pilot data of neurobehavioral assessments from a well characterized cohort represening clinically relevant FMR1 expansions. Our preliminary data undershighly sensitive and quantitative
assays to inform genotype/phenotyp linkages in patients with a range of genetic, cognitive, and behaviora characteristics. In particular, the observed differences in molecula profiles between mesodermal (venous blood) and ectodermal (buccal cell) lineages deserve further study.

Thursday, 19 June

Venue: Amphitheatre, University Children's Hospital, Tirsova
14.20 - 14.40

Title:

Cancer Genetics in pedia-

 tric practicePresenter: Janice Zunich, M.D. Clinical Associate Professor, Department of Medical Genetics, Indiana University School of Medicine, Northwest Center for Medical Education, Gary, Indiana
Director, Genetics Center, Northwest Center for Medical Education, ary, Indiana
Consulting Staff: Porter Memorial Hospital, Valparaiso, Indiana; St. Anthony Medical Center, Crown Point, Indiana; Community Hospita, Munster, Indiana; The Methodist Hospitals, Gary/Merrilivilie, Indiana, St. Margaret Hospital, Hammond, Indiana; LaPorte Hospital, LaPorte, Indiana; St. Mary Medical Center, Hobart, Indiana; Memorial Hospital, South Bend, IN, USA
Hereditary childhood tumors, such as retinoblastoma and Wilms tumor, are familiar to pediatricians. Less well known, however, may be hereditary cancer syndromes commonly considered adult conditions, such as Familial Adenomatous Polyposis, Li-Fraumeni syndrome and Familial Medullary Thyroid Carcinoma, which can have significant consequences for the pediatric population. Similarly, there are pediatric conditions, including Fanconi and Bannayan Riley-Ruvalcaba syndrome, which can affect recommendations fo ancer screrng adult relatives
These conditions and their impliations for both the pediatric and adult population will be reviow.

This text is an expanded version of n invited lecture by Dejan B. Budimirovic, M.D., to the Maryland Council of Child and Adolescent sychiatry on November 12, 2004 in Baltimore, Maryland, USA. Dr Budimirovic is a member-at-large of the Council's Executive Committee.

Exclusive: USA's science and medicine

Fragile X-associated Disorders are caused by a CGG repeat length expansio of the Fragile X Mental Retardation (FMRI) gene on the X chromosome. The triplet repeat length (normal 30-45) ranges from premutation or 'carriers' (PM 55-200) to full mutation (FM, >200) Fragile X syndrome (FXS) is the prototy pe of the disorders and affects $1: 4,000$ males and $1: 6,000$ females across all racial reover it is estimated that over one milli individuals in the US and around 20 mill ons worldwide are fragile X carriers. Ther

Fragile X-associated Disorders: New Insights into Targeted Therapeutics Clinical Trials in Fragile X and Autism Spectrum Disorder
are two different, distinct pathophysiolo gical mechanisms underlying PM and FM In PM, an excess of mRNA accumulate and becomes toxic to the cell whereas in FM an epigenetic silencing of the gene causes lack of the gene's encoding protein, namely fragile X mental retardatio protein (FMRP) (Hagerman et al., 2009) tuation involves a mother with PM and her son with FM (Hagerman et al, 2009). Premutation, which is about 10 times more common than FM, also puts some individuals at a higher risk for neurological disorders such as Fragile X -associated Tremor Ataxia Syndrome (FXTAS) (adult males) or gynecological Fragile X-asso ciated Primary Ovarian Insufficiency (FXPOI) or early menopause (adult females) (Hagerman and Hagerman, 2013) In FM, the $F M R 1$ gene is 'shut-down' (no tion) mechanism, which leads to FXS a very early age. That is to say that fragile X -associated disorder represents both neurodevelopmental (FXS) and neurodegenerative (FXTAS) disorders across the wide range lifespan. FMRP is found in nearly all cell types, particularly in den-

ritic synapses of the neurons, and regulates up to 4% of total RNA. Thus, FXS is associated with a wide array of physical and neurobehavioral problems (Kaufmann man st, 1999; Hagerman, 2002; Hager (al., 2009) especially in males.
Neurobehavioral features of FXS onsist of variable cognitive and languaurobehavioral problems (i.e., attentional difficulties, hyperactivity, anxiety, and autistic features). Social interaction disorders in FXS are autism spectrum disorder (ASD) and social anxiety. They are the most prevalent, severe, and highly debilitating phenotypes from both phenomenological (Brodkin, 2008) and therapeutic perspectives of FXS (Hagerman et al., 2009). Together, they constitute the major medical and educational concerns Reiss, 1999. Hagerman RJ, 2002) and cially in affected males. Typically, physicians may not consider FXS without a family history of intellectual disability or other dysmorphic features. However, these eatures are not present in approximately one third of individuals with FXS. More-
ver, in contrast to some other genetic disorders (i.e., Down syndrome), FXS has no apparent physical features at birth. Therefoe, it must be "detected" after atypical behaors and delays in skill acquisition begin to merge (Marschik et al., 2012; Hinton et al., 2013). Nevertheless, one survey revealed that almost 38% of parents of children eventually diagnosed with FXS underwent more than 0 symptom-related visits to their health care professional before the $F M R 1$ diagnostic test was ordered (Kemper and Bailey, 2009). The (FXCRC) has specific guidelines that begin with care by a physician-led team with experfise in fragile X-associated disorders. Guidance statements from professional organizations emphasize the need for fragile X esting in individuals with ASD. However, eneral clinical practice and available literature reveal that only one third (McLennan et al., 2008) of individuals with ASD are tested for $F M R 1$ mutations. The average age of diagnosis of FXS is 35 to 37 months (Bailey et al., 2009). Effectiveness of healthcare in his population has been hampered by the delay in diagnosis of idiopathic ASD (average age ~ 6) and delay in time from recognition on early diagnosis and management in conjunction with the identification of family members at risk for or affected by $F M R 1$ mutations, has led to intense discussion about the appropriate timing for early identification of $F M R I$ mutations (Abrams et al., 2012). In addition, families are often confused by the elationship between FXS and ASD as it is not uncommon for a child to initially be diagnosed with ASD and later to receive an additional diagnosis of FXS. Regardless, these children also have ASD but its (genetic and epigenetic) cause is known
Studies of FMRP continue to reveal releFMRP belongs to the family of RNA binding proteins (RBPs) and normally regulates ranslation (acts as a 'brake') in response to glutamate (i.e., mGluR5) signaling. FMRP and mGluR5 work in functional opposition Bear et al., 2004; Bagni et al., 2012), and hallmark effects of $F M R 1$ silencing (no MRP) are overactive glutamatergic signaing (the mGluR theory) (Bear et al., 2004). Indeed, while neurobiological studies in humans with FXS are scarce, available utopsy studies of FXS, and ASD, demonstrate increased amount of metabotropic glutamate receptors subtype 5 (mGluR5) in he frontal cortex, and a decrease in the inmic FMRP Interacting Protein (CYFIP) family (Abekhoukh \& Bardoni, 2014) and mTOR are up-regulated. Together the lack f FMRP leads to increased dendritic protein synthesis and increased density of dendritic spines ("neuronal connections") (Kaufmann

My name is Claudia Tan. I am currently an undergraduate pre medical third year student studying the Homewood campus of the Johns Hopkins University in Baltimore, Maryland. I aspire to be a physician, and I have had the opportunity to take part in a Medical Tutorial this semester. The Homewood Pre-professional Office together with the Johns Hopkins School of Medicine offer Medical Tutorials to select undergraduate students to take part in a one-semester program in which students work with a physician. They range anywhere from practicums, laboratory research, clinical research, to clinical shadowing and are a way for students to be in troduced to medicine. The Medical Tutorial I am participating in allows me to shadow Dr. Dejan Bu dimirovic at the Kennedy Krieger Institute in Baltimore.
Being part of the tutorial has given me deeper insight to a day in
the life of a physician At the clini the life of a physician. At the clinic I met a variety of patients, most of

Johns Hopkins University - Homewood Campus
whom are affected with mild to severe Autism Spectrum Disorder (ASD) and/or Fragile X Syndrome (FXS), but also patients with condi tions such as Depression, Attention Deficit and Hyperactivity Disorder (ADHD), Intellectual Disability (ID), and Oppositional Defiant Disorder (ODD). Each session, I listen to and observe interactions between the patient, family, and physician, giving me a glimpse of what it is like living with a psychia
ric disor-
der and the
has on the
has on the
daily life of
both the
oth the
patient and
I under-under-
stand more sland more the care of a patient such as what mediClaudia Tan, JH
Class 2016 havi porams to enroll in to the pailens and their families coping with the psychiatric disder and lead to an improved guality of life. I have seen the pro gress of some patients and the process of narrowing down causes of symptoms and behaviors of psychiatric conditions and figuring ut what the next step for each patient should be. I have been able o compare and contrast patients with the same diagnosis and sevepatients with FXS, ASD, or both
and the linkage between the two disorders. I learned a vast amount bout and have become very inte ested in psychiatric conditions hat I understood very little about before. This tutorial has greatly affected and further solidified my lecision to become a physician, nd I hope that in the future I will be able to apply the knowledge morable experience and contribute to the field in practice.

Moser, 2000; Darnell et al., 2005; Bassell \& Warren, 2008). Consequently he $F M R 1$ gene FM can alter the cours brain development, cognition, and ehavior throughout life. Furthermore FMRP interacts with half of the known enes associated with idiopathic AS Darnell et al., 2011; Iossifov et al, 2012 indings that were independently replicaore recently in a large exo 2 equ ing study by De Rubeis and colleague (2014). The latter study strongly corro orates the findings that a set of synaptic enes were distupted in ASD. Thus, both FXS and at least subsets of idiopathic ASD are considered the disorders of synapse; yet, idiopathic ASD is a beh viorally defined set of DSM-5 based ymptoms. At this time, there is n medical test, such as a blood test or brain can that can diagnose ASD whereas FXS a genetic/medical diagnosis. Regardla should state whether it is associated with known medical genetic or environme al factor. They should also specify whether ASD is with or without accom panying intellectual impairment and with or without accompanying language in pairment. Representing an enormous and rowing public health challenge, idiopa ic ASD is a heterogeneous group of disorders of mostly unknown etiology at afflict as many as 1 in 66 individua in the general population. Of all genetic
disorders associated with ASD, FXS is the best characterized and accounts for about 5% of all cases of ASD. As tre acking, current research is focused on identifying shared pathways and common drug targets among patients with causal genetic defects such as FXS, the most common known genetic cause of ASD FXS has ASD (Bailey et al 2008), which is characterized by social-communication and restricted and repetitive interests impairments. The core deficits in FXS are intellectual disability, social anxiety, and hyperarousal. ASD in FXS is characterized by more social withdrawal and social avoidance/anxiety than in idiopathic ASD although social indifference ('aloofness') is also observed in FXS with severe forms of ASD. Moreover, both ASD in FXS disorders and without FXS include poor eye contact, social deficits, atypical lan-
guage, and repetitive behaviors. While similar behavioral characteristics or symp toms may be present in individuals with ASD and individuals with FXS who meet criteria for ASD, clinicians working with individuals with FXS who meet diagnostic criteria for ASD observe distinct differences - e.g. lack of social initiative alone does not necessarily imply the absence of social awareness or social interest. Together, owing to the preva ence of ASD in FXS and its shared neu rophysiology with ASD, FXS has been
xtensively studied as a model for ASD and is deemed to be a "gold standard" to study neurodevelopmental disorders of relevance for targete.
both FXS and ASD.
A significant progress in targeted treatments in FXS reflects the major preclinical breakthroughs (Bear et al., 2004) and hows promise in humans medical targeted Jacquemont et al 2011) namely agonist of GABA-B receptors and antagonists of mGluR5 receptors. Specifically, the FXS mouse model (the FMRI knockout) has hown that FXS can be "cured" (reversal of the excess protein synthesis) of the core phenotype after using agonists of GABA-B receptors (Henderson et al., 2012) or mGluR5 antagonists (Gantois et al., 2013) Yet clinical trials were not as effective in part due to high placebo effects rendering the drug in question not significantly effec
tive. The varying responses to trias hive. The varying responses to trials also studies ('building a bridge we walk on') and the need for new paradigms. A majo problem is a lack of models for trials in FXS. For example, there were no signifi cant moderate/large clinical trials in FXS with any "standard" drug before 2002, and there is no defined measure of behaviora mprovement, "gold standard" outcome measure, or template from any deve lopmental disability about measuring cognitive outcomes when attempting to tre

References

Serman, S.L., Marsteller, F., Abramowitz, A.J, nd bethavioral performance amons Fmrl high ton classes. Am J Med Genet, 114, 458-465. Hagerman, R. J., Berry-Kravis, E., Kaufmann, W. E, Ro, M. Y.,. Tartagia, N.,. Lachiewicz, A., Kronk, Gane, L., \& Tranfagia, M. (2009). Advances in the eatment of fragie X syndrome. Pediatrics, 123 (1)
Hagerman R, Hagerman P. (2013). Advances emutation and premutation and fragile X-associated tremo
Kaufmann, W. E., \& Reiss, A. L. (1999). Molecula can Jourral of Medical Geenetics, $88(1), 11-24$ Hagerman, R.J. The physical and behavioral pheno.
Yype; in Hagerman RJ, Hagerman PJ (eds) (2002) erie X Sydre: Disinsis, Treatment, and Re earch, ed 4. Bal
Press, pp $3-110$.
rockin, E. S. (2008). Social behavior phenotypes in fragile S syndrome, autism, and the Fmr1 knoc out mouse:
Baiey, D. B., Raspa, M., Bishop, E., \& Holiday, D. X . No change in the age of diagnosis for fra ex syndrome: : Findings from a a
Marschik, P. B.,., Sigafos, J., Kaurmann, W. E., Wo.
In, T., Talisa, V. B., Bartl-Pokorny, K. D., Budimirovic

Inteins between autism and intelectual disability
proteins
links with
$(8) 81,1-8$
Kaufmann, W. E., \& Moser, H. W. (2000). Dendriti anomalies in disorders associated with mental tardation. Cerebral Cortex, 10(10), 981-991
Darnell, J. C., Mostovetsky, O., \& Darnell, R. B.
(2005). FMRP RNA targets: identification and val. (2005). FMRP RNA targets: identification and val:
dation. Genes, Brain and Behavior, $4(6), 341-349$, Bassell, G. J., \& Warren, S. T. (2008). Fragile X
 synaptic de
$201-214$. Darnell, J. C., Van Driesche, S. J., Znang, C., Hung
K. Y. S., Mele, A., Fraser, C. E., Stone, E. F., Chen
 \& Darnell R B (2011) FMPP stalls ribosom and autism. Cell, 146(2), 247-261
Lossifov, I., Ronemus, M., Levy, D., Wang, Z., Har ker, I., Rosenbaum, J., \& Wigler, M. (2012). De novo gene dissuptions in children o,
trum. Neuron, $74(2), 285-299$.
Ascano, M., Mukherjee, N.. Bandaru. P., Miller, B., Nusbaum, J. D., Corcoran, D. L., Langliois, C Munschauer, M.,., Wililiams, Z., oner, U., \& Tusc (2012). to resulate protein expression. Nature $492(7429), 382-386$
Rubeis S , and 252 collaborators. Synaptic, transcriptional and chromatin genes distupted in a
ism. Nature. 2014 Nov 13:515(525) ism. Nature. 2014 Nov 13:515(7526):209.
10.1038/nature13772. Epub 2014 Oct 29 .
., 2012). In order to improve the undertanding of FXS and ASD, future clinical rials should take into account the study length, timing of intervention, appropriaith psychopharmacological interventions, patient stratification into endophenotypic subgroups within FXS though differen models (Jacquemont et al., 2013)
Published descriptive studies of severity nifying factor of ASD (Budimirovic et 2 , 2006; Kaufmann et al., 2008) and/or anxiety (Cordeiro et al., 2011), emerging investigation of the biological basis of FXS hrough imaging-behavioral (Wolff et al., 2012), molecular-behavioral using next generation fragile X PCR that also allows fragile X testing to be simple and more efficient (Budimirovic et al., 2014) are xamples of such helpful models. In pa rallel, an effort at identifying potential
molecular mediators of dentritic overmolecular mediators of dentritic overreatment (Erickson et al, 2014), and inegration of molecular and neurobiological data in FXS with ASD (i.e., FMRP, CYFIP1, mTOR) and it's still unknown and/or adequately understood targets (Sidorov et I., 2013) are needed. CYFIP type 1 inermediate phenotype' link between ASD in FXS (Schenck et al., 2003; Abekhoukh \& Bardoni, 2014) and subsets of idiopathic SD such as 15q11-13 duplication (Nishimura et al., 2007; Oguro-Ando et al., 2014) emerges as a compelling example of the

Bailey, D. B., Raspa, M., Oimsted, M.. \& Holiday, D. with FMR1 gene variations: Findings from a onal parent survey. American Journal of Medica enetics PartA, 146(16), 2060-2069
sery-Kravis. E. M., Hessl, D. Rathmell, B., Zarevies . V., Gonzalez-Haydrich, J., Wang. P. P., Carenenter R. L... Bear, M. F., \& Hagerman, R. J. (2012). Effects of STX209 (arbaclofen) on neurobehavioral function mized, controlled, phase 2 trial. Science Trans onal Medicine, 4(152), 152ra127-152ra127. acauemont, S., Curie, A., Des Portes, V., Torrioli, M. , Berry, Cornish, K., He, Y., Paulding, C., Neri, G., Chen,
Hadijhhani, N., Martinet, D., Meyer, J., Beckman Sis. Delange, K., Brun, A., Bussy, G., Gasparini,,
 D., \& Gomez-Mancilla, B. (2011). Epigenetic modii-
cation of the FMR1 gene in fragie Xsyndrome is as sociated with differential response to the mGlur5 sine, 3 (64), 64 4ra1-64ra1. cine, 364, 64 a $1-64$ ral.
Henderson, C., Wietunge, L... Kinoshita, M. N.
Shumway, M.. Hammond, R. S., Postma, F. R..... \& Healy, A. M. (2012). Reversal of disease-related hologies in the fragile X mouse model by selective tansI Med, 4(152), 152 ra128.
Gantois, L., Pop, A. S., Esch, R. A.. Pooters, T.
omer-Mancilla, B., Gasparini, F.... \& Willemsen R. (2013). Chronic administration of AFQO56/
Mavoglurant restores social behavior in Fmr1 Ko

Please note that this schedule is subject to change.

Symposium 28 (open)

Fragile X-Associated Disorders: Illuminating the Spectrum of Disease
Friday, October 24, 2014; 8:30 AM-11:30 AM
Chair:
28.1 $\frac{\text { Randi). Hagerman, MD }}{\text { Fragile X Premutation: From Neurodevelopmental to Neurodegenerative Disorders }}$ $\frac{\text { Randi I . Hagerman, MD University of California, Davis Heath System }}{\text { Endowed Chair in }}$
28.2 Next-Generation Fragile X PCR; Breaking Barriers to Enable

Comprehensive FMR1 Molecular Analyses From Patien-Friendly Specimens
28.3 Molecular-Clinical Profiles in Fragile X: Novel FMR1 Genetic and Epigenetic Molecular Assessments in a Cohort of Full-Mutation and Premutation Pariter
Deian B. Budimirovic, MD Clinical Trials Center, Kennedy Krieger Institute Deian B. Budimirovic, MD Clinical Trials Center, Kennedy Krieger Institute
The Johns Hopkins Medical Institutions, Ballimore, MD
28.4 Identyfing New Targets of Treatment: Potential Molecular Mediators of Dendritic Overgrowth hin ragile X Syndrome
Craig A. Eirckon, MD Cincinnati Children's Hospital Medical Centre
Cincinnati, OH
shared neurophysiology. Studies of educa- frequency of PM vs. FM. The integration tional, behavioral, and therapeutic inter ventions are also needed to generate evidence on which to base recommendations out supportive interventions and the siIns and differences between those and ASD. As PM is also associated with ASD, further studies are clearly needed in ASD, further studies are clearly needed in
this area, especially given much larger
fequency of PM vs. FM. The integration all these pieces of data is a major chal enge and will be better addressed when
additional data becomes available. Overall, future clinical trials implementing the afoementioned not only hold a hope but a meaningful clinical and functional progre ss in FXS and ASD, and improved quality of life for affected individuals and their
families. families.
mice. Fragile X Syndrome: Steps towards Therapy. Jacauemont, S., Berry-Kravis. E., Hagerman, R., von
Raison, F., Gasparini, F., Apostol, G. Ufer, M. Pootes V. D., \& Gomez-Mancilla, B. (2013) The challenges of clinical trials in fragile X syndrome. Psychophar macology, 1-14.
Budimirovic, D. B., Bukelis, I., Cox, C., Gray, R.M.
Tierney, E., \& Kautman w, Tierney, L., \&. Baurnays. .. E. (2006). Autism spectrum disuen
tial contribution of adaptive socialization and social withdrawal. American Journa
Part A, 140(17), 1814-1826
Kaufman, WE Cape a chan M e But
Kaufmann, W.E., Capone, G., Clarke, M. \& Budi-
mirovic, D.B. (2008). Autism in Genetic Intellectual
Disability: Insights into Idiopathic Autism. In Zimmer man, A.W. (Ed.). Autism: Current Theories and Evi-
dence ($81-108$. Totowa, Nu: The Humana Press Inc. Cordeire L. Cordeiro, L... Ballinger, E., Hagerman, R., Hessl, D.
(2011). Clinical assessment of DSM-V anxiety disorders in fragile X syndrome: prevalence and char acterization. J Neurodev Disord, 3(1), $57-67$. Wolff, J.J. Bodish, J. W.. Hazlett, H.C., Lightbody
A.A., Reiss, A.L., Piven, J. (2012). Evidence of a A.A.I. Reiss, A.L.L., Piven, J. (2012). Evidence of fragie X syndrome and autism. Jourral of the
American Academy of Chid \& Adolescent PsychiaAmerican Academy of Chid
Budimirovic D. Erickson CA, Hagerman RJ, Latham Budimirovic D.E Erickson CA, Hagerman RJ, Latham
G (2014, October). Molecular-behavioral profiles of the FMR1 Gene: High Resolution FMR1 Genetic \& Epigenetic Molecular Assessments In a cohort of
Fragile X Patients. In Hagerman RJ (Chair). Frasile Fragile X Patients. In Hagerman RJ (Chair), Fragile
X-Associated Disorders: IIluminating the Spectrum

Dejan B. Budimirovic, M.D. Child Neuropsychiatry, JHMI

Exclusive: USA's science and medicine

My name is Megha Subramanian and I am a fourth-year Neuroscience PhD student at ore, Maryland. The vast frontier of neuroscience explores many fascinating questions regarding the fundamental biological principles governing
" Fragile X-FMR1 gene research: story of a collaboration between a neuroscience PhD student and an MD clinician at Johns Hopkins"
brain function and complex human behavior. Throughout my undergraduate and graduate studies, I have been interested in the dynamic processes that drive brain development, and in particular, allow the developing nervous system to incorporate information from the external world in order to learn and adapt to changing environments. My current research molecular basis of growth signaling and molecular basis of growth, signaling, and plastecegulation in the context of neuroloysreguation in the context of neurolo gical and neurodevelopmental diseases. Meffert Associate Professor of Biolog Meffert, Associate Professor of Biologistudying the alecular mechanisms by which brain growth and sociocognitive development are disrupted in Autism Spectrum Disorders (ASD) ASD repre sents a range of neurodevelopmental conditions that are caused by changes in several genes known to affect brain development and function. The complex, heterogeneous nature of ASD has historically posed a challenge for has historically posed a challenge for the disorder and for identifying targeted treatments. As a result, basic research has turned to rare monogenic syndromes wherein discrete known mutations in a single gene lead to increased risk for autism. One such disorder is Fragile X Syndrome, which is the most common
single gene cause of autism and intellectual disability worldwide. In my research, I use a mouse model of Fragile X Syndrome, which recapitulates many of the neuronal and behavioral charac teristics of ASD, in order to gain insights into the fundamental processes by which brain development differs in autism.

short fragments of RNA that critically regulate protein production in cells. Since an individual microRNA species can target many genes, understanding microRNA regulation might elucidate how ensembles of neuronal proteins are dysregulated in ASD. I hope that this work will shed light on the underlying pathophysiology of ASD, and reveal novel biomarkers and therapies that effectively target the core causes of the disorder. In this regard, studying microRNAs is of particular signif ance, given that their stability makes hem exceptional candidates for use as microRNA-based strategies are already under clinical trials and hold great promise for the early detection and treatment of cognitive and neurological diseases.
AsI began to recognize the importance of the clinical aspects of my project, I realized that direct patient interaction was crucial to developing a comprehensive understanding of the nature of ASD and also for guiding my future research trajectory in the lab. Being at a premier research hospital like Johns Hopkins, I did not have to look very far to find clinical shadowing opportunities. Last year, I began shadowing Dr. Dejan Budimirovic attending physician and medical director
of the Fragile X Clinic at the Kennedy Krieger Institute. Dr. Budimirovic is not only a fantastic physician, but also a won derfulmentor who takes great interest in sharing his work and passion for child psychiatry and autism research with students like myself.
At the clinic, Imeet a variety of patients, most of whom are affected with mild to severe ASD and Fragile X Syndrome In addition, I have also come across indivi duals with other conditions, such as Attention Deficit and Hyperactivity Dis order (ADHD), Depression, and Oppositional Defiant Disorder (ODD). Observing Dr. Budimirovic's interactions with patients has given me a better understanding of the day-to-day concerns and difficulties faced by families dealing with psychia tric disorders. In addition, it has also allowed me to recognize the striking clinical heterogeneity of ASD, wherein patients with similar diagnoses may display marked differences in symptom presen tation and severity. The most memorable and important aspect of my experience so far has been the insightful discussions with Dr. Budimirovic about current pro hess in basic and clinical research in ASD. addressing the etiology and treatment of

ASD, Dr. Budimirovic keeps me up-to date on emerging drugs and ongoing clinical trials. Itruly believe that fostering such a culture of collaboration between basic scientists and clinicians is crucial for translating basic mechanistic insights into useful therapeutic approaches.
During my time shadowing at the Fragile X Clinic, I have learned that impa irments in the social, occupational, and cognitive realms continue to be major barriers faced by individuals with ASD and associated disabilities today. Most commonly prescribed medications do not reverse the core features of the disorder but instead only treat secondary syndro mes and problematic behaviors associated with ASD, such as anxiety and hyperactivity. This has given me a sense of the potential impact of my work and has truly cemented my dedication towards pursuing a career in autism research. I am excited to combine basic science with the clinical knowledge I gained from working with Dr. Budimirovic to inform my future research efforts in developing effective therapeutic interventions and biomarkers for ASD. I hope to continue to grow as an independent scientist and to make significant contributions to the field of autism and society at large in the years to come

Exclusive: USA's science and medicine

Cledicine
Whold

My name is Adriana Bora across clinical neurological disorders. and I am from Romania. I am a senior research fellow at the Johns Hopkins School of Medicine in the Pharmacology, Neuro logy and Molecular and Comparative Pathology Department where I pursue my research in the biomarker discovery of HIV -infected patients with neurological disorders. I became a neuroscientist in 2004 after I was awarded with my PhD in Neuroscience Program at University of Illinois at Urbana-Champaign with Profe ssor Jonathan Sweedler, who not only inspired me but also he educated me to pursue any academic endeavour with confidence. At origins, I began my scien tific journey as a physicist graduating with a Bachelor of Sciences from University of Bucharest, Physics Department.
As a neuroscientist, and early, in my career, I became aware of the multitude of applications of my field and the impact of my own research in studying the brain Today, more than ever, brain research had gained high national and internationa consideration. The Brain Research through Advancing Innovative Neuro technologies (BRAIN) Initiative, the Human Connectome Project and the European Union Flagship Human Brain Project are major international, highly interdisciplinary, and collaborative ende avours that bring scientists and medical doctors together to help decipher how the brain works under normal and disease conditions. Being able to establish colla borations across many biomedical disciplines and learn new information on daily basis are motives that attracted me to pursue my postdoctoral fellowship in Clinical research in neurological disorders the most prestigious institutions the world, the Johns Hopkins Schoo Medicine, with world-renowned res Chers and mentors such as Dr. Robert McArthur

Integrative Omics, a new frontier of research in developmental disorders

Proteomics Metabolomics Peptidomics Lipidomics

My research interests have gravitated to studying neurological disorders utilizing state of-the art technologies and "omics" tools that comprise proteomics, metabolomics, lipidomics and functional neuropeptidomics. These scientific gears allow me to analyse, measure and characterize proteins, peptides, metabolites, and lipids, including their chemical modifications in human tissue, cell culture and biofluids (blood, cerebral spinal fluid, serum, saliva, urine, and others) as signatures of a disease or biomarkers. In practice, these biomarkers can help us understand the prediction, cause, diagnolar biomarkers provide a dynamic and powerful approach to investigate and understand the spectrum of neurological diseases with applications in disease prevention, diagnosis and treatment.

Behringer ingelheim GmbH as a requirement of copyrigh

Battle against AIDS

uring HIV infection, millions of viral particles are present in the bood stream. They continuously infect cells of the immune system

HIV retrovirus

Perinatal transmission of HIV from mother to baby is the major cause of HIV infections in children worldwide.

The battle between the viral infection and the cells of the immu system continues throughout the course of the infection.

HIV infection

HIV is able to infect the central nervous system (CNS), including the brain. The CNS has been shown to be a major reservoir of virus.

HIV is able to infect the central nervous system (CNS), which becomes a major reservoir of virus My current research has led to the discovery of novel key proteins as putative biomarkers for early diagnosis of HIV-associated neurological disorders (HAND). Even under widely potent combination of antiretroviral therapy (CART) approxima tely fifty percent of HIV-infected individual will manifest some degree of neuroogical impairment that varies from the asymptomatic to severe forms, dementia Soon after infection, the HIV virus enters the brain parenchyma via monocytes, perivascular macrophages, endogenous microglia cells and, perhaps to some degree, astrocytes. Although the utilization of CART has drastically reduced the number of patients with HIV-associated dementia, the increasing prevalence of patients with less severe forms of HAND remains a global concern. HAND progression is enhanced by additional factors
such as aging, drugs of abuse, co-infections, oxidative stress, and other factors. Cu rrently, there is no clinically approved biomarker for HAND; the diagnosis relies on patient performance of neuropsychological testing. Further validation of these key proteins in longitudinal studies of larger HAND cohorts will establish whether these proteins can be considered
clinical biomarkers for early diagnosis of HAND. Another important aspect of my research is the investigation of molecular and cellular pathways that are affected by the HIV virus in the central nervous system using bioinformatics strategies such as correlation studies of these key proteins with metabolites and lipids extracted from the same cohort of patients.
Perhaps the most interesting aspect of neuroscience is that, indeed, it is the Holy Grail that gives us the tools to tackle a wide range of brain disorders. With a highly collaborative scientific and medical community, the Johns Hopkins provides arch. Toget environment to pursue rese
n expert in Fragile X syndrome research and autism spectrum disorder, we disco vered overlapping future clinical interests in the role of neuropeptides in the metabolism of autistic patients. Alteration in the function and number of brain synapses, the areas of communication between neurons, is a common characteristic in the development of autism and associated cognitive disabilities. Animal research has shown that these synaptosomes, the synaptic terminal of a neuron, contain neuropeptides that modulate behavior. Development and application of clinical assay that will establish a platform for detection and analysis of these signature brain peptides collected from human cerebral spinal fuid that modulate brain metabolism and human behaviour. In addition, by use of proteomic approach there is a high potential to discover a unique set of biomarkers not only for early detection of ASD but also the pathogenesis of this disorder. This nowledge can lead to an improved diavention of this disorder

