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Abstract. We will give a brief account of (topological) amenable actions and exactness for
countable discrete groups. The class of exact groups contains most of the familiar groups
and yet is manageable enough to provide interesting applications in geometric topology, von
Neumann algebras and ergodic theory.
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1. Introduction

The notion of amenable groups was introduced by J. von Neumann in 1929 in his
investigation of the Banach–Tarski paradox. He observed that non-abelian free groups
are not amenable and that this fact is the source of the Banach–Tarski paradox. Since
then it has been shown that the amenability of a locally compact group is equivalent to
many fundamental properties in harmonic analysis of the group: the Følner property,
the fixed point property and the weak containment of the trivial representation in the
regular representation, to name a few. For a discrete group, amenability of the group is
also characterized by nuclearity of its group C∗-algebra, and by injectivity of its group
von Neumann algebra. In this note, we are mainly interested in countable discrete
groups. The class of amenable groups contains all solvable groups and is closed under
subgroups, quotients, extensions and directed unions. As we mentioned before, a
non-abelian free group, or any group which contains it, is not amenable. Amenable
groups play a pivotal role in the theory of operator algebras. Many significant operator
algebra-related problems on groups have been solved for amenable groups. We just
cite two of them; the classification of group von Neumann algebras [14] and measure
equivalences [16], [58] on the one hand, and the Baum–Connes conjecture [46] on the
other hand. In recent years, there have been exciting breakthroughs in both subjects
beyond the amenable cases. We refer to [68] and [84] for accounts of this progress.
We will also treat the classification of group von Neumann algebras and measure
equivalences in Section 4. Since many significant problems, if not all, are already
solved for amenable groups, we would like to set out for the world of non-amenable
groups. Still, as Gromov’s principle goes, no statement about all groups is both non-
trivial and true. So we want a good class of groups to play with. We consider a class
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as good if it contains many of the familiar examples, is manageable enough so that it
maintains non-trivial theorems, and can be characterized in various ways so that it is
versatile. We believe that the class of exact groups, which will be introduced in the
following section, stands these tests. The study of exactness originates in C∗-algebra
theory [50], [51], [52] and was propagated to groups. The class of exact groups is
fairly large and it contains all amenable groups, linear groups [39] and hyperbolic
groups [2], to name a few. It is closed under subgroups, extensions, directed unions
and amalgamated free products. (Since every free group is exact and there exists a
non-exact group [37], a quotient of exact group needs not be exact unless the normal
subgroup is amenable.) Moreover, there is a remarkable theorem that the injectivity
part of the Baum–Connes conjecture holds for exact groups [45], [76], [83], [84].
Since this part of the Baum–Connes conjecture has a lot of applications in geometry
and topology, including the strong Novikov conjecture, it is an interesting challenge
to prove exactness of a given group. We will encounter some other applications in
von Neumann algebra theory and ergodic theory in Section 4.

2. Amenable actions and exactness

We first review the definition of and basic facts on amenable actions. We refer to
[65] for the theory of amenable groups and to [5], [11] for the theory of amenable
actions. The notion of amenability for a group action was first introduced in the
measure space setting in the seminal paper [85], which has had a great influence in
both ergodic theory and von Neumann algebra theory. In this spirit the study of its
topological counterpart was initiated in [3]. In this note, we restrict our attention to
continuous actions of countable discrete groups on (not necessarily second countable)
compact spaces. All topological spaces are assumed to be Hausdorff and all groups,
written as �, �, . . . , are assumed to be countable and discrete. Let � be a group. A
(topological) �-space is a topological space X together with a continuous action of �

on it; � × X � (s, x) �→ s.x ∈ X. For a group (or any countable set) �, we let

prob(�) = {
μ ∈ �1(�) : μ ≥ 0,

∑
t∈� μ(t) = 1

} ⊂ �1(�)

and equip prob(�) with the pointwise convergence topology. We note that this topol-
ogy coincides with the norm topology. The space prob(�) is a �-space with the
�-action given by the left translation: (s.μ)(t) = μ(s−1t).

Definition 2.1. We say that a compact �-space X is amenable (or � acts amenably
on X) if there exists a sequence of continuous maps

μn : X � x �→ μx
n ∈ prob(�)

such that for every s ∈ � we have

lim
n→∞ sup

x∈X

‖s.μx
n − μs.x

n ‖ = 0.
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When X is a point, the above definition degenerates to one of the equivalent
definitions of amenability for the group �. Moreover, if � is amenable, then every
�-space is amenable. Conversely, if there exists an amenable �-space which carries
an invariant Radon probability measure, then � itself is amenable. If X is an amenable
�-space, then X is amenable as a �-space for every subgroup �. It follows that all
isotropy subgroups of an amenable �-space have to be amenable. We recall that the
isotropy subgroup of x in a �-space X is {s ∈ � : s.x = x}. It is also easy to see
that if there exists a �-equivariant continuous map from a �-space Y into another
�-space X and if X is amenable, then so is Y . Finally, we only note that there are
several equivalent characterizations of an amenable action which generalize those for
an amenable group.

Many amenable actions naturally arise from the geometry of groups. The follow-
ing are the most basic examples of amenable actions.

Example 2.2. Let Fr = 〈g1, . . . , gr〉 be the free group of rank r < ∞. Then its
(Gromov) boundary ∂Fr is amenable. We note that the Cayley graph of Fr w.r.t. the
standard set of generators is a simplicial tree and its boundary

∂Fr ⊂ {g1, g
−1
1 , . . . , gr , g

−1
r }N

is defined as the compact topological space of all infinite reduced words, equipped with
the relative product topology (see Figure 1). Similarly, with an appropriate topology,
Fr ∪ ∂Fr becomes a compactification of Fr . The free group Fr acts continuously
on ∂Fr by left multiplication (and rectifying possible redundancy). For x ∈ ∂Fr with
its reduced form x = a1a2 . . . , we set x0 = e and xk = a1 . . . ak . For every n ∈ N,
we let

μn : ∂Fr � x �→ μx
n = 1

n

n−1∑
k=0

δxk
∈ prob(Fr ).

Thus μx
n is the normalized characteristic function of the first n segments of the path in

the Cayley graph of Fr , connecting e to x (see Figure 1). It is not hard to see that μn

is a continuous map such that

sup
x∈∂Fr

‖s.μx
n − μs.x

n ‖ ≤ 2|s|
n

for every s ∈ Fr , where |s| is the word length of s. Indeed, s.μx
n is the normalized

characteristic function of the first n segments of the path connecting s to s.x, which
has a large intersection with the path connecting e to s.x (see Figure 2).

There are generalizations of this construction to groups acting on more general
buildings [72] and on hyperbolic spaces [2].

Example 2.3. Let � be a discrete subgroup of the special linear group SL(n, R) (e.g.,
� = SL(n, Z)) andP ⊂ SL(n, R)be the closed subgroup of upper triangular matrices.
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Figure 1. The Cayley graph of F2 and the
boundary ∂F2.
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Figure 2. Amenability of ∂F2.

Then the left multiplication action of � on the Furstenberg boundary SL(n, R)/P is
amenable. More generally, if G is a locally compact group with a closed amenable
locally compact subgroup P (such that G/P compact), then every discrete subgroup �

of G acts amenably on G/P .

A far-reaching generalization of this example is given in [39], where it is shown
that any linear group admits an amenable action on some compact space. Thus many
non-amenable groups admit amenable actions.

Definition 2.4. We say a group � is exact if there exists a compact �-space X which
is amenable.

Exact groups are also said to be boundary amenable, amenable at infinity or to
have the property A. By definition, all amenable groups are exact. Let X be a
compact �-space. Then, by the universality of the Stone–Čech compactification β�,
there exists a �-equivariant continuous map from β� into X. It follows that � is exact
iff β� (or the boundary ∂β� = β� \ �) is amenable. Moreover, whether � is exact
or not, β� is amenable as a �-space for every exact subgroup � of � since there
exists a �-equivariant continuous map from β� into β�. This observation implies
that exactness is preserved under a directed union, i.e., a group � is exact iff all of its
finitely generated subgroups are exact.

Amenability of the Stone–Čech compactification β� leads to an intrinsic charac-
terization of an exact group �. Before stating it, we introduce the notion of coarse
metric spaces [36]. Let d be a left translation invariant metric on � which is proper
in the sense that every subset of finite diameter is finite. Then l(s) = d(s, e) is a
length function on �, i.e., l(s−1) = l(s), l(st) ≤ l(s) + l(t) for every s, t ∈ �, and
l(s) = 0 iff s = e. The length function l is proper in the sense that l−1([0, R]) is finite
for every R > 0. Conversely, every proper length function l gives rise to a proper
left translation invariant metric d on � such that d(s, t) = l(s−1t). If S is a finite
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generating subset of �, then the corresponding word metric is defined by

dS(s, t) = min{n : s−1t = s1 . . . sn, si ∈ S ∪ S−1}.
We note that even when � is not finitely generated, there exists a proper left translation
invariant metric d on � (as we assume that � is countable). Two proper length
functions l and l′ are equivalent in the sense that l(sn) → ∞ iff l′(sn) → ∞. Thus we
are lead to the notion of coarse equivalence, which is a very loose notion. Two metric
spaces (X, d) and (X′, d ′) are coarsely isomorphic if there exists a (not necessarily
continuous) map f : X → X′ such that d(z, f (X)) < ∞ for every z ∈ X′ and

ρ−(d(x, y)) ≤ d ′(f (x), f (y)) ≤ ρ+(d(x, y))

for some fixed function ρ± on [0, ∞) with limr→∞ ρ−(r) = ∞. Such f is called
a coarse isomorphism. We observe that any two proper left translation invariant
metrics d and d ′ on � are coarsely equivalent in the sense that the formal identity
map from (�, d) onto (�, d ′) is a coarse isomorphism. A coarse metric space is a
space together with a coarse equivalence class of metrics. Hence, � is provided with
a unique coarse metric space structure. Two groups � and �′ are said to be coarsely
isomorphic if they are coarsely isomorphic as coarse metric spaces. It follows from
the following theorem that exactness is a coarse isomorphism invariant. In particular,
a group is exact if it has a finite index subgroup which is exact.

Theorem 2.5 ([47], [83]). For a group �, the following are equivalent.

1. The group � is exact.

2. The metric space (�, d) has the property A: For every ε > 0 and R > 0, there
exist a map ν : � → prob(�) and S > 0 such that ‖νs − νt‖ ≤ ε for every
s, t ∈ � with d(s, t) < R and supp νs ⊂ {t : d(s, t) < S} for every s ∈ �.

3. For every ε > 0 and R > 0, there exist a Hilbert space H , a map ξ : � → H
and S > 0 such that |1 − 〈ξt , ξs〉| < ε for every s, t ∈ � with d(s, t) < R and
〈ξt , ξs〉 = 0 for every s, t ∈ � with d(s, t) ≥ S.

Moreover, if � is exact, then � is coarsely isomorphic to a subset of a Hilbert space.

The main result of [83] is the injectivity part of the Baum–Connes conjecture for
a group which is coarsely embeddable into a Hilbert space. (See also [45], [76],
[84].) This justifies the study of exactness for groups. It is not known whether or
not coarse embeddability into a Hilbert space implies exactness (even in the case
of groups with the Haagerup property). We recall that a metric space (X, d) has
asymptotic dimension ≤ d [36] if for every R > 0, there exists a covering U of X

such that supU∈U diam(U) < ∞ and |{U ∈ U : U ∩ B �= ∅}| ≤ d + 1 for any
subset B ⊂ X with diam(B) < R. Asymptotic dimension is a coarse equivalence
invariant and hence an invariant for a group. We note that the groups Z

d and F
d
r have

asymptotic dimension d.
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Corollary 2.6 ([47]). A coarse metric space with finite asymptotic dimension has the
property A. In particular, a group with finite asymptotic dimension is exact.

It was shown in [22] that every Coxeter group has finite asymptotic dimension and
hence is exact. We refer to [8] for more information on asymptotic dimension.

We describe a relative version of an amenable action, which is useful in proving
various kinds of permanence properties of exactness. There are other approaches [6],
[7], [20] which are as well useful. The following is in the spirit of [3].

Proposition 2.7 ([63]). Let X be a compact �-space and K be a countable �-space.
Assume that there exists a net of Borel maps

μn : X → prob(K)

(i.e., the function X � x �→ μx
n(a) ∈ R is Borel for every a ∈ K) such that

lim
n

∫
X

‖s.μx
n − μs.x

n ‖ dm(x) = 0

for every s ∈ � and every Radon probability measure m on X. Then � is exact
provided that all isotropy subgroups of K are exact. Indeed, if Y is a compact
�-space which is amenable as a �-space for every isotropy subgroup �, then X × Y

(with the diagonal �-action) is an amenable �-space.

Corollary 2.8 ([52]). An extension of exact groups is again exact.

Proof. If � � � is a normal subgroup such that �/� is exact, then Proposition 2.7 is
applicable to an amenable compact (�/�)-space X and K = �/� �

We turn our attention to a group acting on a countable simplicial tree T , which
may not be locally finite. We will define a compactification T = T ∪ ∂T of T , to
which Proposition 2.7 is applicable. We recall that a simplicial tree is a connected
graph without non-trivial circuits, and identify T with its vertex set. The boundary ∂T

of T is defined as in Example 2.2. Thus ∂T is the set of all equivalence classes of
(one-sided) infinite simple paths in T , where two infinite simple paths are equivalent if
their intersection is infinite. For every a ∈ T and x ∈ ∂T , there exists a unique infinite
simple path γ in the equivalence class x which starts at a. We say that the path γ

connects a to x. It follows that every two distinct points in T = T ∪∂T are connected
by a unique simple path (which is a biinfinite path, with the obvious definition, when
both points are boundary points). Every edge separates T into two components, and
every finite subset of edges separates X into finitely many components. Now we
equip T with a topology by declaring that all such components are open. It turns
out that T is compact with this topology. We note that T is dense but not open
in T (unless T is locally finite) and that every automorphism s of T extends to a
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homeomorphism on T . Fixing a base point e ∈ T , we define μn : ∂T → prob(T )

exactly as in Example 2.2. It is not hard to see that μn is a Borel map such that

sup
x∈∂T

‖s.μx
n − μs.x

n ‖ ≤ 2d(s.e, e)

n

for every automorphism s of T (cf. Figure 2). We extend μn to T by simply letting
μa

n = δa ∈ prob(T ) for a ∈ T . Then the sequence of Borel maps μn : T → prob(T )

satisfies the assumption of Proposition 2.7 for X = T , K = T and any group � acting
on T .

We recall that associated with the fundamental group of a graph of groups there
exists a tree, called the Bass–Serre tree, on which the group acts. We describe it in
the case of an amalgamated free product. Let � = �1 ∗� �2 be the amalgamated
free product of groups �1 and �2 with a common subgroup �. Then the associated
Bass–Serre tree T is the disjoint union �/�1 � �/�2 of left cosets, where s�1 and
t�2 are adjacent if s�1 ∩ t�2 �= ∅. Thus the edge set of T coincides with �/�, and
an edge s� connects s�1 and s�2. It turns out that T is a tree. The group � acts on T

from the left in such a way that each vertex stabilizer is conjugate to either �1 or �2
and each edge stabilizer is conjugate to �. We note that the tree T is not locally finite
unless � has finite index in both �1 and �2.

Corollary 2.9 ([25], [78]). Let � be a group acting on a countable simplicial tree T .
Then � is exact provided that all isotropy subgroups are exact. In particular, an
amalgamated free product and an HNN-extension of exact groups are again exact.

It follows that one-relator groups are exact [38] because they are made up by
using HNN-extensions following the McCool–Schupp algorithm. A similar remark
applies to a fundamental group of a Haken 3-manifold thanks to the Waldhausen
decomposition.

Example 2.2 can be generalized to a hyperbolic space, too. The notion of hyper-
bolicity was introduced in the very influential paper [35] and has been extensively
studied since. A metric space is said to be hyperbolic if it is “tree-like” in certain
sense, and a finitely generated group � is said to be hyperbolic if its Cayley graph
is hyperbolic. Hyperbolicity is a robust notion and there are many natural examples
of hyperbolic groups including the free groups. Every hyperbolic group has a nice
compactification, called the Gromov compactification, which is a generalization of
that given in Example 2.2. It is shown in [2] that the action of a hyperbolic group
on its Gromov compactification is amenable. (See also [9] and the appendix of [5].)
The result is generalized in [48], [63] to a group acting on hyperbolic spaces, which
are not necessarily locally finite. Compactification of a non-locally-finite hyperbolic
graph was considered in [10], where its Bowditch compactification K is introduced
for a fine hyperbolic graph K . A simplicial tree T and its compactification T are the
simplest non-trivial examples of a uniformly fine hyperbolic graph and its Bowditch



1570 Narutaka Ozawa

compactification. See [10] for details. As in the case for a simplicial tree, the as-
sumption of Proposition 2.7 is satisfied for a uniformly fine hyperbolic graph K , its
Bowditch compactification K and any group acting on K [63]. By a characterization
of a relatively hyperbolic group [10], we obtain the following corollary.

Corollary 2.10 ([20], [59], [63]). A relatively hyperbolic group is exact provided that
all peripheral subgroups are exact. In particular, every hyperbolic group is exact.

Examples of relatively hyperbolic groups include the fundamental groups of com-
plete non-compact finite-volume Riemannian manifolds with pinched negative sec-
tional curvature (which are hyperbolic relative to nilpotent cusp subgroups) [26] and
limit groups (which are hyperbolic relative to maximal non-cyclic abelian subgroups)
[1], [21]. Exactness of limit groups also follows from their linearity.

Another interesting case of group actions which implies exactness is a proper and
co-compact action on a finite dimensional CAT(0) cubical complex [12].

The mapping class group �(S) of a compact orientable surface S is also a natural
example of an exact group [42], [49]. Indeed, the action of �(S) on the space of
complete geodesic laminations is amenable [42]. In contrast, the more well-known
action of �(S) on the Thurston boundary PMF of Teichmüller space is not amenable
because of non-amenable isotropy subgroups. However, if we denote by K the set
of all non-trivial isotopy classes of non-peripheral simple closed curves on S (i.e., K

is the vertex set of the curve complex of S), then the assumption of Proposition 2.7
is satisfied for X = PMF [49]. Since every isotropy subgroup of a point in K is
a mapping class group of lower complexity, induction applies and the exactness of
�(S) follows.

So far we have enumerated examples of exact groups as many as we can (the author
is sorry for any possible omission). Unfortunately, there does exist a (finitely pre-
sented) group which is neither exact nor coarsely embeddable into a Hilbert space [37].
Currently, it is not known whether the following groups are exact or not: Thompson’s
group F , Out(Fr ), automatic groups, 3-manifold groups, groups of homeomorphisms
(resp. diffeomorphisms) on (say) the circle S1, (free) Burnside groups and other mon-
strous groups.

The rest of this section is devoted to the relationship of exactness to operator
algebras. Associated with a group, there are the reduced group C∗-algebra C∗

λ(�)

and the group von Neumann algebra L(�). When � is abelian, C∗
λ(�) is isomorphic

to C(�̂), while L(�) is isomorphic to L∞(�̂), where �̂ is the Pontrjagin dual of �.
Hence the study of C∗

λ(�) corresponds to “noncommutative topology” and that of
L(�) to “noncommutative measure theory” [15]. Amenability of � can be read from
its operator algebras.

Theorem 2.11 ([41], [54], [74]). For a group �, the following are equivalent.

1. The group � is amenable.

2. The reduced group C∗-algebra C∗
λ(�) is nuclear.



Amenable actions and applications 1571

3. The group von Neumann algebra L(�) is injective.

A generalization of this theorem to a group action goes as follows.

Theorem 2.12 ([3]). For a (compact) �-space X, the following are equivalent.

1. The �-space X is amenable.

2. The reduced crossed product C∗-algebra C∗
λ(X � �) is nuclear.

3. The group-measure-space von Neumann algebra L(X � �, m) is injective for
any �-quasi-invariant Radon probability measure m on X.

The nuclear C∗-algebras are accessible among the C∗-algebras and the classifica-
tion program of nuclear C∗-algebras is a very active area of research in C∗-algebra
theory [73]. Many C∗-algebras C∗

λ(X � �) arising from various kinds of boundary
actions are classifiable via their K-theory [4], [53], [77]. Unlike the group case, a
C∗-subalgebra of a nuclear C∗-algebra needs not be nuclear. The notion of exactness
was introduced to give an abstract characterization of subnuclearity and has met a
great success [50], [51]. Exactness has a deep connection with operator space theory
[51], [69]. A C∗-algebra A is called exact if taking the minimal tensor product with
A preserves short exact sequences of C∗-algebras. The following theorem explains
the nomenclature of exact groups.

Theorem 2.13 ([11], [40], [51], [60]). For a group � the following are equivalent.

1. The group � is exact.

2. The reduced group C∗-algebra C∗
λ(�) is exact.

3. The group von Neumann algebra L(�) is weakly exact.

We note that a C∗-subalgebra of an exact C∗-algebra is always exact and that a
von Neumann subalgebra of a weakly exact von Neumann algebra is weakly exact
provided that there exists a normal conditional expectation. Since a von Neumann
algebra with a weakly dense exact C∗-algebra is weakly exact, we obtain the following
corollary.

Corollary 2.14. Exactness is closed under measure equivalence.

We recall that two groups � and � are measure equivalent [36] if there exist
commuting measure preserving free actions of � and � on some Lebesgue measure
space (�, m) such that the action of each of the groups admits a finite measure funda-
mental domain. For example, lattices in the same (second countable) locally compact
group G are measure equivalent. It is known that measure equivalence coincides with
the stable orbit equivalence [29] and hence gives rise to a stable isomorphism of the
corresponding group-measure-space von Neumann algebras.



1572 Narutaka Ozawa

3. Amenable compactifications which are small

We study the “size” of an amenable compactification with its application to von
Neumann algebra theory in mind. A compactification of a group � is a compact space
�� containing � as an open dense subset. We only consider those compactifications
which are equivariant; the left multiplication action of � on � extends to a continuous
action of � on ��. A group � is amenable iff the one-point compactification is
amenable, and a group � is exact iff the Stone–Čech compactification β� is amenable.
Thus we think that the “size” of an amenable compactification of a given group
measures the “degree of amenability” of the group. We say that a compactification
�� of � is small at infinity if for every net (sn) in � with sn → x ∈ ∂�, we have
snt → x for every t ∈ � [13]. In other words, �� is small at infinity if every flow
in � drives � to a single point. We note that �� is small at infinity iff the right
multiplication action of � extends continuously on �� in such a way that it is trivial
on �� \ �. For instance, the Gromov compactification Fr ∪ ∂Fr of the free group
Fr (cf. Example 2.2) is small at infinity since the first k segment of st is same as that
of s as long as |s| ≥ k + |t |. The same applies to general hyperbolic groups.

We say that a group � belongs to the class S if the compact (� ×�)-space ∂β� =
β� \� (with the bilateral action) is amenable. If � has an amenable compactification
�� which is small at infinity, then we have � ∈ S. It follows that the class S
contains amenable groups and hyperbolic groups (or more generally, any group which
is hyperbolic relative to a family of amenable subgroups). The class S is closed
under subgroups and free products (with finite amalgamations). Moreover, the wreath
product � �� of an amenable group � by a group � ∈ S again belongs to S [62]. We
observe that an inner amenable group in S has to be amenable because, by definition,
a group � is inner amenable if ∂β� carries an invariant Radon probability measure for
the conjugation action of � (cf. [44]). In general, for a given group � and a countable
�-space K , it is an interesting problem to decide whether or not the compact �-space
∂βK = βK \ K is amenable (cf. [62]). We note the trivial case where the isotropy
subgroups are all amenable.

The following is a relative version of smallness.

Definition 3.1. Let G be a non-empty family of subgroups of �. For a net (sn) in �

we say that sn → ∞ relative to G if sn /∈ s�t for any s, t ∈ � and � ∈ G. We
say that a compactification �� is small relative to G if for every net (sn) in � with
sn → x ∈ �� and with sn → ∞ relative to G, we have snt → x for every t ∈ �.

Suppose that a group � acts on a simplicial tree T and let T be the compactification
defined in the previous section. We recall that the open basis of the topology is given
by cutting finitely many edges. We fix a base point e ∈ T and consider the smallest
compactification �T � of � for which the map � � s �→ s.e ∈ T is continuous on
�T �. Then �T � is small relative to the family of edge stabilizers. Indeed, suppose
that sn → ∞ relative to edge stabilizers and that a, b ∈ T are given. Let γ be a path
connecting a to b. Since the net (sn.γ ) of paths leaves every edge, two end points
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of sn.γ (i.e., sn.a and sn.b) converge to the same point (if they converge). The same
applies to general fine hyperbolic graphs.

For every non-empty family G of subgroups of �, there exists a compactification
�G� which is small relative to G and is largest in the sense that the identity map
on � extends to a continuous map from �G� onto any other compactification which
is small relative to G. In the case where G consists of the trivial subgroup {e}, a
compactification �� is small relative to G iff it is small at infinity, and �G� is the
Higson compactification of the coarse metric space �. On the contrary, if � ∈ G then
�G� = β�.

Definition 3.2. Let G be a non-empty family of subgroups of �. We say that G is
admissible if there exists an amenable compactification of � which is small relative
to G, or equivalently if the �-space �G� is amenable.

From what we have seen, we obtain the following result.

Theorem 3.3. 1. If � acts on a uniformly fine hyperbolic graph K with amenable
isotropy subgroups, then the family of edge stabilizers is admissible. In particular,
the trivial family of the trivial subgroup {e} is admissible for a hyperbolic group.

2. Let � = �1 ×�2 be a direct product and suppose that Gi are admissible for �i .
Then G = {�1} × G2 ∪ G1 × {�2} is admissible for �.

3. Let � = �1 ∗ �2 be a free product and suppose that Gi are admissible for �i .
Then G = G1 ∪ G2 is admissible for �.

4. Application to von Neumann algebra theory

Let � be a group and C� be its complex group algebra (with the convolution product).
The left regular representation λ of C� on �2(�) is given by

(λ(f )ξ)(t) = (f ∗ ξ)(t) =
∑
s∈�

f (s)ξ(s−1t)

for f ∈ C� and ξ ∈ �2(�). By taking completion w.r.t. an appropriate topology, we
obtain the group von Neumann algebra [57]

L(�) = the weak closure of {λ(f ) : f ∈ C�} in B(�2(�))

= {λ(f ) : f a function on � such that λ(f ) is bounded on �2(�)},
where B(�2) is the algebra of all bounded linear operators on �2(�). We note that L is
functorial w.r.t. inclusions, direct products and free products. The group von Neumann
algebra L(�) is finite in the sense that it has a faithful finite trace

τ : L(�) � λ(f ) �→ 〈λ(f )δe, δe〉 = f (e) ∈ C.
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If � is an infinite abelian group, then we have L(�) = L∞(�̂) ∼= L∞[0, 1] by
uniqueness of the Lebesgue measure space without atoms. (Note that we are still
assuming that groups are countable.) Thus, group von Neumann algebras of infinite
abelian groups are all isomorphic. The center Z(L(�)) of L(�) is easy to describe;

Z(L(�)) = Z(C�)
w = {λ(f ) : f is constant on every conjugacy class}.

A von Neumann algebra with a trivial center is called a factor. Since f = λ(f )δe

belongs to �2(�) for every λ(f ) ∈ L(�), the group von Neumann algebra L(�) is
a factor iff all non-trivial conjugacy classes of � are infinite. Such a group � is said
to be ICC (abbreviation of “Infinite Conjugacy Classes”). Examples of ICC groups
include the free group Fr and the amenable group S∞ = ⋃

Sn of finite permutations
on a countably infinite set. The classification problem of von Neumann factors was
raised in [57], where it is shown that L(Fr ) �= L(S∞). This result is clarified by
Theorem 2.11 that � is amenable iff L(�) is injective. We note that a von Neumann
subalgebra of an injective finite von Neumann algebra is again injective and hence
injective finite von Neumann algebras are considered “small”. Connes’s celebrated
theorem [14] asserts that L(�) ∼= L(S∞) for any amenable ICC group �. This
can be regarded as uniqueness of the amenable noncommutative measure space. In
contrast, it is the biggest open problem in the classification of group factors whether
L(Fr ) �∼= L(Fs) for r �= s or not. Free probability theory was invented [80], [82] to
tackle this problem and has revealed deep structures of the free group factors [34],
[70], [81]. In particular, the free group factors L(Fr ) (2 ≤ r < ∞) are mutually
stably isomorphic. Moreover, the following dichotomy is known [24], [71]; the free
group factors are all isomorphic or all non-isomorphic.

We briefly review the notion of orbit equivalences, which is the ergodic theory
counterpart of that of group von Neumann algebras. Let (X, μ) be a Lebesgue prob-
ability measure space with a measurable non-singular action of a group �. Then we
have a group-measure-space von Neumann algebra L(X � �, μ) which is generated
by L∞(X, μ) and a copy of L(�) [57]. The von Neumann algebra L(X � �, μ) is
finite if the �-action is m.p. (measure preserving) and is a factor if the �-action is e.f.
(ergodic and free). For two e.f.m.p. actions � � (X, μ) and � � (Y, ν), we have

(L∞(X, μ) ⊂ L(X � �, μ)) ∼= (L∞(Y, ν) ⊂ L(Y � �, ν))

iff they are orbit equivalent [27], [57], i.e., there exists an isomorphism F : X → Y of
measure spaces such that F(�x) = �F(x) for a.e. x ∈ X. Thus the classification of
von Neumann algebras and that of orbit equivalences are closely related. We note that
it is possible that L(X��, μ) ∼= L(Y ��, ν) without being orbit equivalent [17]. We
say that two e.f.m.p. actions are stably orbit equivalent (or weakly orbit equivalent)
if they are orbit equivalent “after stabilization”, and that two groups � and � are
(resp. stably) orbit equivalent if they have e.f.m.p. actions which are (resp. stably)
orbit equivalent. As we mentioned at the end of Section 2, two groups are stably orbit
equivalent iff they are measure equivalent. Connes’s aforementioned theorem has the
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following counterpart [58]; e.f.m.p. actions of amenable groups are all orbit equivalent
to each other. Beyond the amenable case, there has been remarkable progress [86]
and exciting new developments [28], [29], [30], [31], [33], [43], [56], [67] in this
subject. In particular, it is shown that free groups of different ranks are mutually
non-orbit equivalent [30]. We do not further elaborate on ergodic theory, but refer to
[32], [68], [75] for details. Before leaving this subject, we mention that as far as we
know, the following bold conjecture (communicated to us by D. Shlyakhtenko) stands;
ICC groups are (stably) orbit equivalent iff they have (stably) isomorphic group von
Neumann algebras.

We now focus on von Neumann algebras. Generally speaking, distinguishing
group von Neumann algebras is a difficult task. Indeed, most of known invariants
for group von Neumann algebras are binary; injectivity, the property (�), the prop-
erty (T ), Haagerup’s property, etc. A notable exception is the Cowling–Haagerup
constant [19]. Free entropy (dimension) [80], [82] and L2-homology [18], [55] are
candidates for invariants. Recently, a breakthrough was obtained in [66], where a
longstanding problem from [57] is solved. It is shown that under certain circum-
stances, one can specify the position of a prescribed von Neumann subalgebra in the
ambient von Neumann algebra. This versatile method found several applications [33],
[43], [67], [68]. The following result is obtained by combining this device with theory
of exact C∗-algebras. In the last few pages, we allow ourselves to be more technical.

Theorem 4.1. Let � be a group and G be an admissible family of its subgroups.
Suppose that N ⊂ L(�) is an injective von Neumann subalgebra whose relative
commutant N ′ ∩ L(�) is non-injective. Then there exist � ∈ G and a non-zero
projection p ∈ N such that pN p is conjugated into L(�) by a partial isometry
in L(�).

We recall that N ′ ∩ M = {a ∈ M : [a, N ] = {0}}. Sometimes we can patch the
pieces pN p together and find a unitary element u ∈ L(�) such that uN u∗ ⊂ L(�).
By Theorems 3.3 and 4.1 and a bit more effort, we obtain the following corollaries.

Recall that a von Neumann algebra M is prime if it does not decompose into a
tensor product of two infinite dimensional (diffuse) von Neumann algebras. The free
group factor L(Fr ) is the first example of a separable prime factor [34].

Corollary 4.2 ([61]). Suppose that � belongs to the class S. Then L(�) is solid,
i.e., for any diffuse subalgebra N ⊂ L(�), the relative commutant N ′ ∩ L(�) is
injective. In particular, L(�) is prime unless � is amenable.

Indeed, replacing N with its maximal abelian subalgebra, we may assume that N
is injective. Then pN p is conjugated into L({e}) = C iff the projection p is atomic
in N . Thus, if N ′ ∩ L(�) is non-injective, then N is not diffuse. We note that if
a solid group von Neumann algebra L(�) ∼= N1 ⊗ N2 is not prime, then both Ni

have to be injective and hence L(�) itself is injective. Similarly, one can prove that
a group-measure-space von Neumann algebra L(X � �, μ) for � ∈ S is prime [62].
This generalizes a result in [2] that an orbit equivalence relation of a hyperbolic group
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is indecomposable. In passing, we mention that an analogous result is obtained for
discrete quantum groups and their von Neumann algebras [79]. The following is a
von Neumann algebra analogue of the result in [56].

Corollary 4.3 ([64]). Let �1, . . . , �n ∈ S and assume that they are all non-amenable
and ICC. If M1, . . . , Mm are non-injective factors such that

m⊗
j=1

Mj ⊂
n⊗

i=1

L(�i),

then we have m ≤ n. If in addition m = n, then we have “Mi ⊂ L(�i)” modulo
permutation of indices, rescaling, and unitary conjugacy.

We have a Kurosh type theorem for non-prime von Neumann factors. Another
version of Kurosh type theorem in presence of rigidity is found in [43], [68].

Corollary 4.4 ([62]). Let �1, . . . , �n and �1, . . . , �m be ICC exact non-amenable
groups all of which decompose into non-trivial direct products. Suppose that

L(F∞ ∗ �1 ∗ · · · ∗ �m) ∼= L(F∞ ∗ �1 ∗ · · · ∗ �n).

Then n = m and, modulo permutation of indices, L(�i) is unitarily conjugated onto
L(�i) for every i ≥ 1.

It follows that iterated free product factors L(F∞ ∗ (F∞ × S∞)∗n) are mutually
non-isomorphic. In contrast, L(F∞ ∗ (F∞ × Z)∗n) are all isomorphic [23].

We describe one more application of amenable actions in von Neumann algebra
theory and ergodic theory. Let � be a group acting on a group � by automorphisms.
Then the semi-direct product (� × �) � � naturally acts on �, where � × � acts
on � bilaterally. This action extends to a continuous action on the Stone–Čech
compactification β� and then restricts to ∂β� = β� \ �.

Proposition 4.5. Let � and � be as above with � amenable and assume that the
compact (� × �) � �-space ∂β� is amenable. Then, for any diffuse von Neumann
subalgebra N ⊂ L(�) ⊂ L(� � �), the relative commutant N ′ ∩ L(� � �) is
injective.

This proposition applies to the wreath product � � � = ( ⊕
� �

)
� � for every

amenable group � and for every exact group �. In the case where � is an infinite
abelian group, the group factor L(���) is isomorphic to the group-measure-space fac-
tor L([0, 1]� ��) of the Bernoulli shift action over the base space ([0, 1], Lebesgue).
Hence, we obtain the following corollary. We note that the same holds for a noncom-
mutative Bernoulli shift by setting � = S∞.

Corollary 4.6 ([62]). Let � be an exact group and M = L([0, 1]� � �) be the
group-measure-space factor of the Bernoulli shift action. Then, for any diffuse von
Neumann subalgebra A ⊂ L∞([0, 1]�), the relative commutant A′ ∩ M is injective.
In particular, the orbit equivalence relation of a Bernoulli shift action by an exact
non-amenable group is indecomposable.
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