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INTRODUCTION

As real-time computer music performance systems become more widespread, the question of controller
design becomes increasingly pertinent. The flexibility of pitch afforded by computer technology suggests the
use of new input devices optimized for playing in arbitrary tuning systems. In particular, keyboards. are
well-suited for polyphonic playing, and there is a legacy of historical microtonal keyboards that can serve as
models for controller design.

Several motivations for using a microtonal keyboard in computer music can be discerned. The obvious
use is for live performance—microtonal music no longer needs to be primarily restricted to tape music on the
one hand and to the musician-craftsman who constructs special acoustic instruments on the other. There
is an equally compelling motivation for the composer of microtonal music. The real-time aural feedback
provided by such a device can open the door to experimentation with many tuning systems whose harmonic
resources might otherwise remain untapped. A flexible device for real-time pitch control could also be of use
in psychoacoustic research.

The greater portion of this article outlines the history of microtonal keyboards, with a view towards
establishing the most useful design principles.! The final section considers how these principles can be
adopted for synthesizer control. A programmable keyboard is particularly useful, allowing a variety of
tuning systems and key layouts; software written by the author for such a purpose is described. With such a
device, different keyboard layouts can be used to match the tuning system and the nature of the musician’s
usage, as will be explained.

Terminology

By “microtonal,” I am referring primarily to tuning systems with more than twelve notes per octave.?
However, much of what will be discussed is relevant to nonstandard tunings in general. The somewhat
unfortunate prefix “micro-” should not lead the reader to imagine that microtonal compositions are neces-
sarily congested by tiny intervals. A “microtonal keyboard” is any keyboard used to play microtonal music,
including retuned standard keyboards, but nonstandard keyboard designs are the principal focus of this
study. References to the “black” or “white” keys of a standard keyboard serve only to distinguish between
the upper and lower rows of keys, whose actual color varies in some of the examples mentioned.

Although an explication of tuning theory is beyond the scope of this article, some description is necessary
in order to understand the motivations for the various designs. Just intonations are systems whose pitches are
generated by small-integer frequency ratios. For example, the ratios 2/1, 3/2, 4/3, 5/4, and 6/5 correspond

to a justly tuned octave, perfect fifth, perfect fourth, major third, and minor third respectively. Any just

! The number of documented microtonal keyboard designs is at least in the hundreds, so this survey
should by no means be considered exhaustive.

2 Of course, “microtonal” can also refer to systems with twelve or fewer if they contain one or more
intervals significantly smaller than a semitone. Such systems do not pose the same problems for keyboard
design, however. Some writers even use “microtonal” to refer to nonstandard scales containing no microtones,
for example, 10-tone equal temperament.




interval is expressible as the product of powers of prime numbers:
2% x 3 x 5° x ... x L™,
where a through n are integers and L, called the “limit” of the system, is the largest prime number in the
series. As an example, a 7-limit just intonation might include the ratio 14/9, which reduces to
2! x 3 2x59 x 7.

Fig. 1 is a representation of 5-limit just intonation. Horizontally adjacent pitches are a perfect fifth
(3/2) apart; the vertical separation is a major third (5/4). A dimension for the 2/1 ratio is not included; it
is assumed that each pitch represents its equivalents in all other octaves.

It will be observed that the notes in the top row are not exactly an octave higher than their “enharmonic
equivalents” in the bottom row, because (5/4)% = 125/64 # 2/1. In general, no “wraparound” is possible
in such systems, which extend infinitely in all directions with no duplication of pitches. In practice, a finite
area of the plane is chosen. Systems with higher limits can be conceptualized as n-dimensional spaces, where
the limit is the nth number in the prime number series 3,5,7,11,... .

Temperaments are systems some or all of whose intervals correspond to irrational frequency ratios;
an n-tone equal temperament divides the octave into n equal parts, each of which is expressible as the
frequency ratio 21/ /1. In general, the attraction of just intonation for microtonal composers is the belief
that simple ratios produce better-tuned consonances, whereas the attraction of equal temperaments is that
exact transposition to any degree of the system is possible. The proponents of microtonal keyboards have
sought purity of intonation, or a new musical idiom with expanded pitch resources, or both.

HISTORICAL OVERVIEW OF MICROTONAL KEYBOARD DESIGN

Keyboards before the Nineteenth Century: The Process of Accretion

In tracing the development of microtonal keyboards, it is instructive to first understand the origin of
the standard keyboard with seven white and five black keys per octave. Iconographic, musical, and literary
evidence suggests that keyboards in the Middle Ages originally had only the diatonic keys, with the exception
of Bb (which was an integral note in the Medieval modal system). By the end of the fourteenth century,
the remaining chromatic degrees had been added in an upper row.? Thus our present-day keyboard evolved
from a modal keyboard; the chromatic keys were added without violating the spatial pattern of the existing
keys, a process that I shall refer to as “accretion.”

Keyboards with more than 12 pitches per octave were occasionally used in the 16th century and later.
Major and minor thirds and their inversions had come to be considered consonances, and they were ideally
to be tuned in just intonation. (A practical compromise known as quarter-comma meantone temperament
allowed the most important ones to be so tuned.) As we saw in Fig. 1, pairs of notes such as G# and Ab
differ by significant amounts in such systems. It was not an uncommon practice to split one or more of the
black keys into a front and a rear portion, in order to obtain these enharmonic distinctions.

Enharmonic keyboard designs were carried further by 16th- and 17th-century theorists and composers in-
cluding Gioseffo Zarlino (1558,1588), Nicola Vicentino (1555), Francisco Salinas (1577), and Marin Mersenne
(1637). One of the most important instruments was Vicentino’s “Archicembalo,” whose tuning was appar-
ently very close to 31-tone equal temperament (Kaufmann 1970). In addition to splitting the black keys,

3 Although Partch (1949) and others before him have cited the Halberstadt organ, built in 1361, as the
earliest known example of the standard key arrangement, this organ was rebuilt in the fifteenth century and
very possibly had the keyboard updated at that time.
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Fig. 1. 5-limit just intonation matrix.
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Fig. 2. Harpsichord by Joan Albert Ban (1639), after a design by Mersenne.
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these designs often called for split white keys (Fig. 2), additional black keys (Fig. 3), or extra manuals. Note
that these techniques of splitting keys and inserting new ones, without disrupting the established layout,
represent a continuation of the same process of accretion that led to the standard keyboard.

The Nineteenth Century: Bosanquet and Transpositional Invariance

Following relatively little activity in the 18th century, some important advances in keyboard design were
made in the second half of the last century. This was the age of Helmholtz, whose monumental achievement
in musical acoustics lent credence to his espousal of just intonation. Helmholtz’ justly tuned harmonium was
only one of many in this period (Davies 1984), among which Colin Brown’s (Fig. 4) was a notable example
(Ellis 1885).

The design that has had the most lasting impact is the “generalized keyboard” of R. H. M. Bosanquet.
Fig. 5 shows his harmonium tuned in 53-tone equal temperament, a division of the octave that produces
some extremely good approximations of just intervals. The generalized keyboard has two very useful and
related properties: transpositional invariance and adaptability to a variety of tuning systems (as its name
suggests).

Transpositional invariance allows one to move chords or musical passages to any pitch level while main-
taining exactly the same fingering and the same spatial relationships between the keys involved. This prop-
erty, made possible by the uniform layout of equidistant keys, is most useful for equal temperaments, in which
exact transposition to all degrees is possible. The principle of transpositional invariance had been noted long
before with reference to non-microtonal, 12-note keyboard designs. As early as 1708, Konrad Henfling had
proposed a keyboard laid out as two whole-tone scales, and others have improved the design, which is much
more logical for 12-tone equal temperament than the traditional keyboard—and probably easier to learn to
play (Reed 1973). Bosanquet applied the principle of transpositional invariance to the microtonal realm;
what makes his design particularly successful is that the traditional keyboard pattern is retained within it,
although less transparently than in accretion-based designs. Despite the initially formidable appearance of
this instrument, the logic of its design simplifies playing. As can be seen in Fig. 5, the whole-tone rows rise
upward as they move to the right and to the back. As a result, all major scales can be fingered like A major

on a standard keyboard (although this can vary depending upon the tuning), with similar consistency for
other melodic patterns and chords.

Bosanquet’s keyboard was designed for what he termed regular cyclic temperaments, i.e. those equal
temperaments whose pitches form a single cycle of close-to-perfect fifths (Bosanquet 1875). The popular
19-tone and 31-tone equal temperaments are members of this category. It is apparent that systems such
as 24-tone equal temperament have more than one cycle of fifths (two cycles a qyarter-tone apart in this
instance), and that other systems such as 13-tone equal temperament do not have a close approximation to
the perfect fifth. Such systems do not fit well onto Bosanquet’s generalized keyboard pattern in that their
pitches do not all fall onto the locations predicted by the pattern of white and black keys. However, like
all equal temperaments, they do fit in such a way as to exhibit transpositional invariance. A generalized
keyboard can also be used for non-equal-tempered systems such as just intonation or non-Western scales, as

demonstrated by Wilson (1974) (Fig. 6).




Fig. 3. Harpsichord with 31 tones per octave, built by Vito Trasuntino (1606) (courtesy of Museo
Civico Medievale, Bologna).
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Fig. 4. Just intonation harmonium of Colin Brown (c. 1875).




Fig. 5. Bosanquet’s generalized keyboard. Top: cross-section of four keys. Bottom: Front view of part
of the keyboard. Whole tones move upward to the right; major scales fall in a horizontal line; vertically
adjacent notes form the smallest interval in the tuning system. Any chord or melodic pattern is fingered the
same in all transpositions.
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Fig. 6. Just intonation layout for the Wilson-Hackleman clavichord (1976).




The Early Twentieth Century: Quarter-Tone Keyboards

In the years from the turn of the century to World War II, many musicians were interested in 24-
tone equal temperament, which provides microtones while retaining the familiar 12-tone temperament as a
subset. In 1892 G. A. Behrens-Senegalden built his “achromatisches Klavier;” this quarter-tone instrument
was followed over the next four decades by a good number of other quarter-tone pianos and harmoniums. A
number of designs were used. Most followed the obvious plan of duplicating the standard 12-note keyboard
and tuning the two manuals a quarter-tone apart. To simplify fingering, a number of the designers added a
third manual in the back, tuned the same as the front one; the keys in some of the rows were often shortened
as well. The keyboards of Max Meyer (Fig. 7) and Willi von Méllendorff, in contrast, were based upon
the accretion principle: rather than duplicating the original manual, they interspersed the quarter-tone keys
among the normal twelve. There have been some instances of quarter-tone keyboards later in the century,
but they are outnumbered by other microtonal systems.

Some early 20th-century composers were interested in other divisions of the whole tone: Ferruccio
Busoni had a third-tone harmonium and commissioned one in sixth-tones, and Alois Héba likewise had a
sixth-tone harmonium constructed, in addition to some quarter-tone pianos (Héba 1971). The Mexican
composers Julian Carrillo and Augusto Novaro had special microtonal pianos constructed with normal key-
boards. Carrillo’s set of pianos covered all the equal temperaments in the series 18, 24, 30, 36,..., 96. (The
last of these had 97 keys, for a total span of one octave!) Keyboards in 19-tone equal temperament also
received some attention in the first quarter of the century (Mandelbaum 1961).

Partch and Just Intonation Matrices

Experimentation with just intonation keyboards continued during the early twentieth century alongside
the quarter-tone efforts. One of these was Thaddeus Cahill’s Telharmonium, a massive predecessor of the
synthesizer, which in its second version (1906) included just intonation with up to 36 pitches per octave
(Pierce 1924).

One particularly innovative * design was Harry Partch’s “Ptolemy” keyboard (c. 1935), an illustration of
which is given in the first edition of Genesis of a Music (Partch 1949). The main keyboard of this instrument
was similar to a typewriter, but with somewhat larger, circular keys. Above the main keyboard was a smaller
keypad arranged in a kind of matrix that Partch called a “Tonality Diamond” (Fig. 8). Each key in the
Tonality Diamond is represented by its frequency ratio to a reference pitch. Keys in the same diagonal row
ascending to the right have a common denominator, and those in the same row descending to the right share
a common numerator— “common,” that is, if multiplied by an appropriate power of two. (Because he used
ratios in place of pitch names, Partch’s nomenclature “fudges” by powers of two so that each note can have
the same name in every octave.) The Tonality Diamond has been used in an extended form on a harpsichord
built in 1974 by Norman Henry, who is currently building a piano based on the same principle. Like Partch,
Henry uses color coding (different colors corresponding to different numerators and denominators) to help
orient the player (Henry 1985).

With just intonation designs, it is difficult to reconcile two competing features that are desirable for a
keyboard: transpositional invariance and ordering of pitches along the horizontal axis. It will be observed
that the just intonation matrix of Fig. 1 exhibits complete transpositional invariance; unfortunately the
pitches do not lie in an ordered sequence, inhibiting its adoption on a keyboard. The Tonality Diamond

* However, Partch might have been inspired by his reading of Meyer (1929), who depicts a similar diamond
on page 22 (but not with reference to keyboard design).
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Fig. 8. Partch’s 11-limit “Tonality Diamond.” The ratio for each key is formed by the product of the
numbers above the diamond whose rows intersect at that key. Ratios are normalized by powers of 2 in order
to fall in the range [1/1, 2/1).




features a certain limited type of transpositional invariance: any pattern of keys within one row can be
moved perpendicularly to that row, maintaining their intervallic relationships. The keys of the Tonality
Diamond are ordered according to pitch, except for some anomalies that Partch could have avoided by using
the sequence 7, 8, 9, 10, 11, 12 instead of his equivalent sequence 8, 9, 10, 11, 12, 14. Starting from the
left corner, the pitches ascend by moving vertically within each column and then moving to the bottom of
the next column to the right. After reaching the center column, whose keys all have the same pitch (1/1),
the sequence travels down within each column. A somewhat similar, more elaborate design was arrived
at independently by Mycielski (1978). Both these layouts associate numerically (and acoustically) related
pitches with each other. The “Referential Organ” of Boomsliter and Creel (1962) retains some of these
associations while keeping the horizontal displacement proportional to pitch (Fig. 9).

Other Nonstandard Keyboard Designs in the Twentieth Century

Bosanquet’s generalized keyboard has continued to exert considerable influence on microtonal design
in the twentieth century, ranging from plain imitations to various modifications (von Oettingen 1916,
Fickénscher 1941, Schafer and Piehl 1947, Fokker 1975, Wilson 1974, Secor 1975). Perhaps the best-known
of these is the organ built for Adriaan Fokker in 1950, which is tuned in 31-tone equal temperament (Fig.
10). In the 1970’s the Archifoon, an electronic offshoot of this organ, was built; Robert Moog also built two
synthesizers with generalized keyboards. A generalized keyboard was developed for the Motorola Scalatron
(Fig. 11), which was tunable to different microtonal scales, but whose commercial production in the 1970’s
was short-lived (Secor 1975). Whereas most of the earlier designs retain Bosanquet’s idea of long, narrow,
overlapping keys, the Archifoon has shorter rectangular keys, Secor’s Scalatron has oval keys, and Wilson’s
clavichord keyboard uses hexagonal ones. These modifications reduce key length as a trade-off for a wider
key surface.

Besides the generalized keyboard, other concepts have recurred in modern designs, and some new ideas
have cropped up. The principle of accretion continues to be used (Yunik and Swift 1980, Swift and Yunik
1982, Conviser 1980, Daniélou 1978). Alain Daniélou has carried the principle so far as to segment the
standard keyboard into enough pieces for a 53-tone scale (Fig. 12). An interesting “Beehive Keyboard” design
by Jim Davis uses a tempered adaptation of the just intonation matrix (Davis 1986). Another phenomenon
in the twentieth century has been designs that separate microtonal scales into new groupings—analogous to
the traditional grouping of white and black keys—in order to highlight some theoretical feature of the tuning
system (Fig. 13) (Yasser 1932, Young 1961). Along similar lines, John Chalmers has suggested layouts
embodying the groupings for n-tone equal temperaments formalized by him and Ervin Wilson (Chalmers
1980). Note that irregular groupings conflict with the requirements of transpositional invariance, as on the

standard keyboard. To avoid this conflict, the groupings could instead be made explicit by appropriate color
coding on a generalized keyboard.




Fig. 10. The organ of A. D. Fokker, in 31-tone equal temperament (1950) (courtesy of Verlag fiir
systematische Musikwissenschaft).

Fig. 11. The Motorola Scalatron with a generalized keyboard (1975).




Fig. 12. Cross section and top view of Alain Daniélou’s 53-note octave (1967). “+” and “” refer to
alterations by about twenty cents (from Danielou 1978; courtesy of Hermann)




Fig. 13. Joseph Yasser’s division of a 19-note scale into two groups (1932).
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Fig. 14. Screen image produced by a computer program by the author for simulating a microtonal
keyboard (1985). (Photo: Rachel Boughton.)
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The Use of Standard Keyboards

The discussion thus far has concentrated on nonstandard key layouts, but there are a number of cases
where standard keyboards were used on instruments with microtonal capabilities. Let us analyze this ap-
proach, since it is a convenient one for computer music.

If each pitch is to have its own key, one can use multiple manuals. This technique was common with
quarter-tone instruments, and continues to be employed (Vogel 1975, Herf 1975). The only alternative is to
spread the musical octave out over more than a physical octave on the keyboard, as Carrillo did. Although a
main attraction of using the standard keyboard is the ability to capitalize on existing performance skills, both
of these solutions do introduce new technical problems: playing notes on two manuals simultaneously with
one hand requires a new fingering technique, and Carrillo’s single-manual approach reduces the performer’s
effective hand span. The latter approach also means that a given pitch will tend to have a different appearance
in each octave, so that the keyboard pattern no longer provides clues as to the resultant pitch. This is less
problematic for performance from a strictly notated score (since the notation can correspond to the physical
keyboard instead of to the sound) than for improvisational playing, where anticipation of the sounding pitch
18 necessary.

Alternately, a single key may serve duty for different pitches at different times. Combining a standard
keyboard with secondary performance devices such as pedals that select different sets of pitches was a
technique used already in the 18th century; the concept has been used in the 20th century as well. Automatic
adjustment of pitch has also been used to realize just intonation on standard keyboards (Groven 1955, Darreg
1981, Ganter et al 1985, Waage 1985). For the performer, such systems are convenient in that no new playing

techniques are required: what is relinquished is the ability to select arbitrary sets of pitches from a microtonal
scale.

KEYBOARDS FOR MICROTONAL COMPUTER MUSIC

In the past, the necessity for specially constructed instruments thwarted the systematic use of new tuning
systems. The experimenters of other centuries would no doubt be highly envious of the ease that computers
bring to the exploration of new pitch resources. Whereas many of the old instruments had to be dedicated
to one particular microtonal scale, a comparatively simple piece of software can instantly put any tuning
system imaginable at the fingertips of the computer musician. Digital synthesizers are perfectly capable of
producing microtonal music without the use of keyboards, of course. But the ability to polyphonically play
an arbitrary set of pitches in real time can, I believe, greatly facilitate the process of learning the features of
a tuning system. If even great composers have often found a piano useful for trying out their musical ideas
in a conventional tuning, how much more useful would such real-time aural feedback be in an unfamiliar
intonational terrain?

To provide an initial tool for such exploration, I have created a computer program at Stanford’s Center
for Computer Research in Music and Acoustics (CCRMA) that allows the user to specify arbitrary tuning
systems and play with them in real time. This program makes use of earlier code by Bill Schottstaedt
and David Jaffe for real-time control of CCRMA’s Systems Concepts Digital Synthesizer (“Samson Box”).
The computer keyboard is used as the controller—a simple but also appropriate choice, considering the
basic similarity of a typewriter keyboard to some of the generalized microtonal keyboards that have been
constructed in the past.

A picture of the computer keyboard is presented on the screen, with each key labelled according to its
pitch. (Fig. 14) As each physical key is depressed, the corresponding key on the display lights up, allowing
one to easily keep track of one’s place on the keyboard; this graphic feedback greatly simplifies the process
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of learning to play in a variety of tuning systems and key layouts. The label on each of the keys on the
screen can display the note name with an optional octave number, its frequency expressed in Hz, cents, or
as a ratio, or its original typewriter key name. There are control keys for octave displacement, transposition
by arbitrary amounts, and calculation of the intervals between all simultaneously depressed keys, as well as
for the activation of such functions as a simulated sustain pedal and a sequencer routine that records the
subsequent performance as code in the compositional programming language Pla (Schottstaedt 1983). More
importantly, one can either use pre-existing pitch layouts or design one’s own by specifying the note name
and tuning of every key. The latter option is simplified by certain shortcuts; tunings can be input in cents,
ratios, or Hz, and redundant information (such as frequencies for more than one octave, or indeed for more
than one note in an equal temperament) can be omitted. The ability to experiment with different layouts
allows one to approximate various historical designs, and to develop concepts that might be applied to the
construction of special microtonal keyboards.

For maximum flexibility, one would like a keyboard with programmable key configuration, so that keys
could have different sizes and shapes from typewriter keys. Johnstone (1985) has described the Rolky, a
system with a touch-plate capable of responding to multiple contact areas. Any sort of key layout can be
graphically projected onto the touch-plate; pressure sensitivity is simulated by responding to the contact
area of the finger on the glass. The ideal microtonal controller would be similarly configurable but three-
dimensional, with movable keys of variable size and shape, in order to maximize tactile feedback. Different
forms of sensitivity (velocity, pressure, displacement in up to three dimensions) could be employed. Imagine
a flat surface divided into many tiny squares, each the top of a piston that could be moved up or down like
a piano key. A “key” would be an area, drawn by the user, that contained many of these pistons. All the
pistons would move together whenever any of them were pressed, giving the same effect as a single solid key.
A three-dimensional, programmable control panel such as this could have many extramusical applications
as well.

Certainly, there are other possible modes in which microtonal keyboards can be integrated into a com-
puter system. One can imagine a spectrum ranging from complete performer control to complete composer
(or program) control. At one extreme is the conventional approach of providing a separate key for each pitch,
such that the performer can simultaneously access any set of notes in the tuning system. As we have noted,
the key layout can be simplifed, at the expense of freedom of selection, with supplementary performance
controls for re-assigning the pitches of the keys, or with automatic assignment. Control of pitch can be
removed entirely from the performer—for example, if the composer’s note list is stored in memory. In a 1983
lecture at Stanford University, Max Mathews presented the notion of a keyboard with only ten keys—one
for each finger—for this performance mode. And, of course, a single key depression can trigger events much
more complex than a single note.

Polyphonic pitch bend is a useful feature that was less practical before the invention of electronics (with
the possible exception of the clavichord). Snell (1983) has proposed the use of a keyboard that has the
standard layout, but with the black keys sloping down at the rear to the same plane as the whites. This flat
rear portion of the keyboard would function as a ribbon controller that allowed precise, independent pitch
bend on each note of a polyphonic texture. With a flat surface, such as that of the Rolky, one could likewise
create a generalized keyboard pattern in which the spaces between the keys could be used to bend from one
pitch to another.

No discussion of keyboard control in computer music would be complete without reference to the Musical
Instrument Digital Interface (MIDI). As of this writing, MIDI does not support nonstandard tunings.®
However, at least one manufacturer has marketed an inexpensive synthesis unit (the Yamaha FBO1) that can
generate microtones by responding to system-exclusive (i.e., specific to Yamaha) “fractional note numbers.”
Yamaha has also announced its DX7II, each key of which is individually tunable. This instrument has
an internal memory for tunings, but does not have the fractional-note-number scheme for responding to
individual incoming notes in real time. For most synthesizers, one must still resort to the “kludge” of
routing keyboard performance data via a computer that adds appropriate pitch-bend information to each
note. ‘Because pitch-bend is global to all notes within a MIDI channel, only one note per channel can be

5 This deficiency may be related to the fact that MIDI does not disentangle three of the meanings of the
term “note” in computer music: “pitch,” “key on a keyboard,” and “occurrence of a musical event.” For
example, MIDI’s “note-on” command blurs the distinctions between these three.
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played at a time, wasting much of the synthesizer’s capability. It is to be hoped that MIDI manufacturers
will agree upon a standard method of sending tuning information, both for individual notes in real time and
for the entire keyboard.

CONCLUSIONS

What, then, would be the ideal microtonal keyboard for computer music? The answer to this question
depends on the use to which the keyboard is put. For situations where the employment of familiar keyboard
technique is of higher priority than a logical key layout, as for example in virtuosic performance of strictly
notated music, the use of one or more standard manuals is a likely solution. In instances where the musician
is involved in making decisions about the selection of pitch (for example, in improvisation, or when studying
the features of a tuning system), a nonstandard keyboard design may be preferable, particularly when it
offers new benefits such as transpositional invariance. The use of such techniques as video display or color
coding can help solve the problem of initial disorientation.

We have gleaned several principles from the history of microtonal keyboards that can be useful to
consider when deciding upon a nonstandard key layout. The popularity of designs based on the accretion
principle stresses the importance of retaining familiar patterns where possible, and the large number of early
instruments with split keys shows that accretion-based designs are viable for systems with not many more
than 12 notes per octave. However, given that the traditional keyboard itself has a suboptimal design created
by a process of accretion, it is clear that microtonal designs building upon this pattern will suffer from the
same shortcomings—and probably even more severely. For tuning systems with many notes per octave,
or for those in which extensive transposition is possible, an equidistant key layout such as the Bosanquet
generalized keyboard is definitely preferable. In cases where the user plans to explore only one specific
tuning system, a special-purpose keyboard highlighting properties of that system may be more desirable; the
“Tonality Diamond” of Harry Partch is one example.

Computer technology has greatly facilitated the ability to experiment with all these tunings and key
layouts. Programmable, two-dimensional surfaces allow the creation of arbitrary key layouts, and in the
future, even three-dimensional sensors will probably become physically configurable by software. Lack of
access to suitable instruments has always been an albatross around the neck of microtonal music; finally, the
resources of different tuning systems are becoming easily available to all.
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