
Tectonophysics 461 (2008) 9–20

Contents lists available at ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r.com/ locate / tecto
The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent
tectonic plate scenarios

Jürgen F. von Raumer a,⁎, Gérard M. Stampfli b

a Department de Géosciences, Université de Fribourg, Suisse, Switzerland
b Géologie-Paléontologie, Université de Lausanne, Suisse, Switzerland
⁎ Corresponding author.
E-mail addresses: Juergen.vonRaumer@unifr.ch (J.F. v

Gerard.Stampfli@unil.ch (G.M. Stampfli).

0040-1951/$ – see front matter © 2008 Elsevier B.V. Al
doi:10.1016/j.tecto.2008.04.012
A B S T R A C T
A R T I C L E I N F O
Article history:
 New plate-tectonic reconstr
– During the early to middle Cambrian, a back-arc setting guided the evolution at the Gondwana margin.
Received 3 August 2007
Received in revised form 31 January 2008
Accepted 8 April 2008
Available online 22 April 2008

Keywords:
Early Palaeozoic
Subsidence
Extensional crust
Rheic Ocean
Gondwana margin
Palaeotethys
uctions of the Gondwana margin suggest that the location of Gondwana-derived
terranes should not only be guided by the models, but should also consider the possible detrital input from
some Asian blocks (Hunia), supposed to have been located along the Cambrian Gondwana margin, and
accreted in the Silurian to the North-Chinese block. Consequently, the Gondwana margin has to be
subdivided into a more western domain, where the future Avalonian blocks will be separated from
Gondwana by the opening Rheic Ocean, whereas in its eastern continuation, hosting the future basement
areas of Central Europe, different periods of crustal extension should be distinguished. Instead of applying a
rather cylindrical model, it is supposed that crustal extension follows a much more complex pattern, where
local back-arcs or intra-continental rifts are involved.
Guided by the age data of magmatic rocks and the pattern of subsidence curves, the following extensional
events can be distinguished:
Contemporaneous intra-continental rift basins developed at other places related to a general post-Pan-

African extensional phase affecting Africa

– Upper Cambrian formation of oceanic crust is manifested in the Chamrousse area, and may have lateral
cryptic relics preserved in other places. This is regarded as the oceanisation of some marginal basins in a

context of back-arc rifting. These basins were closed in a mid-Ordovician tectonic phase, related to the
subduction of buoyant material (mid-ocean ridge?)

– Since the Early Ordovician, a new phase of extension is observed, accompanied by a large-scale volcanic
activity, erosion of the rift shoulders generated detritus (Armorican Quartzite) and the rift basins collected
detrital zircons from a wide hinterland. This phase heralded the opening of Palaeotethys, but it failed due
to the Silurian collision (Eo-Variscan phase) of an intra-oceanic arc with the Gondwana margin.

During this time period, at the eastern wing of the Gondwana margin begins the drift of the future Hunia
microcontinents, through the opening of an eastern prolongation of the already existing Rheic Ocean. The
passive margin of the remaining Gondwana was composed of the Galatian superterranes, constituents of the
future Variscan basement areas. Remaining under the influence of crustal extension, they will start their drift
to Laurussia since the earliest Devonian during the opening of the Palaeotethys Ocean.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Great advances in reconstructing the birth and life of the Rheic
Ocean have been made during the last years, leading to scenarios
showing the evolution of the Gondwana margin from the Neoproter-
ozoic to the Ordovician. A model of Neoproterozoic–Cambrian
on Raumer),
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cordillera was applied to the Avalonian part of the Gondwana margin
(Nance et al., 2002), completed by new insight (Murphy et al., 2006;
Arenas et al., 2007b; Linnemann et al., 2007). Equally in our scenario,
after the Cadomian orogenic events, many of the Gondwana-derived
microcontinents resided in a convergent margin setting (Fig. 1), with
an oceanic domain (called Prototethys in the more eastern parts,
Iapetus or Tornquist Ocean for the more western parts) subducting
under Gondwana. Relics of a Neoproterozoic–Cambrian arc can be
identified from the Ossa Morena (Bandres et al., 2002, Sánchez García
et al., 2003, Pereira et al., 2007) and the Central Iberian Zone
(Fernández-Suárez et al., 2000; Rodríguez Alonso, 2004) in the west,
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Fig. 1. Plate-tectonic situation for the Late Cambrian period (500 Ma), with the reconstruction of the peri-Gondwanan terranes at the Gondwana margin. Grey— terranes, composing
the future basement areas of Avalonia; black— terranes, composing the future basement areas of Pangea; blackwith awhite margin— allochthonous Iberian exotic terrane (Galicia—
Trás-os-Montes); stippled — future “Chinese” blocks located at the Gondwana margin. Hatched dark line: future opening of Rheic Ocean; narrowly dotted line: future opening of
Palaeotethys. Ch: opening Chamrousse oceanic domain. In the plate-tectonic reconstructions presented in this paper, the Gondwana-derived continental blocks only are represented,
assuming that they carry in most cases their contemporaneous sedimentary cover.
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across the Black Forest (Chen et al., 2000), the Saxothuringian units
(Kemnitz et al., 2002), and the Bohemian Massif (Zulauf et al., 1999;
Stipska et al., 2001; Dörr et al., 2002) to the Central Alps (Lower
Penninic nappes, Ticino, Schaltegger et al., 2002; Austro-Alpine units,
Silvretta, Schaltegger et al., 1997), the Eastern Alps (Schulz et al., 2004)
and Western Carpathes (Putis et al., 2008), and the Western Pontides
(Ustaömer et al., 2005) in the East.

Many sedimentological environments would have existed in the
convergent margin, including fore-arc basins with deep-sea trenches,
intra-arc, back-arc and rift basin settings. The present-day Neoproter-
ozoic to Cambrian cover-sequences, well preserved in the Moroccan
Anti-Atlas region, may represent the low-grade counterparts of the
mostly highly metamorphosed lithologies widely distributed in the
Gondwana-derived continental blocks, which were transformed
during the Variscan and/or Alpine orogenies (von Raumer et al.,
2003). All of these areas would have provided a wide variety of
potential ecological niches, which would have encouraged the
progressive evolutions of their biotas. Published lithostratigraphic
data from different regions allow us to assess the subsidence history
and tectonic evolution of distinct areas along the Gondwana margin.
The Early Cambrian represents a time period when major plate
interactions initiated a new plate-tectonic configuration. Conse-
quently, a short review of this Cambrian plate-tectonic evolution
may define the problems to be resolved. It is the aim of this paper to
introduce reconstructed subsidence patterns to learn more about the
geodynamic evolution at the Gondwana margin, and to introduce the
problems emerging around the existence and opening of Palaeotethys.

2. Reconstructions — their philosophy

Plate-tectonic concept have been systematically applied to our
palinspastic models, moving away from pure continental drift models,
not constrained by plate limits, to produce a model which finally is
more and more self-constrained. In this approach (first explained in
Stampfli and Borel, 2004) inter-dependent reconstructions are created
from the past to the present. Except during collisions, plates are
moved step by step, as single rigid entities. The only evolving elements
are the plate boundaries, which are preserved and follow a consistent
geodynamic evolution through time and an interconnected network
through space. Hence, lithospheric plates are constructed by adding/
removing oceanic material (symbolized by synthetic isochrones) to
major continents and terranes. In the last years we changed our tools
and moved into GIS softwares and built a geodynamic database to
support the reconstructions, and the model was, and still is, extended
to the whole globe. An example of this new approach can be found in
Ferrari et al. (2008). The plate-tectonic reconstructions presented here
(500 Ma, 460 Ma, 394 Ma) are part of a series starting at 600 Ma and
ending at 20 Ma done at a global scale with a reconstruction every
15 Ma in average. The corresponding palinspastic cross-sections
(Fig. 7) are not fixed to a terrane or continent, they present the
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characteristic situation for a given time in a 2D model. This is a totally
non-fixist approach, inwhich terranes are alwaysmoving in and out of
such cross-sections. The basic principle here is that the present-day
juxtaposition of terranes does not represent, in most cases, the
original relationships of the terranes. The relative motion of many
Variscan terranes is measured in thousands of kilometers.

3. The Cambrian period

Palaeogeographic analyses for the Cambrian (Courjault-Radé et al.,
1992; Alvaro et al., 2003) show an extensive distribution of
epicontinental sediments, which have been previously interpreted
as having been deposited on the rifting Gondwana margin (Franke,
1992). Related extensional faults were discussed by Zulauf et al.
(1997), and the deposition of Cambrian epicontinental sediments was
accompanied by contemporaneous rifting (Liñan and Quesada, 1990)
and volcanic activity (Extebarria et al., 2006). Robardet et al. (1994),
Patoĉka and Storch (2004), and Silva and Pereira (2004) discussed the
presence of marine to intra-cratonic basins, long rivers recycling
the products of erosion of the cratonic areas (Zeh et al., 2001). The
resulting sediments and their chemical composition recorded the
increasing erosion of pre-existing crust with a considerable geochem-
ical homogeneity of the shaly components (Ugidos et al., 2003). A
maximum depositional age of c. 600 Ma for the detrital sediments is
constrained by the youngest detrital zircons (Schaltegger and
Gebauer, 1999; Thöni, 1999) in the Alpine pre-Mesozoic basement.
Such zircon assemblages may also be represented in the “pre-orogenic
age populations” (Martínez Catalán et al., 2004) from the Central
Iberian domain. Although interpreted to represent uninterrupted
erosion, such populations may in fact have resulted from several
erosional events. This includes complete reworking during the uplift
of rift shoulders and formation of younger syn-rift sediments during
and after the Ordovician, during which locally thousands of meters of
detrital sediments were deposited, representing the reworking of the
large hinterland exposed near the rift systems.

In the general situation for the Late Cambrian (Fig. 1), most of the
basement areas known from Central Europe were located at the
Gondwana margin (Stampfli et al., 2006). In this model, the future
Variscan blocks now found from Central America to the Caucasus,
have been spread along the Gondwana margin, representing a future
ribbon-like terrane of more than 10,000 km long. We formerly called
this terrane the Hun superterrane (Stampfli et al., 2002), however, we
now reserved the term Hunia for terranes that were accreted to the
North China block, and we now refer to this ribbon continent as
Greater Galatian superterrane (its European part being called Galatian
terrane s.str.).

4. The subsidence patterns

We cannot repeat all the data published about the Cambrian–
Ordovician sedimentary evolution at the Gondwana margin. The
published lithostratigraphic data (references, see Figs. 3,4, and 6)
allow us to illustrate the subsidence history and, hence, to constrain
the tectonic evolution of Early Palaeozoic basins along the Gondwana
margin. In an earlier paper (von Raumer et al., 2006) the four main
subsidence patterns of the Iberian Massif were discussed specifically,
showing a contemporaneous evolution of sedimentary troughs
occupying, at present-day, distinct tectonostratigraphic units (Ossa
Morena, Central Iberian, West Asturian Leonese and Cantabrian
Zones).

4.1. Lower Cambrian

In the larger European frame, since the earliest Cambrian (540–
510 Ma), strong subsidence is seen as the expression of an extensional
setting at the Gondwanamargin, either related to subduction and roll-
back of Prototethys or to contemporaneous intra-continental rifting
related to a post-Pan-African extension. Such subsidence patterns are
documented (Fig. 3) from the Anti-Atlas, OssaMorena, Central Iberian;
West Asturian Leonese, and Cantabrian Zones, and for the Montagne
Noire, and the Barrandian as well. Early Cambrian is identified in the
Pyrenean and Saxothuringian Zones, and it is supposed that Cambrian
sediments were present (at least partially) in all the domains (comp.
Fig. 4). Striking similarities in the subsidence patterns exist for the
Ossa Morena and Anti-Atlas areas, and again, subsidence is compar-
able in the Central Iberian and the Barrandian domains.

4.2. Upper Cambrian

After the earliest rifting period, a new large-scale tectonic event is
marked by the Upper Cambrian formation of oceanic crust manifested
in the Chamrousse area (comp. Fig. 2), which may have lateral cryptic
relics preserved in other places (see below). This event can be
regarded as the oceanisation of some marginal basins in a context of
back-arc rifting (see discussion below) due to increased roll-back of
Prototethys. A corresponding stronger subsidence is observed for the
West Asturian Leonese, and the Barrandian areas. Is the opening of the
Chamrousse a time equivalent event to the already initial opening of
the Rheic Ocean to the west?

4.3. Ordovician

Starting in the Lower Ordovician (Fig. 4), a new phase of
subsidence was recorded by the sediments of the Central Iberian
Zone (Fig. 4), accompanied by a large-scale volcanic activity. Although
the subsidence pattern of the Cantabrian zone remains rather regular,
Ordovician volcanics (comp. Fig. 4) indicate the Ordovician rifting
event in this zone (Gutiérrez-Marco and Bernárdez, 2003; Gutiérrez-
Alonso et al., 2007). Contemporaneously, in the subsidence patterns of
the Saxothuringian and the Barrandian areas (Fig. 3), a striking
thermal uplift is documented. Although illustrating only burial, the
patterns for the Southern Brittany area (Robardet et al., 1994)
correspond narrowly to the evolution of the western Central Iberian
subsidence curve.

Interestingly, tectonic subsidence curves for the Lower Palaeozoic
from Eastern Avalonia (Prigmore et al., 1997) and a cumulative
thickness curve from the Brabant massif (Verniers et al., 2002)
underline an early rifting period during the Lower Cambrian with
subsequent periods of more rapid subsidence during the Late
Cambrian/Tremadoc and Arenig–Llanvirn periods. Even in the east-
ernmost portions of the margin prolongation (East Alborz, High Lahul,
Central Taurus) the initial subsidence patterns for the Cambro-
Ordovician (Stampfli et al., 2001) show the fingerprints of the mid-
Cambrian rifting and continued Ordovician subsidence. The subse-
quent rapid subsidence records the opening Palaeotethys rift system
in these regions, and in the Pyrenees and Carnic Alps (Fig. 4).

5. The Early Palaeozoic plate-tectonic evolution — a discussion

Strike-slip models (Murphy and Nance, 1989) may explain the
different scenarios at the Gondwana margin. During oblique conver-
gence, plume-like structures may have existed beneath pull apart (e.g.
in the Bohemian Massif, Floyd et al., 2000) or isolated rift basins.
Detrital sediments record the maximum subsidence and were coeval
with rift volcanism in longitudinal continuity, for example, in the
Sudetes (Kryza et al., 2007), in the Bohemian Massif (Kachlik and
Patoĉka, 1996; Zulauf et al., 1997), in the Saxothuringian domain
(Linnemann et al., 1998; Kemnitz et al., 2002), in the Ossa Morena
Zone (Sánchez García et al., 2003) or at the limits between Ossa
Morena and Central Iberian Zones (Rodríguez Alonso et al., 2004).

New plate-tectonic reconstructions (Fig. 1) of the Gondwana mar-
gin suggest that the location of Gondwana-derived terranes should not



Fig. 2. Detail sketch of the plate-tectonic reconstruction of the Gondwanamargin (500 Ma, comp. Fig. 1) indicating the future “Chinese” terranes (dotted) and terranes composing the
future Pangea (light grey) the Alps included (dark grey), and the Iberian allochthonous areas (black, All). Ossa Morena (OM) and Iberian Allochthonous areas (All) separated from the
Gondwana margin through the 500 Ma back-arc initial rifting. The main sutures: future opening Rheic Ocean (dark interrupted line) and Palaeotethys (narrowly hatched line); and
tectonic lineaments: subsidence since the Early Cambrian (dark grey lines) and the Ordovician (light grey lines). Vertically hatched area: areas influenced by the Late Cambrian
formation of oceanic crust (Chamrousse, Western Alps, Ménot et al., 1988). All — Iberian Allochthonous; Aq — Aquitaine; Arm — Armorica; B — Barrandian; Ca — Cantabrian; Car —
Carnic Alps; CIb — Central Iberia; MC — Massif Central; Ms —Meseta; OM — Ossa Morena; Py — Pyrenees; SX — Saxothuringian; WAL — West Asturian Leonese.
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only be guided by the hitherto applied models (e.g. Winchester et al.,
2002; Stampfli and Borel 2004), but should also include possible
detrital input from some Asian blocks (Hunia), supposed to have been
also located along the Cambrian Gondwanamargin (Fig.1). Comparing
the localities along the Gondwana margin (Figs. 1 and 2), different
palaeogeographic models can be distinguished through the quantity
and nature of sediments accumulated in the sedimentary troughs.
Consequently, the Gondwana margin can be subdivided into a more
western domain, where the future Avalonian blocks will be separated
from Gondwana by the opening Rheic Ocean; the Iberian allochtho-
nous units may have been part of the Avalonian domain (compare
Arenas et al., 2007a), aswell as the Sehoul inMorocco (Hoepffner et al.,
2005). In contrast, the more eastern continuation of the converging
margin hosts the future basement areas of Central Europe, in which
different periods of crustal extension should be distinguished.

5.1. Cambrian

The above presented subsidence patterns and the contempora-
neous evolution of major structures constrain a plate-tectonic model
for the evolution of the Gondwana margin (Figs. 2 and 7). The
Neoproterozoic–earliest Cambrian active margin setting of many peri-
Gondwana-derived terranes was subsequently replaced by wide-
spread Early Cambrian extension over wide areas of the Gondwana
margin. Instead of a simple cylindrical evolution with little or no
along-strike variation, it is supposed that crustal extension during the
Lower Cambrian followed a more complex pattern with local back-
arcs and isolated intra-continental rifts (comp. Fig. 2), attaining, still
during the Early Cambrian, the stage of carbonate platform evolution.

A subsequentmajorevent is recognizedat 500Ma (comp. Figs.1, 2 and
7),which, for the eastern regions, corresponds to the formationof oceanic
crust of the Chamrousse area (Belledonnemassif,WesternAlps;Ménot et
al., 1988), an event which may correspond, along-strike to the east to
mafic-ultramafic bodies in the Saxothuringian and related klippen
(Vesser area, Kemnitz et al., 2002; Erbendorf-Hohenstrauss and Münch-
berg Klippe, Franke, 1995) and the Bohemian Massif (Marianske Lasné
Complex, Timmermann et al., 2006). In the BohemianMassif, Floyd et al.
(2000) and Crowley et al. (2002) interpreted the Cambrian continental
break-up as a consequence of interaction with a mantle-plume. Upper
Cambrian rifting is also reported from themore western continuation in



Fig. 3. Subsidence patterns (tectonic subsidence with maximum bathymetric correction) of Palaeozoic sediments from the Gondwana margin. Map: compare Fig. 2. Data: anti-Atlas
(Destombes et al., 1985); Barrandian (Chlupaĉ et al., 1998); MN — Montagne Noire (Feist et al., 1994), Saxothuringian (Linnemann, 2004); Central Iberian Zone (Butenweg, 1968;
Kettel,1968); Cantabrian—Westasturian Leonese- and OssaMorena Zones (Radig,1961; Robardet et al., 1994; GutiérrezMarco et al., 2003; Liñan et al., 2003; Robardet and Gutierrez-
Marco, 2004).
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the Massif Central domain, (Limousin area, Pin and Marini, 1993; Briand
et al.,1995;Berger et al., 2005). TheUpperCambrianoceanisation of some
marginal basins in a context of back-arc rifting, scattered through the
Iberian Allochthonous (Arenas et al., 2007a,b) and the formerly nearby
areas of rifting like the Ossa Morena Zone (Sánchez García et al., 2003;
Quesada, 2006) couldequally represent thewestward continuationof the
Chamrousse Zone, if a more cylindrical model is applied for the
Gondwana margin. The location of the Central Iberian Allochthonous
and the Ossa Morena Zone were equally near to Cambrian subduction
and Cambrian rifting (Figs.1 and 2). The parallels of sedimentological and
volcanic evolution during the Cambrian do not necessarily exclude some
freedom in placing Ossa Morena and the Iberian Allochthonous domains
along theGondwanamargin. The rather comparable subsidencebetween
the eastern Central Iberian Zone and the Barrandian (Fig. 3) suggests at
least the possibility, that both areas had also a comparable location along
the Gondwana margin.

How to reconcile this Late Cambrian extension in a general frame?
The formation of a large volcanic arc with intrusion of subvolcanic



Fig. 4. Subsidence patterns (tectonic subsidence with maximum bathymetric correction) of Palaeozoic sediments from the Central Iberian Zone, the Pyrenees and the Carnic Alps,
with references. The curves from Fig. 3 (in grey) are repeated to allow for comparison. Two different curves illustrate the evolution for the Central Iberian Zone, for the western part
fromAlmadén (Saupé,1973), and for the eastern part (Eastern SierraMorenawith the information about the Ordovician from the easternmost SierraMorena (Kettel,1968) and for the
Lower Cambrian from the Victoria area (Butenweg, 1968). Notify the subsidence of the Central Iberian Zone and the contemporaneous evolution of a thermal uplift in the Barrandian
and the Saxothuringian Zones (highlighted by a thicker line). Data: Pyrenees (Harteveld,1970); Central Iberia East (Eastern SierraMorena; Butenweg,1968; Kettel,1968; Central Iberia
West (Almadén, Saupé, 1973); Carnic Alps (Schönlaub, 1993), other references in Fig. 3.
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bodies (Ollo do Sapo, Díez Montes, 2007) and the contemporaneous
back-arc opening of the future Rheic Ocean is discussed for the NW-
Iberian Gondwana margin (Arenas et al., 2007b). In applying a model
of extending crust, evolving from initial transtension to simple shear
extension (Stampfli et al., 1991), we related (Stampfli et al., 2002) the
Upper Cambrian granite and gabbro intrusions of the Allochthonous
units in NW Spain, accompanied by granulite facies metamorphism
and anatexis (Abati et al., 1999), to extensional processes leading to
the initial opening and rifting of the Rheic Ocean. Considerable crustal
events must have accompanied this evolution and, in Fig. 4, we
interpret this short time period as a time of crustal inversion, perhaps
accompanied by obduction. Interestingly, Linnemann et al. (2004)
discuss the Upper Cambrian inversion of a former rift basin with
intrusion of Cambro-Ordovician granitoids. Since our discussion of
Cambrian granitoids at the eastern Gondwana margin (von Raumer et
al., 2002, 2003), new data confirm the general picture of Late
Cambrian crustal extension (Creta, Romano et al., 2004; Turkey
(Ustaömer et al., 2005).

The same geodynamic scenario cannot be applied to the entire
margin. The ocean opening between Avalonia and Gondwana is
usually named Rheic (Fig. 5), and Prigmore et al. (1997) attributed the
Late Cambrian–Tremadoc or the Arenig–Llanvirn periods of rifting to
the separation of Avalonia fromGondwana. However, Avalonia did not
extend along the length of the margin. The eastern continuation of the
Rheic Ocean, opening north of the Galatian terranes and separating a
ribbon continent (Hunia) represents the eastern branch of the
Rheic Ocean (Fig. 5). The Hunia ribbon continent later accreted to
the Tarim—North China block, whereas Avalonia accreted to North-
America–Baltica. Eastward, on the Galatian transect (Fig. 7), the
Cambrian basins closed during amid-Ordovician tectonic event (Biino,
1994; Oberli et al., 1994; Schaltegger et al., 2003; Franz and Romer,
2007) that we attribute to the diachronous subduction of the
Prototethys mid-ocean ridge. The Hunia terrane can only be detached
from Gondwana after this event, through renewed roll-back of the
Prototethys sea-floor and total subduction of its mid-oceanic ridge.

The question arises, if the Rheic Ocean opened 470–460 Ma years
ago (comp. Prigmore et al., 1997), leading to the separation of the
Avalonian terrane, or if the Rheic opened already during the preceding
Upper Cambrian opening of a back-arc basin and drifting of the
Gander terranes in Upper Cambrian times (comp. discussion in Arenas
et al., 2007a, p.29)? We follow the idea that the Gander terrane was
most likely detached when Avalonia was already drifting from
Gondwana (Valverde-Vaquero et al., 2003), not before, due to
accelerating roll-back of the Iapetus Ocean.

6. From Gondwana to Palaeotethys

6.1. The Ordovician period

It was only after the onset of sea-floor spreading and the consequent
drift of Avalonia and Hunia, that the Armorica/Cadomian terranes and
the more easterly Intra-Alpine blocks followed an independent plate-
tectonic evolution. Faunal distributions from the timeof formationof the
Rheic Ocean to the Devonian marine areas characterize the continuous
evolution of faunal provinces from the Ordovician to the Devonian
(Robardet, 2002, 2003; Fortey and Cocks, 2003). The many Early
Palaeozoic, mostly detrital, sediments from Armorica/Cadomia carry
benthic faunas and shallow-shelf lithofacies indicating that the under-
lying continental structures were not separated from the main
Gondwana continent by a wide ocean (Robardet, 2002). The model
using just one intervening ocean, the Rheic Ocean, rather than
postulating several oceanic regions, thus seemed the most economical
way to explain the interaction of continental plates. However, whilst
accepting these observations and criteria, the solely palaeontological
criteria and the construction of biogeographic maps do not prove that
there was a stable tectonic shelf, since an epicontinental sea opening



Fig. 5. Plate-tectonic reconstruction of the Gondwana margin (460 Ma): the Avalonian terranes separating from Gondwana through the opening Rheic Ocean, and its eastern
prolongation separates the future “Chinese” blocks (dotted) from the terranes representing the future basement areas (light grey) of Pangea. Medium grey: possible location of Early
Ordovician rim-basin deposits (e.g. Armorican Quartzite); black: location of Ossa Morena and Iberian Allochthonous areas (Galicia — Trás-os-Montes).
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through crustal thinning would also carry a comparable evolution of
sediments with identical faunas.

6.1.1. Sediments and tectonics
The stronger subsidence since the Ordovician, visible in the

corresponding patterns (Figs. 3 and 4), can be explained by the
continuation of rifting, and the reworking of the rift shoulders
generating voluminous detritus (Armorican Quartzite). The detrital
zircons indicate sediment derivation from a wide hinterland (e.g.
Martínez Catalán et al., 2004; Drost et al., 2004) into a rim-basin,
located at the southern rim of the Cambrian rift system (comp. Fig.
7D). The regional transgression of the Lower Ordovician is documen-
ted in Southern Brittany (Robardet et al., 1994; Robardet, 2002, area 1,
Fig. 6), and in the Central Iberian domain (Gutierrez Marco et al., 1990;
Martínez Catalán et al., 2004; Fig. 6), and subsidence (Figs. 3 and 4)
was accompanied by strong volcanic activity. In the Saxothuringian
(Fig. 6), the subsidence (compare Figs. 3 and 4) indicates a new rift
phase (erosion, denudation), with transgression of the Ordovician on
Cambrian sediments or Cadomian basement (comp. Linnemann and
Buschmann, 1995). Extension was accompanied by large-scale
volcanic activity and thermal uplift (Figs. 3 and 4) in the Saxothur-
ingian and the Barrandian areas (area 5, Figs. 6, 3 and 4). This
Ordovician phase of extension heralded the opening of Palaeotethys,
but its location in an already thinned lithosphere resulted in a less
evident subsidence pattern.

6.1.2. Magmatic evolution
The Ordovician rifting period is underlined by a strong magmatic

activityat the level of the lowercrust. Sinceourcomprehensivediscussion
on Ordovician granitoids (von Raumer et al., 2002; von Raumer et al.,
2003) and their narrow relation to Ordovician subduction and subse-
quent crustal extension, new data are at disposal from different Alpine
realms (Bertrand et al., 2000; Guillot et al., 2002; Schulz and Bombach,
2003), from the Carpathian mountains (Gaab et al., 2005), from Sardinia
(Helbing 2003; Helbing and Tiepolo 2005; Giacomini et al., 2006), from
Sicily (Trombetta et al., 2004), fromthePyrenees (Deloule et al., 2002) and
from the Bohemian Massif (Bavarian Forest, Teipel et al., 2004).

Equally, the contemporaneous (460 Ma) gabbroic intrusions in the
External Alpine massifs (Paquette et al., 1989; Oberli et al., 1994;
Abrecht et al., 1995; Rubatto et al., 2001) and the Austroalpine Silvretta
Massif (Poller, 1997) plead for a major crustal event along the eastern
part of the Gondwana margin.

7. Hirnantian glaciation and Silurian crustal extension

In the Late Ordovician, many areas were covered by the detrital
sediments of the Hirnantian glaciation (e.g. Hamoumi 1999; Monod et
al., 2003) and, consequently, the future terranes building up Pangea
were still located at rather high southern longitudes. The contem-
poraneous thermal expansion could explain local unconformities or
sedimentary gaps, and the rift shoulders may have been the site of ice
sheets (e.g. in the Taurus Mountains of Turkey, Monod et al., 2003),
whereas in the grabens, graptolite-bearing black-shales were pre-
served which would otherwise have been eroded. The still epiconti-
nental marine areas allowed the free migration of faunas and,
depending on latitude, the passive margins, from the Upper Silurian
onwards, were colonised by platform carbonates as the whole area
drifted generally northwards (Cocks and Torsvik, 2002).



Fig. 6. Plate-tectonic situation at the beginning of the Devonian (394 Ma), the period of initial opening of Palaeotethys. A — global reconstruction with the Galatian ribbon continent
(in black), initial separation from Gondwana and earliest stages preparing the opening of Palaeotethys; B— detail presentation of the Galatian terrane assemblage, a ribbon continent
containing the future crustal blocks composing future Pangea. Dark grey: future Alps; black: Iberian Allochthonous. Localities — detail information and references about the initial
crustal extension preceding the opening of Palaeotethys (see text): 1: Southern Brittany (Robardet et al., 1994); 2: Julivert and Duran, 1990; Gil Ibarguchi et al., 1990); 3: Sardinia
(Stampfli et al., 2002); 4: S. Black Forest (Vaida et al., 2004); 5: Barrandian (Chlupaĉ et al., 1998; Patoĉka and Storch, 2004); 6: Carnic Alps (Schönlaub, 1993); 7: Graz Palaeozoic (Fritz
and Neubauer, 1988). AM— Armorican Massif; BM—Moldanubian part of the Bohemian Massif; Ca— Cantabrian Zone; CIb— Central Iberia (Saupé, 1973; Diez Balda, 1986, Gutierrez
Marco et al., 1990; Martínez Catalán et al., 1992; Silva and Pereira 2004); MC — French Massif Central; Ms — Meseta (Piqué, 1989); OM — Ossa Morena Zone; Py — Pyrenees; Sx —

Saxothuringian (Linnemann et al., 2003); WL — Westasturian Leonese Zone.
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Transtensive extension with syn-rift volcanism during the Ashgill
is observed in the Armorican domain (Chateaulin, Normandie,
Robardet et al., 1994), in the Central Iberian domain (Almadén,
Gutiérrez Marco et al., 1990; Saupé, 1973), in the Catalonian coastal
ranges (locality 2, Fig. 6; Julivert and Duran, 1990; alkaline volcanics,
Gil Ibarguchi et al., 1990), in the Prague-basin (Barrandian) of the
Bohemian Massif (Patoĉka and Storch, 2004), in Sardinia (flood
basalts, Stampfli et al., 2002), and in Iran (flood basalts of up to
500 m thick extending over 1000 km of the margin; Bagheri and
Stampfli, 2008). In the Eastern Alps (7, Fig. 6; Palaeozoic of Graz, Fritz
and Neubauer, 1988), intra-continental alkaline volcanics of Silurian
age with subsequent accumulation of siliciclastics in an extensional
regime are observed. Silurian “vertical tectonics in a distensive
environment (Pieren, 1986 in: Gutiérrez Marco et al., 1990), observed
at the southern margin of the central Iberian domain, yielded Ar40/
Ar39 cooling ages of 420–423 Ma (Dallmeyer and Pieren, 1987,
recalculated 1989) indicating a contemporaneous metamorphic
event in the Precambrian basement. Deposition of volcanosedimen-
tary interbeds and peralkaline volcanics accompany these tectonic
events (Diez Balda, 1986; Saupé, 1973). Saupé (1973) argues for an
epicontinental environment with shallow basins and ridges, and Diez
Balda (1986) describes the extrusion of alkaline basanites, containing
breccia and vesicles. In addition, at the northern limit of the Central
Iberian domain, Silurian extensional faults strongly influenced the
distribution of Silurian sediments (Martínez Catalán et al., 1992,
2004).



Fig. 7. Cross-sections palinspastic model for the possible plate-tectonic evolution between Baltica and Gondwana during the Early Palaeozoic. A — subduction of Cambrian Proto-
Tethys Ocean under Gondwana and opening of a Cambrian back-arc trough with oceanic crust (Chamrousse); B — closure of the Cambrian back-arc; C — ridge subduction and
formation of cordillera; D— back-arc spreading and opening of the eastern branch of the Rheic Ocean, separation of the Hun ribbon continent; shoulder uplift on the Gondwana side
with formation of rim-basins (Armorican Quartzite); E — terrane accretion of the Chinese blocks (N-China and Hunia); F — ridge failure, subduction and underplating between the
Chinese blocks; G — ridge jump and formation of embryonic arc; H — rifted arc in the Chinese blocks, obduction of oceanic crust on the Gondwana passive margin; I — subduction
reversal, exhumation of HP–HT units on the Gondwana side; K — opening of Palaeotethys with separation of the Galatian terranes; opening of the Rhenohercynian Ocean.
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Among the various sedimentary basins formed since the
Ordovician, the Barrandian and Saxothuringian domains were
probably part of the northern margin of Palaeotethys before the
lateral displacement of the Moldanubian zone to the south of the
Saxothuringian Zone. Following the re-interpretation by Stampfli
et al. (2002), its autochthonous sequence (Falk et al., 1995) is marked
by basin deepening in Silurian times, accompanied by lavas and tuffs
in the Ludlow representing the syn-rift event, whereas pelagic
Gedinnian to Givetian sediments represent the drift sequence (com-
pare Linnemann, 2004).

Equally, the Central Iberian Zone with its well-known Cambrian to
Silurian stratigraphy (Figs. 3 and 4) was the place of tectonic events



18 J.F. von Raumer, G.M. Stampfli / Tectonophysics 461 (2008) 9–20
which indicate the initial opening of Palaeotethys. Admittedly, the
primary location of the Central Iberian domain together with its
adjacent areas may have been very different before the Variscan
orogenic events. The sedimentary basins constituting the Lower
Palaeozoic cover series in the Eastern Alps represented the northern
margin of Palaeotethys. They contain acidic volcanics among Lower
Palaeozoic sediments (Loeschke and Heinisch, 1993) with a well-
documented sedimentary evolution (Schönlaub and Heinisch, 1993;
Schönlaub and Histon, 2000), representing a rifting environment since
the Late Ordovician (Neubauer and von Raumer, 1993; Neubauer and
Sassi,1993). In contrast, the southern passivemargin of Palaeotethys is
located in the Iranian occurrences, and a similar evolution is found in
the Cimmerian part of Turkey (references in Stampfli and Kozur,
2006), and North Africa. In this context, the Moroccan Central Meseta
represents the northern margin of Palaeotethys, and was detached
from Gondwana together with the Galatian terrane. A syn-rift
sequence of Silurian–Lower Devonian age precedes the establishment
of a large Devonian carbonate platform related to the drift sequence
(Hoepffner et al., 2005). The eastern zone with its totally different
stratigraphic record did not belong to the Galatian terrane, but was
most likely located to the north of it. The Anti-Atlas formed the
southern margin of Palaeotethys.

Concluding, the Gondwana margin had been a passive margin
since rifting away of the Hunia terrane, but this evolution failed in
some areas due to the Silurian collision (Eo-Variscan phase, see
Stampfli et al., 2002 for references) of an intra-oceanic arc with the
eastern portion of the Gondwana margin, which took place between
400 and 380 Ma (Fig. 7H). The colliding arc and related obduction
developed in the oceanic space that opened between Hunia and
Gondwana, The traces of the obducted ophiolite can be found in Spain
(e.g. Ordenes complex), France (Champtoceaux complex) and Ger-
many (Münchberg Klippe) and surrounding areas. As the ophiolite
obduction is regarded as a hallmark of the outer margin of the
Galatian terrane (Fig. 6), this ophiolite belt was used to reconstruct the
Galatian terrane geometry (Stampfli et al., 2006). The ophiolite
obduction event is not known at the southern margin of the Rheic
ocean s.str., preserved in the north and central American terranes, that
were later accreted to Laurentia.

Subduction inversion following obduction, inducing opening of
Palaeotethys in Upper Devonian times, gave rise to the 10,000 km long
Greater Galatian superterrane (Fig. 6). Apparently the opening of
Palaeotethys was nearly synchronous all along the margin but the
onset of spreading may have been diachronous, from Middle to late
Devonian times.
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