CHAPTER 10: STOICHIOMETRY

Try end of chapter Problems (Answers in Appendix I): 1,3,7,9,11,19,21,23,25,27,29,31,33,35,37,39,43,79,83,89
(Be sure to balance the equations first when necessary)

10.1 Interpreting a Chemical Equation

Stoichiometry (STOY-key-OM-etry) problems are based on quantitative relationships between the different substances involved in a chemical reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$
1 molecule $\mathrm{N}_{2}+\mathbf{3}$ molecules $\mathrm{H}_{2} \rightarrow \mathbf{2}$ molecules NH_{3}
It follows that any multiples of these coefficients will be in same ratio!
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
\qquad molecules $\mathrm{H}_{2}+$ \qquad molecules $\mathrm{O}_{2} \rightarrow$ \qquad molecules $\mathrm{H}_{2} \mathrm{O}$

Similarly, the coefficients also tell us the number of moles of each substance

$2 \mathrm{H}_{2}(\mathrm{~g})$	$+\quad \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathbf{2}$ moles H_{2}	$:$	$\mathbf{1}$ mole O $_{2}$	$:$
$\mathbf{2}$ moles $\mathrm{H}_{2} \mathrm{O}$			

Thus, the coefficients in a chemical equation give the mole ratios of reactants and products in a reaction.

Give the mole ratios for the following reaction:

$$
\begin{gathered}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\mathbf{1} \mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8} \underline{5} \mathrm{~mol} \mathrm{O}_{2}\left[3 _\mathrm{mol} \mathrm{CO}_{2}-4 __\mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right.
\end{gathered}
$$

10.2 Mole-Mole Relationships

Example. Consider the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$
Mole ratios would be $\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}_{2}}\right)$ and $\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}\right)$ and $\left(\frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}\right)$ etc...
These mole ratios are used to solve problems such as how many moles of ammonia would be produced from 5.00 moles of hydrogen gas?
Solution: $5.00 \mathrm{~mol} \mathrm{H}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}\right)=3.33 \mathrm{~mol} \mathrm{NH}_{3}$ gas

Write examples from class on the back of this page or scratch paper! Do the practice problems at the end of these notes! This is important!

10.4 Mass-Mass (Stoichiometry) Problems

Grams of given	Molar	Moles of	Mole to	Moles of	Molar	Grams of unknown
	mass	given	mole ratio	unknown	mass	

Steps:

1) Grams of given \leftrightarrow moles of given (Use the MM of given as your conversion factor.)
2) Moles of given \leftrightarrow moles of unknown (Use mole ratios from balanced equation.)
3) Moles unknown \leftrightarrow grams unknown (Use the MM of unknown as your conversion factor.)
> Important to include units \& formulas for all substances- units cancel except wanted units.
Write examples from class on the back of this page or scratch paper! Do the practice problems at the end of these notes! This is important!

10.5-6 Mass-Volume and Volume-Volume (Stoichiometry) Problems

Steps:

1) If given grams, use MM as your conversion factor to get to moles of the given

If given volume, use molar volume to get to moles of the given
2) Use mol ratios to convert from moles of given to moles of unknown
3) If asked to find grams, use MM as your conversion factor to get to grams of the unknown If asked to find volume, use molar volume to get to liters of the unknown

Fact: If you start with liters of the given and are asked to find liters of the unknown, as long as the gases are at the same temperature and pressure the molar volumes will cancel out with each other so you are basically just using the mole ratio to solve this type of problem.

Again write examples from class on the back of this page or scratch paper! Do the practice problems at the end of these notes! This is important!

Examples for sections 4-6:
 $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathbf{2} \mathrm{SO}_{3}(\mathrm{~g})$

1) How many liters of oxygen gas are needed to produce 36.5 liters of SO_{3} gas at STP?

Solution: $36.5 \mathrm{~L} \mathrm{SO}_{3}\left(\frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{SO}_{3}}\right)\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)=18.3 \mathrm{~L} \mathrm{O}_{2}$ (notice molar volume cancels out with itself on this problem)
2) How many grams of SO_{3} gas are produced if 0.234 grams of SO_{2} gas react?

Solution: $0.234 \mathrm{~g} \mathrm{SO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.07 \mathrm{~g} \mathrm{SO}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{SO}_{3}}{2 \mathrm{~mol} \mathrm{SO}_{2}}\right)\left(\frac{80.07 \mathrm{~g} \mathrm{SO}_{3}}{1 \mathrm{~mol} \mathrm{SO}_{3}}\right)=0.292 \mathrm{~g} \mathrm{SO}_{3}$
3) How many liters of oxygen gas are needed to react with 0.234 grams of SO_{2} gas at STP?

Solution: $0.234 \mathrm{~g} \mathrm{SO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.07 \mathrm{~g} \mathrm{SO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{SO}_{2}}\right)\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)=0.0409 \mathrm{~L} \mathrm{O}_{2}$

Practice Problems

$$
\text { Example 1: } \quad \mathrm{N}_{2}(\mathrm{~g}) \quad+\quad 3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A. How many moles of N_{2} are needed to completely react with 6.75 moles of H_{2}.
B. How many moles of NH_{3} form when 3.25 moles of N_{2} react?
C. How many moles of H_{2} are required to produce 4.50 moles of NH_{3} ?

Example 2: Consider the following reaction to produce iron, $\mathrm{Fe}(\mathrm{s})$:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. Calculate the mass of CO needed to react completely with 50.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
B. Calculate the mass of iron produced when 125 g of CO reacts completely.
C. Calculate the mass of CO_{2} produced when 75.0 g of iron is produced.

Example 3: Calculate the volume (in liters) of oxygen gas required to react with 50.0 g of aluminum at STP.

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { spark }} 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Example 4: An automobile airbag inflates when N_{2} gas results from the explosive decomposition of sodium azide $\left(\mathrm{NaN}_{3}\right)$,

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \xrightarrow{\text { spark }} 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

Calculate the mass of NaN_{3} required to produce 50.0 L of N_{2} gas at STP.

Answers to Practice Problems

Example 1 A 6.75 moles $\mathrm{H}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{H}_{2}}\right)=2.25 \mathrm{~mol} \mathrm{~N}_{2}$

B 3.25 moles $\mathrm{N}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)=6.50 \mathrm{~mol} \mathrm{NH}_{3}$

C 4.50 moles $\mathrm{NH}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}\right)=6.75 \mathrm{~mol} \mathrm{H}_{2}$
Example 2 A $50.0 \mathrm{gFe}_{2} \mathrm{O}_{3}\left(\frac{1 \mathrm{~mole} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.70 \mathrm{gFe}_{2} \mathrm{O}_{3}}\right)\left(\frac{3 \mathrm{~mole} \mathrm{CO}}{1 \mathrm{~mole} \mathrm{Fe}_{2} \mathrm{O}_{3}}\right)\left(\frac{28.01 \mathrm{gCO}}{1 \mathrm{~mole} \mathrm{CO}}\right)=26.3 \mathrm{~g} \mathrm{co}$
B $\quad 125 \mathrm{~g} \mathrm{CO}\left(\frac{1 \text { mole CO }}{28.01 \mathrm{gCO}}\right)\left(\frac{2 \text { mole Fe }}{3 \text { mole CO }}\right)\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \text { mole Fe }}\right)=166 \mathrm{~g} \mathrm{Fe}$
C $75.0 \mathrm{~g} \mathrm{Fe}\left(\frac{1 \mathrm{~mole} \mathrm{Fe}}{55.85 \mathrm{gFe}}\right)\left(\frac{3 \mathrm{~mole} \mathrm{CO}_{2}}{2 \mathrm{~mole} \mathrm{Fe}}\right)\left(\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CO}_{2}}\right)=88.7 \mathrm{~g} \mathrm{CO}_{2}$

Example $350.0 \mathrm{~g} \mathrm{Al}\left(\frac{1 \mathrm{~mole} \mathrm{Al}}{26.98 \mathrm{gAl}}\right)\left(\frac{3 \mathrm{~mole} \mathrm{O}_{2}}{4 \mathrm{~mole} \mathrm{Al}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{O}_{2}}{1 \mathrm{~mole} \mathrm{O}_{2}}\right)=31.1 \mathrm{~L} \mathrm{O}_{2}$
Example $450.0 \mathrm{LN}_{2}\left(\frac{\mathrm{~mol} \mathrm{~N}_{2}}{22.4 \mathrm{LN}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}}\right)\left(\frac{65.02 \mathrm{~g} \mathrm{NaN}_{3}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}\right)=96.8 \mathrm{~g} \mathrm{NaN}_{3}$

